
Figure 7: An empirical validation of Proposition 1. Under
the assumption of uniform hyperspherical distribution, the
expected angle of the nearest prototype (MNP) decreases
only slightly while the total number of prototypes C in-
creases exponentially. The vertical dashed line indicates
C = 85, 742, the total number of classes in C-MS1M, with
the corresponding angle of MNP = 78.64�.

A. Numerical Approximations
In Section 3.3, we present a theoretical framework for

studying intra-class and inter-class distances under the as-
sumption of uniform distribution of the prototypes over the
unit hypersphere. In this appendix, we sample prototypes
according to this assumption with dimension d = 512 and
C = 85, 742 training classes and show that the results
closely match the analytical results obtained in the limit of
large d and C.

Proposition 1

Proposition 1 expresses the nearest-neighbor inter-class
distance in the limit of infinitely many classes C ! 1.
To see the behavior of the nearest-neighbor distance for fi-
nite C, we sample C prototypes uniformly on the surface
of the 511-dimensional hypersphere and compute the mean
nearest-neighbor angle across the C prototypes. Fig. 7
shows results for a range of C including the size of our
training set C-MS1M (vertical dashed line).

Proposition 2

In Proposition 2, we argue that for large dimension d the
mass of a (d � 1)-dimensional spherical cap is highly con-
centrated in a tight annulus around its (d � 2)-dimensional
boundary. In Fig. 8, we compute the area of a ✓-spherical

Figure 8: A corroboration of Proposition 2 showing the
mass of a high-dimensional spherical cap concentrates on
its boundary. The plot shows the relative area of a ✓-cap
of the (d � 1)-sphere with d = 512, plotted in logarithmic
scale, as a function of ✓. The cap area decreases exponen-
tially as its defining planar angle decreases.

cap of the (d� 1)-sphere (with ✓ 2 [0, ⇡
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with Ix(a, b) the regularized incomplete beta function. No-
tice the exponential decay of the area as a function of the
✓-spherical cap planar angle ✓, meaning that most of the
area of a cap of angle ✓ is near angle ✓.

Given this measure concentration property of the high-
dimensional sphere, we claim that sampling feature points
uniformly in a hyperspherical cap generates points that are
tightly concentrated near the spherical cap boundary. In
Fig. 9, we display the mean and standard deviation of the
angle between points sampled on a ✓-spherical cap and the
axis of the cap, as a function of ✓. As expected, with high
embedding space dimension d = 512, these statistics lie
very close to the line y = ✓. For comparison, we display
the corresponding statistics for d = 8, which show a much
lower concentration of sampled points near ✓. To generate
the samples for Fig. 9, we used Arun’s linear time algorithm
for sampling points from a section of the surface of a hyper-
sphere [25].

The gradient of the margin softmax losses with respect to
the correct-class angle nearly vanishes at a hyperparameter-
dependent “termination angle”, from which we assume that
all correct-class angles will be smaller than this termination
angle for a trained model. Proposition 2 tells us that angles



Figure 9: An empirical validation of Proposition 2. Vec-
tors are sampled uniformly from within the hyper-spherical
cap defined by angle ✓, and the mean and standard devia-
tion of angles between sampled vectors and the center axis
(prototype) are plotted. The orange line corresponds to
d = 512 and the blue line corresponds to d = 8. For a
high-dimensional spherical cap, uniformly sampled vectors
have a high probability to lay at the boundary of the cap as
that part dominates the area.

are unlikely to be significantly smaller than the termination
angle by chance, which justifies approximating the average
correct-class angle as equal to the termination angle (rather
than less than or equal).

Proposition 3
Proof To make the dependency of C, d as a function of
s explicit in the limit (11), recall the error bound given by
the law of large numbers for the sum of C i.i.d. random
variables XC = X1 + · · ·+XC with mean µ and variance
�2
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Replacing in the right hand side of equation (13) the
moments of the lognormal distribution Xj = eszj , with
zj s N (0, 1/

p
d) (namely µ = es

2/2d and � = e2s
2/d)

we get an approximation error of
1

✏2
es

2/d

C
, which can be

made arbitrarily small, as long as C � es
2/d. ⇤

Numerical Approximation Proposition 3 approximates
the expected value of the total wrong-class weight in the
softmax denominator under our assumptions of hyperspher-
ical uniform distribution of the prototypes and C suffi-
ciently large. Notice that for the typical setting of the fea-

Figure 10: An empirical validation of Proposition 3. The
red line represents the approximation from (10) of the neg-
ative weight

P
j 6=yi

eszj against the number of classes C,
while the blue dots indicate the negative weight from C vec-
tors uniformly sampled on a (d � 1)-sphere. The vertical
dashed line indicates C = 85, 742, the number of classes of
C-MS1M, with corresponding negative weight 4.4562 ·1e6.

ture representation space (d = 512, s = 64, C = 85, 742),
the quantity es

2/d/C  0.0348 ⌧ 1, so for this setting
and smaller s we expect small errors. To show the accuracy
of this approximation for finite C, in Fig. 10 we compare
the predicted expected value for the total negative weight
against the numerical approximation obtained from sam-
pling and normalizing C points from a d-dimensional Gaus-
sian distribution.

