
Appendix
Our experiments are conducted on an Intel Xeon E5-

2687W CPU and a Nvidia Tesla T4 GPU based on Pytorch
1.4.0. Detailed settings are as follows:

Models. Following the adversarial learning framework
described in Sec. 3, its training involves a feature extrac-
tor (Eθ), an adversarial classifier (Aψ) and a target classi-
fier (Cϕ). The model architectures of them are presented
in Table 1. We train the framework for each attribute pair,
respectively. Following the evaluation procedure described
in Sec. 3.3, we evaluate these trained adversarial learning
frameworks based on a normal baseline classification model
(BC) and a validation classifier (VC) for each attribute pair,
respectively. Model architectures of BC and VC are also
presented in Table 1.

Hyper-parameters. The total training epoch is 50. The
Adam optimizer is utilized with the learning rate 0.0001,
and batch size 64. We fix the entropy term α = 0.3, and set
the tradeoff parameter λ ∈ {0.3, 0.5, 0.7}, respectively.

Implementation details. We repeat each experiment for
3 times and report the average results. All the input images
are resized to 64×64. For each attribute pair, we select 3000
samples without replacement through weighted sampling to
meet the corresponding SR requirement as the training set
to train the adversarial learning framework, and select 1000
samples as the testing set to evaluate the framework with no
statistical bias by setting (C00 : C10 : C01 : C11) = (1 : 1 :
1 : 1).

Metrics. When designing the utility and privacy evalu-
ation metrics, we both considered accuracy and AUC met-
rics. Considering the accuracy metric is effective when the
testing data is uniformly distributed in labels, we resam-
ple the testing data to make its label distribution balanced,
where (C00 : C10 : C01 : C11) = (1 : 1 : 1 : 1) for the pri-
vacy and target attribute labels. At the same time, the accu-
racy metric is easier to manually calculate for a non-expert.
But it is better to take AUC as the privacy and utility met-
rics for imbalanced testing sets considering AUC performs
better when evaluating imbalanced datasets.

Table 1. Model Architecture Configurations
Eθ Cϕ/Aψ/VC BC
2×conv3-64 3×conv3-256 2×conv3-64
maxpool maxpool maxpool
2×conv3-128 3×conv3-512 2×conv3-128
maxpool maxpool maxpool

2×fc-4096 3×conv3-256
fc-1 maxpool

3×conv3-512
maxpool
3×conv3-512
maxpool
2×fc-4096
fc-1




