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In this supplementary material, we are providing addi-
tional information for the following items:

• The availability of panoramas and limited Field-Of-
View (FOV) images.

• Dataset coverage map

• More implementation details

• More details about the baseline methods discussed in
the main paper.

• Comparison of the number of trainable parameters be-
tween the proposed model and baseline methods

• The availability of our proposed dataset and code for
the public.

• More samples from our proposed dataset.

• More qualitative results predicted by our proposed
model.

1. Panorama vs Limited FOV images
As we discussed in our main paper, limited FOV im-

ages are more popular and common than panoramas. To
highlight the difference, we presented the coverage areas
of limited FOV images and panoramas from Mapillary [1]
in Fig 1. Mapillary [1] is one of the largest crowdsourcing
platforms for sharing geotagged photos. As of 2018, Mapil-
lary [1] hosted 422 million images across the world. As ob-
served from Fig 1, the coverage area of limited FOV images
(Fig. 1b) on Mapillary is substantially greater than the cov-
erage area of panoramas (Fig. 1a), especially in some devel-
oping areas such as Middle East , Africa and south America.
We refer this to the complexity of capturing panoramic im-
ages which they need special and expensive cameras. To
this end, using sequences of limited FOV images as the
query is much more practical than using panoramas as the
query in cross-view geo-localization.

2. More implementation details
Our model was trained in an end-to-end manner using

Adam [3] with weight decay of 10−6 for 50 epochs on a
single Nvidia V100 GPU. The learning rate is set initially
to 10−5 and decayed linearly to 5 × 10−7 after 30 epochs.
We set the γ in Equation 5 of main paper to 10. We set
the ground sequence length T = 7 which is suitable for our
dataset. We used the exhaustive mini-batch strategy [6] to
construct the triplet pair with batch size set to 24.

3. Baseline Methods
We employed two baseline methods for comparison,

SAFA [4] and VIGOR [8]. For SAFA [4], we adopted their
original code. 1 SAFA trained only on the center images
of each sequence. For fair comparison, SAFA has been
initialized with weights pretrained on CVUSA [7] dataset
then trained on our dataset. We used same hyperparame-
ters reported in SAFA’s original paper [4] and fine-tuned the
model for 10 epochs. For VIGOR [8], we used their code2

for training. Similar to SAFA, we trained their model from
all images in the sequences by setting the center ground-
level image to a ‘positive’ sample and the others are ‘semi-
positive’ samples as defined in their original paper. We
set the hyperparameters as reported in original VIGOR pa-
per [8] and followed their exact procedures for training.

4. Dataset Availability and Anonymity
Our proposed dataset is composed of two parts, ground-

level image sequences and satellite imagery as explained
in the main paper. Our ground-level images are public
images collected by Vermont Agency of Transportation3.
The private information of all ground-level images has

1https://github.com/shiyujiao/cross_view_
localization_SAFA

2https://github.com/Jeff-Zilence/VIGOR
3https://vtrans.vermont.gov/

https://github.com/shiyujiao/cross_view_localization_SAFA
https://github.com/shiyujiao/cross_view_localization_SAFA
https://github.com/Jeff-Zilence/VIGOR
https://vtrans.vermont.gov/
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Figure 1: Comparison of coverage area (green lines) of user uploaded street view images between panoramic (a) and limited
FOV images (b) on Mapillary [1].

been anonymized. These images will be shared publicly.
Our satellite images came from Google Maps. Following
Google Maps Platform Terms of Service4, we will make
our dataset available for research purposes only. We will
follow existing datasets, such as VIGOR [8], to distribute
the collected dataset upon request.

5. Dataset Coverage Map

Figure 2: The coverage map of the proposed dataset. The
coverage area is indicated by red lines.

4https://cloud.google.com/maps-platform/terms

Method Parameters R@1 R@10 R@1%

VIGOR [8] 395M 0.54% 4.48% 18.55%
SAFA† [4] 319M 0.68% 5.06% 21.81%

Ours w/ VGG16 [5] 2.9G 1.80% 10.36% 34.38%
Ours w/ Res50 [2] 775M 2.07% 13.16% 40.10%

Res34 [2] 240M 1.71% 11.67% 38.16%
Res18 [2] 161M 1.58% 10.14% 33.83%

Table 1: Caption

To better visualize the diversity of the proposed dataset,
we visualize the coverage area in Fig. 2. As indicated by
the coverage map, our dataset includes both suburban and
urban areas in Vermont, US which cover most scenarios on
the roads.

6. Comparison of parameters

In this section, we present the comparison of train-
able parameters between the proposed model with differ-
ent backbones and baseline methods in Table 1. Our model
with VGG16 [5] is larger than the baselines. This is be-
cause the output dimension of VGG16 is 4096. As a result,
we need wider TFAMs to handle this large latent vector.
When we switch to ResNet [2] as backbone, the number
of parameters is significantly less than VGG [5] as back-
bone. This is because the dimension of output of ResNet50
is 2048. For ResNet34 and ResNet18, the dimension of
output is only 512 which cause these two models are even
smaller than baselines. However, despite of the backbones,
the proposed model is constantly outperforms the baseline
methods. For a fair comparison with baseline methods, we



choose VGG16 as the backbone in the main script.

7. More Dataset examples
In this section, we provided 6 randomly sampled satel-

lite and ground sequence pairs from our proposed dataset as
shown in Fig. 3. As shown in Fig. 3, our dataset covers di-
verse locations, urban, suburban, and rural areas which we
discuss in detail in our main script.

8. More Qualitative Results
In this section, we provided more retrieval examples.

Fig. 4 shows correct top-1 examples predicted by our model
and Fig. 5 shows top-5 retrieval examples. Each figure
shows pairs of satellite and ground images ordered from
top to bottom. For each pair, the bottom row is the query
ground-level sequence and the upper row is the predicted
top-5 satellite images ranked in descending order from left
to right. The satellite images with blue boarder are the
ground truth.
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Figure 3: Six randomly sampled satellite and ground sequence pairs from our dataset.



Figure 4: Samples been correctly predicted as top-1 by our model.



Figure 5: Samples been correctly predicted as top-5 by our model.