B. Optimal Margin Values
In Section 4.2, we report test set performance for models

trained with each of the four different margin-based softmax
losses using the margin values proposed in the correspond-
ing literature (SphereFace m1 = 1.35, ArcFace m2 = 0.5,
CosFace m3 = 0.35). A more thorough analysis, when us-
ing the same setup for the different losses (same architec-
ture, model hyperparameters, optimization schedule) and
with several runs per margin value, reveals that improved
performance is achieved for slightly different best margin
values. In particular, this unveils equivalent performance
between the additive margins of ArcFace and CosFace un-
der our training scheme. Our multiplicative margin m0

(AmpFace) has performance comparable to ArcFace and
CosFace but slightly inferior. The lower performance may
be due to the gradient with respect to the positive class an-
gle scaling linearly with m0, which may slow down opti-



AmpFace SphereFace ArcFace CosFace
m0 MF Id m1 MF Id m2 MF Id m3 MF Id
1.0 88.95 1.0 88.95 0.0 88.58 0.0 88.58
0.9 90.05±0.58 – – 0.1 92.97±0.12 0.1 92.44
0.8 92.07±0.55 1.2 95.51±0.04 0.2 95.96±0.06 0.2 96.42±0.10

0.7 93.69±0.17 1.3 96.25 0.3 97.35±0.17 0.3 97.72±0.04

0.6 95.39±0.61 1.4 96.30±0.06 0.4 97.93±0.04 0.4 98.27±0.07

0.5 96.91±0.06 – – 0.5 98.21±0.03 0.5 98.43±0.09

0.4 97.58±0.05 1.6 93.04±0.11 0.6 98.26±0.09 0.6 98.30±0.03

0.3 97.82±0.06 – – 0.7 98.26±0.06 0.7 98.20±0.12

0.2 97.40 1.8 79.26±0.99 0.8 98.20±0.13 0.8 98.31±0.11

0.1 96.85 – – 0.9 98.07±0.06 0.9 98.18±0.12

Table 3: An extensive margin hyperparameter search for AmpFace, SphereFace, ArcFace, and CosFace. Models are all
trained under the same protocol as described in section 4.1 and performance on MegaFace Id is reported. AmpFace and
SphereFace are trained with WC-ReLU to avoid the polar collapse mode described in Section 3.2.

mization and impede final performance with a fixed train-
ing schedule. SphereFace has inferior performance and suf-
fers from difficult optimization as observed in [14]. Table 3
shows the hyperparameter grid search for the optimal values
for each of the proposed margin penalties.

The resulting best margins m0 = 0.35, m2 = 0.6 and
m3 = 0.5 have the interesting property visualized in Fig. 5.
In each case, the gradient of the corresponding loss with re-
spect to the correct-class angle approximately vanishes at
the same value of the angle. Moreover this shared termi-
nation angle is approximately half the predicted inter-class
angle. We hope that future research will elucidate this re-
lationship and perhaps enable analytical predictions of the
best margin values, replacing the laborious hyperparame-
ter search. However, as described in Section 4.3, a precise
argument for why optimization should terminate with intra-
class distance half of inter-class distance is beyond our cur-
rent understanding.

For SphereFace, the best performance is attained for a
model trained with m1 = 1.35, with MF Id score 96.39 ±
0.18 significantly lower than its alternative margin penalty
formulations. We notice that SphereFace suffers from dif-
ficult optimization, with the gradient of the loss w.r.t. the
positive class scaling quadratically with m1 (equation 12).
In Fig. 5, we plot the value of m1 = 1.85 that would lead to
the same optimization termination angle as AmpFace, Arc-
Face, and CosFace. In Section 4.3, we discuss recent work
[14] that shows higher performance can be achieved in this
setting under more carefully regularized model training.

C. Visualization of Loss Parameters
The assumption of uniform distribution of the negative

classes on the unit hypersphere detailed in Proposition 3 al-
lows us to visualize the action of each hyperparameter in the
softmax loss from (3): the number of classes C, the dimen-

sionality d, the scale hyperparameter s and all four mar-
gins m0,m1,m2 and m3. We visualize the effect of each
of these parameters in isolation on the loss Li as a func-
tion of the correct-class angle ✓yi (Fig. 11), the gradient for
the correct-class angle @Li/@✓yi (Fig. 12), and the gradient
for an arbitrary wrong-class angle @Li/@✓j , with the latter
shown as a function of both ✓yi (Fig. 13) and ✓j (Fig. 14).

Fig. 11 and Fig. 12 reveal a surprising similarity between
certain parameters. For example, increasing the CosFace
margin m3 has a similar effect on the loss as decreasing the
dimensionality d. By rearranging the terms in (3) to remove
m3 from the correct class logits and using the result from
Proposition 3, the negative weight can be approximated by
(C�1)es(s/(2d)+m3) which illustrates how d and m3 might
be inversely related. We also observe a similar connection
between the scale factor s and the margin m0, which is
less surprising as they are both multiplicative coefficients
for correct-class logits.

