
Supplementary of
Dataset Condensation with Distribution Matching

Bo Zhao, Hakan Bilen
School of Informatics, The University of Edinburgh

{bo.zhao, hbilen}@ed.ac.uk

1. Implementation details
1.1. Dataset Condensation

DSA Results. As [12] didn’t report 50 images/class learn-
ing performance on CIFAR100, we obtain the result in Ta-
ble 1 by running their released code and coarsely searching
the hyper-parameters (outer and inner loop steps). Then, we
set both outer and inner loop to be 10 steps. The rest hyper-
parameters are the default ones in their released code. To
obtain the DSA results with batch normalization in Table 2
and Table 3, we also run DSA code and set batch normal-
ization in ConvNet.
ResNet with Batch Normalization. We follow the modi-
fication of ResNet in [13]. They replace the stride = 2 con-
volution layer with stride = 1 convolution layer followed
by an average pooling layer in the ResNet architecture that
is used to learn the synthetic data. This modification en-
ables smooth error back-propagation to the input images.
We directly use their released ResNet architecture.

1.2. Continual Learning

Data Augmentation. Prabhu et al. [8] use cutmix [11]
augmentation strategy for training models. Different from
them, we follow [12] and use the default DSA augmentation
strategy in order to be consistent with other experiments in
this paper.
DSA and Herding Training. Without loss of generality,
we run DSA training algorithm on the new training classes
and images only in every learning step. It is not a easy
work to take old model and memory into DSA training
and achieve better performance. The synthetic data learned
with old model can also be biased to it, and thus perform
worse. Similarly, we train the embedding function (Con-
vNet) for herding method on the new training classes and
images only.

1.3. Neural Architecture Search

We randomly select 10% training samples in CIFAR10
dataset as the validation set. The rest are the training set.

The batch size is 250, then one training epoch on the small
(50 images/class) proxy sets includes 2 batches. The DSA
augmentation strategy is applied to all proxy-set methods
and early-stopping. We train each model 5 times and report
the mean accuracies. We do NAS experiment on one Tesla
v100 GPU.

We visualize the performance rank correlation between
proxy-set and whole-dataset training in Figure F1. The top
5% architectures are selected based on the validation ac-
curacies of models trained on each proxy-set. Each point
represents a selected architecture. The horizontal and ver-
tical axes are the testing accuracies of models trained on
the proxy-set and the whole dataset respectively. The fig-
ure shows that our method can produce better proxy set to
obtain more reliable performance ranking of candidate ar-
chitectures.

2. Comparison to More Baselines and Related
Works

2.1. Comparison to Generative Models

In this subsection, we compare the data-efficiency of
samples generated by our dataset condensation method to
those generated by traditional generative models, namely
VAE and GAN. Specifically, we choose the state-of-the-
art DC-VAE [7] and BigGAN [1]. The BigGAN model is
trained with the differentiable augmentation [14]. In addi-
tion, we also compare to a related generative model GMMN
[3] which aims to learn an image generator that can map a
uniform distribution to real image distribution. Our method
differs from GMMN in many ways significantly. First,
GMMN aims to generate real-looking images, while our
goal is to condense a training set by synthesizing informa-
tive training samples that can be used to efficiently train
deep networks through MMD. Second, our method learns
pixels directly, while GMMN learns a generator network.
Third, our method learns a few synthetic samples to ap-
proximate the distribution of large real training set in any
embedding space with any augmentation, while GMMN
learns to map a uniform distribution to real image distri-

0.50 0.55
Proxy-set Acc.

0.75

0.80

0.85
W

ho
le

-s
et

 A
cc

.

Random
Correlation = -0.04

0.55 0.60
Proxy-set Acc.

0.70

0.75

0.80

0.85

DSA
Correlation = 0.68

0.58 0.60 0.62
Proxy-set Acc.

0.70

0.75

0.80

0.85

DM
Correlation = 0.76

0.65 0.70
Proxy-set Acc.

0.75

0.80

0.85

Early-stopping
Correlation = 0.11

Figure F1. Performance rank correlation between proxy-set and whole-dataset training.

bution which is an easier task.
We train these generative models on CIFAR10 dataset.

ConvNets are trained on these synthetic images and then
evaluated on real testing images. The results in Table T1
verify that our method outperforms them by large margins,
indicating that our synthetic images are more informative
for training deep neural networks. The comparison to ran-
dom baseline indicates that the images generated by tradi-
tional generative models are not more informative than ran-
domly selected real images.

Img/Cls Random GMMN VAE BigGAN MMD DM

1 14.4±2.0 16.1±2.0 15.7±2.1 15.8±1.2 22.7±0.6 26.0±0.8
10 26.0±1.2 32.2±1.3 29.8±1.0 31.0±1.4 34.9±0.3 48.9±0.6
50 43.4±1.0 45.3±1.0 44.0±0.8 46.2±0.9 50.9±0.3 63.0±0.4

Table T1. Comparison to traditional generative models and MMD
baseline. Random means randomly selected real images. The ex-
periments are implemented with ConvNets on CIFAR10 dataset.

2.2. Comparison to MMD Baseline

Another baseline is to learn synthetic images by distri-
bution matching with vanilla MMD in the pixel space. This
baseline can also been considered as the ablation study of
the embedding function and differentiable augmentation in
our method. We try this baseline with linear, polynomial,
RBF and Laplacian kernels and with various kernel hyper-
parameters. We find that only MMD with linear kernel can
achieve better synthetic images, i.e. better than randomly
selected real images. The performance of MMD with lin-
ear kernel in the pixel space is presented in Table T1, which
outperforms all generative models while is inferior to our
method. This result also verifies that the distribution match-
ing mechanism enables learning more informative synthetic
samples.

