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1. Overview
In this supplementary, we first describe the cLSTM [12]

component of our model in Section 2. The detailed setting
of evaluation metrics is described in Section 3. We also
show the description of our contributed dataset in Section 4.
In Section 5, we provide the discussion of model efficiency.
We show the additional experimental results in Section 6.
Also, the limitation discussion is provided in Section 7.

2. cLSTM [12] component
After feature masking, the masked object feature maps

need to be fused into a well-hidden representation for gen-
erating a realistic target image. Therefore, we need to in-
tegrate all objects in the desired locations and coordinate
object feature maps based on other objects in the image. As
shown in Fig. 1, the convolutional Long-Short-Term Mem-
ory (cLSTM) [12] is a multi-layer convolutional LSTM
network, where the hidden states and cell states are both
feature maps rather than vectors different from the tradi-
tional LSTM [2]. The computation of different gates is
also done by convolutional layers. Therefore, cLSTM can
better preserve spatial information compared with the tra-
ditional vector-based LSTM. It can integrate each object
feature maps

{
Fobji

}m

i=1
one-by-one along the object se-

quence of 1 ∼ m obtained by panoptic perception. The last
output of cLSTM is used as the fused hidden representa-
tion Hobj . Different objects are sequentially fused together
while keeping their spatial locations in the image.

3. Evaluation metrics
We chose the Human Preference (HP), Inception Score

(IS) [8], Fréchet Inception Distance (FID) [7] and Diversity
Score (DS) metrics instead of Peak Signal-to-Noise Ratio
(PSNR) and Structure Similarity Index (SSIM) [11] metrics
to evaluate the image quality. Because for images gener-
ated by GANs learning models, traditional PSNR and SSIM
metrics deviate from human visual perception [13]. Also,
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Figure 1. Illustration of convolutional Long-Short-Term Memory
(cLSTM) component. We use three layers cLSTM for fusing all
object feature maps together into the hidden feature maps Hobj .
The number of channels in each layer of cLSTM is 256, 128, 128,
respectively. The residual blocks are omitted for clarity. The first
of each row is object feature maps of Fobj = {Fobji}

m

i=1
.

we chose Panoptic Quality (PQ) [5] series metrics instead
of instance segmentation and object detection to evaluate
object recognition performance. Because PQ series met-
rics combine mean Intersection over Union (mIoU) in seg-
mentation quality (SQ) and average precision (AP) in recog-
nition quality (RQ) for more comprehensive scores. Also,
since our framework is based on panoptic perception, using
PQ series metrics will be more appropriate than the tradi-
tional object recognition metrics.

Human Preference (HP) compares the image quality
through human cognition. We divided each evaluation set
results into 5 groups to show to 5 persons in 20 participants
(average age: 29.90, std: 23.49) in turn. Each group’s im-
ages are selected with the best three results corresponding to



realism, object sharpness and scene similarity respectively
with unbiased weights (1:1:1) to ensure adequate fairness of
evaluation. The total number of selections is calculated as a
final comprehensive percentage score.

Inception Score (IS) [8] uses an Inception V3 network
pre-trained on the ImageNet-1000 classification benchmark
and computes a statistics score of the network’s outputs
[10]. The higher the IS is, the better a generator model is.

Fréchet Inception Distance (FID) [7] also uses an In-
ception V3 network pre-trained on the ImageNet like IS to
compute the Frechet distance [1] between two Gaussian dis-
tributions fitted to synthesized images and real images re-
spectively [10]. The lower the FID is, the better a generator
model is.

Diversity Score (DS) measures the differences between
paired images generated from the same input by comput-
ing the perceptual similarity in deep feature space [14]. We
used the LPIPS metric [13] for diversity scoring and pre-
trained AlexNet [6] for feature extraction.

Panoptic Quality (PQ) is adopted to evaluate object
recognition performance, PQ combines segmentation qual-
ity (SQ) and recognition quality (RQ) [5],

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality (RQ)

(1)

where SQ sums up all of the Intersection over Union
(IoU) ratios for True Positives (TP) and evaluates how
closely matched predicted segments are with their ground
truths. RQ is a blend of precision and recall, where all
True Positives, half False Positives (FP), and False Nega-
tives (FN) are divided. It combines precision and recalls to
identify how effective a trained model is at getting a predic-
tion right.

4. Dataset contribution
The unaugmented source data from our contributed

dataset contains 2,026 pairs of thermal and color images
based on the partial KAIST-MS [3] dataset, it was anno-
tated via the Segments.ai platform for the panoptic segmen-
tation annotation by three professionally trained annotators.
The annotated datasets can be augmented by various im-
age manipulations for a variety of different tasks. We show
the overview of annotated dataset via this link1, please re-
fer to the insights section on the overview tab to check the
distribution of the categories and number of annotated ob-
jects (‘thing’ and ‘stuff’). Also, for the annotation quality
and detail of images, we show the samples of the dataset on
paired color images via this link2.