These similarities do not extend to the wrong-class gra-
dients illustrated in Fig. 13 and Fig. 14, where decreasing d
and s simply shrinks gradients for all angles while applying
m3 and m0 changes the point at which gradients become
non-zero (and, in the case of ✓j , increases the gradients for
larger ✓j). An interesting observation in these plots is the
similarity of negative gradients induced by all margin hy-
perparameters, indicating that the variation in the resulting
classification performance is largely a function of the gradi-
ents for correct-class angles.

D. Visualization of Angular Decision Margins
Prior literature on margin-based softmax losses typi-

cally illustrates the differences between margins in a bi-
nary classification setting by showing the decision margin

surrounding the decision boundary. Increasing the margin
size shrinks the region of positive classification for each



Figure 11: The loss Li as a function of the correct-class angle ✓yi for a range of values chosen to illustrate the effect of the
following hyperparameters: C, the number of prototypes; d, the number of dimensions of the feature embedding space; s,
the scale; and the m0, m1, m2, and m3 margins. Note the surprising similarity in the effect of varying d (row 1, column 2)
and m3 (row 2, column 4). Best viewed in color.

Figure 12: The gradient of the loss @Li/@✓yi with respect to the correct-class angle ✓yi as ✓yi is varied. Best viewed in color.



Figure 13: The gradient of the loss @Li/@✓j with respect to an arbitrary wrong-class angle ✓j , j 6= yi as the correct-class
angle ✓yi is varied and ✓j is fixed to 80�. Best viewed in color.

Figure 14: The gradient of the loss @Li/@✓j with respect to an arbitrary wrong-class angle ✓j , j 6= yi as ✓j is varied and the
correct-class angle ✓yi is fixed to 40�. Best viewed in color.



class. Fig. 15 visualizes binary decision margins in angu-
lar space for the four margin-based loss formulations stud-
ied here, with parameters set to optimal tuned values from
Appendix B.

The leftmost Fig. 15a corresponds to the settings m0 =
1, m1 = 1, m2 = 0, m3 = 0 and only one parameter
deviates from these settings in each other plot. ArcFace [3]
and CosFace [27] attribute the success of their margin-based
loss formulations to the additive nature of their margins,
which lead to constant linear decision margins in angular
space and cosine space (not pictured) respectively.

However, the clear differences between margin formula-
tions in this low-dimensional visualization do not well char-
acterize their behavior in practical settings with high C and
d. To better approximate this, Fig. 16 translates these an-
gular decision margins to a 3-d sphere, with prototypes de-
fined at (0, 0, 1) and (1, 0, 0). We observe that when proto-
types are sufficiently distant, the decision margins are sim-
ilar, with all but AmpFace resembling the linear margin of
ArcFace. Further differences emerge only when prototypes
are much closer or when m1 is set to large values, resulting
in discontinuous classification regions.

Practical face recognition problems typically feature a
large number of prototypes, and their decision margins can-
not be easily derived from the binary classification setting.
Fig. 17 illustrates decision margins with the same parameter
regime for 3-way classification, introducing an additional
prototype defined at (0,�1, 0). Decision margins appear
more similar in this setting, with AmpFace as the biggest
outlier, suggesting that the location of prototypes on the hy-
persphere is more relevant to the decision landscape than
the margin type.

Fig. 18 attempts to visualize the effect of high C and d
on decision margins in 3-d. With C = 85, 742 and d = 512,
which results in an inter-class distance Minter of 78.64�, we
sample 200 prototypes around the equatorial region of the
sphere and illustrate the effect of their presence on the clas-
sification region of the prototype at (0, 0, 1) under different
margin settings. We observe that all such regions take the
form of spherical caps surrounding the prototype, as noted
in Section 3.3. There is no visible effect of linear or non-
linear decision margins, as the boundary of the cap is in-
fluenced by multiple prototypes located at Minter with high
probability.



(a) No margins (b) m0 = 0.35 (c) m1 = 1.35 (d) m2 = 0.60 (e) m3 = 0.50

Figure 15: Angular decision margins (blank area) surrounding a decision boundary (dotted line) for binary classification.

(a) No margins (b) m0 = 0.35 (c) m1 = 1.35 (d) m2 = 0.60 (e) m3 = 0.50

Figure 16: Decision margins for binary classification on a 3-d sphere with prototypes at (0, 0, 1) and (1, 0, 0).

(a) No margins (b) m0 = 0.35 (c) m1 = 1.35 (d) m2 = 0.60 (e) m3 = 0.50

Figure 17: Decision margins for 3-way classification on a 3-d sphere with prototypes at (0, 0, 1), (1, 0, 0) and (0,�1, 0).

(a) No margins (b) m0 = 0.35 (c) m1 = 1.35 (d) m2 = 0.60 (e) m3 = 0.50

Figure 18: Approximation on a 3-d sphere of positive region for a prototype under our experimental conditions (C = 85, 742, d = 512),
where the expected inter-class distance is 80�. The positive region forms a hyperspherical cap regardless of the margin type or value.