1Overview: https://segments.ai/panoptic/visible/
2Samples: https://segments.ai/panoptic/visible/samples

Model Params (M) FLOPs (G)
Avg PT (ms)

t2c d2n s2w

TSIT 116.1 50.8 19.1 19.7 18.4
INIT 130.3 62.9 22.3 21.0 21.6
Ours 113.6 51.4 17.6 19.0 19.9

Table 1. The floating-point operations (FLOPs) and parameters
(Params) evaluate the computational cost and model complexity;
The average processing time (Avg PT) per image evaluates pro-
cessing speed. The lower the better.

5. Model efficiency

The model efficiency will influence practical applica-
tions, it is mainly measured from computational cost, model
complexity and processing time. For the computational
cost and model complexity, we used floating-point opera-
tions (FLOPs) and parameters (Params) as the evaluation
indicators respectively. For the processing time, we calcu-
late the average processing times (Avg PT) per image for
different networks of competing baselines. As shown in
Table 1, we present the model efficiency comparisons be-
tween our scores and the best baselines’ scores, here we list
the competing TSIT [4] (with +Seg, just not shown) and
INIT [9] baselines. Table 1 shows that the Params of our
model are lower than other models, and FLOPs are only
slightly higher than the TSIT model. On different I2I trans-
lation tasks (summer-to-winter, day-to-night and thermal-
to-color), our model spends on average less processing time
than other models. Our method overall outperforms base-
lines since we use panoptic-level perception to avoid los-
ing too much information in the translation, meanwhile,
our model does not incur substantial computational cost and
model complexity, also average processing time keeps com-
petitive.

6. Additional experiment results

The experimental setting is the same as the main paper.
From the additional results provided in Fig. 2, we further
verify that most of the translation results generated by our
method are better than other methods in image quality. As
illustrated in Fig. 3, we also provide the comparison for the
details of translated objects from different methods, the re-
sults demonstrate that translated objects from our method
have sharper boundaries, adequate coloring, and also main-
tain a certain diversity, e.g., the style of cars. Compared
with competing methods on object recognition performance
in Fig. 4, our model can also obtain significant improve-
ment.
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Figure 2. Comparison of the image quality of translated images. Top group are results of the summer-to-winter I2I translation task; Middle
group are results of the day-to-night I2I translation task; Bottom group are results of the thermal-to-color I2I translation task.

7. Limitations

As we finely perceive the foreground object instances
‘thing’ and background semantic regions ‘stuff’ [5] to learn
the translation model. For ‘thing’ (e.g., car), it can gener-
ate different details for high diversity. However, for ‘stuff’
(e.g., road), if generated ‘stuff’ texture is highly different
from the ground truth (e.g., the road has largely different
lane markings and zebra crossings), it may decrease the
whole image quality to some extent and thus affect the
object recognition performance as well. This is because
the ‘stuff’ normally has a larger region than ‘thing’, which

should be considered with the majority of the whole image
context.
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Figure 3. Comparison results on the details of translated objects from different approaches.

[3] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi,
and In So Kweon. Multispectral pedestrian detection:
Benchmark dataset and baseline. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1037–1045, 2015.

[4] Liming Jiang, Changxu Zhang, Mingyang Huang, Chunxiao
Liu, Jianping Shi, and Chen Change Loy. Tsit: A simple
and versatile framework for image-to-image translation. In
European Conference on Computer Vision, pages 206–222.
Springer, 2020.

[5] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9404–9413, 2019.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012.

[7] Suman Ravuri and Oriol Vinyals. Classification accuracy
score for conditional generative models. Advances in neural
information processing systems, 32, 2019.

[8] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29:2234–2242, 2016.

[9] Zhiqiang Shen, Mingyang Huang, Jianping Shi, Xiangyang
Xue, and Thomas S Huang. Towards instance-level image-
to-image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3683–3692, 2019.

[10] Wei Sun and Tianfu Wu. Learning layout and style reconfig-
urable gans for controllable image synthesis. arXiv preprint
arXiv:2003.11571, 2020.

[11] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[12] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm
network: A machine learning approach for precipitation
nowcasting. In Advances in neural information processing
systems, pages 802–810, 2015.

4



Input SCGAN Ours Ground TruthBicycleGAN+SegMUNIT+Seg INITTSIT+Seg

The scene with fewer objects
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Figure 4. The object recognition performance of translated images for different approaches. Top group denotes the scene with fewer
objects; Bottom group denotes the scene with multiple discrepant objects. In each group, upper row are translated images from different
approaches, lower row are the results of the corresponding panoptic segmentation.
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