2.3. Comparison to GTN and KIP Methods

We notice the recent works Generative Teaching Net-
works (GTN) [9] and Kernel Inducing Point (KIP) [5, 6]
on dataset condensation. Such et al. [9] propose to learn a
generative network that outputs condensed training samples

by minimizing the meta-loss on real data. They report the
performance of 4,096 synthetic images learned on MNIST
which is comparable to our 50 images/class synthetic set
(i.e. 500 images in total) performance.

Nguyen et al. [5, 6] propose to replace the neural net-
work optimization in the bi-level optimization [10] with
kernel ridge regression which has a closed-form solution.
Zero Component Analysis (ZCA) [2] is applied for pre-
processing images. Although Nguyen et al. [6] report
the results on 1024-width neural networks while we train
and test 128-width neural networks, our results still outper-
form theirs in some settings, for example 98.6 ± 0.1% v.s.
98.3± 0.1% when learning 50 images/class on MNIST and
29.7±0.3% v.s. 28.3±0.1% when learning 10 images/class
on CIFAR100. Note that they achieve those results by lever-
aging distributed computation environment and training for
thousands of GPU hours. In contrast, our method can learn
synthetic sets with one GTX 1080 GPU in dozens of min-
utes, which is significantly more efficient.

3. Extended Visualization and Analysis

We visualize the 10 images/class synthetic sets learned
on CIFAR10 dataset with different network parameter dis-
tributions in Figure F2. It is interesting that images learned
with “poor” networks that have lower validation accuracies
look blur. We can find obvious checkerboard patterns in
them. In contrast, images learned with “good” networks
that have higher validation accuracies look colorful. Some
twisty patterns can be found in these images. Although syn-
thetic images learned with different network parameter dis-
tributions look quite different, they have similar generaliza-
tion performance. We think that these images are mainly
different in terms of their background patterns but similar in
semantics. It means that our method can produce synthetic
images with similar network optimization effects while sig-
nificantly different visual effects. Our method may have
promising applications in protecting data privacy and feder-
ated learning [4].

Random 10-20 20-30 30-40 40-50 50-60 60-70 ≥ 70 AllAll
Figure F2. Synthetic images of CIFAR10 dataset learned with different network parameter distributions, i.e. networks with different vali-
dation accuracies (%). Each row represents a class.

4. Connection to Gradient Matching
In this section, we show the connection between gradi-

ent matching [13] and our method. Both [13] and our train-
ing algorithm sample real and synthetic image batches from
one class in each iteration, which is denoted as class y. We
embed each training sample (xi, y) and obtain the feature
ei using a neural network ψϑ followed a linear classifier
W = [w0, ...,wC−1], where wj is the weight vector con-
nected to the jth output neuron and C is the number of all
classes. Note that the weight and its gradient vector are or-
ganized in the same way in [13]. We focus on the weight
and gradient of the linear classification layer (i.e. the last
layer) of a network in this paper. The classification loss Ji
of each sample is denoted as

Ji =− log
exp (wT

y · ei)
Σk exp (wT

k · ei)
. (1)

Then, we compute the partial derivative w.r.t. each weight
vector,

gi,j =
∂Ji
∂wj

=


−ei +

exp (wT
y · ei)

Σk exp (wT
k · ei)

· ei, j = y

exp (wT
j · ei)

Σk exp (wT
k · ei)

· ei, j ̸= y

(2)

This equation can be simplified using the predicted prob-

ability pi,j =
exp (wT

j ·ei)

Σk exp (wT
k ·ei)

that classifies sample xi into
category j:

gi,j =

{
(pi,y − 1) · ei, j = y

(pi,j − 0) · ei, j ̸= y
(3)

Eq. 3 shows that the last-layer gradient vector gi,j is
equivalent to a weighted feature vector ei and vice versa.
The weight is a function of classification probability. Gen-
erally speaking, the weight is large when the difference be-
tween predicted probability pi,j and ground-truth one-hot
label (1 or 0) is large.

As the real and synthetic samples in each training iter-
ation are from the same class y, we can obtain the mean
gradient over a data batch by averaging the corresponding
gradient components:

1

N
ΣN

i gi,j =


1

N
ΣN

i (pi,y − 1) · ei, j = y

1

N
ΣN

i (pi,j − 0) · ei, j ̸= y

(4)

N is the batch size. Thus, last-layer mean gradient
is equivalent to the weighted mean feature, and the
mean gradient matching is equivalent to the matching
of weighted mean feature.

Our method can learn synthetic images with randomly
initialized networks. Given networks with random param-
eters, we assume that the predicted probability is uniform
over all categories, i.e. pi,j = 1

C . Then, the mean gradient
is

1

N
ΣN

i gi,j =


1− C

C
· 1

N
ΣN

i ei, j = y

1

C
· 1

N
ΣN

i ei, j ̸= y

(5)

which is equivalent to the mean feature with a constant
weight. Thus, with randomly initialized networks, the
last-layer mean gradient matching is equivalent to mean
feature matching multiplied by a constant.

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.
ICLR, 2019.

[2] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

[3] Yujia Li, Kevin Swersky, and Rich Zemel. Generative mo-
ment matching networks. In International conference on ma-
chine learning, pages 1718–1727. PMLR, 2015.

[4] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated
learning: A survey. FL-IJCAI, 2020.

[5] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel-ridge regression. In International
Conference on Learning Representations, 2021.

[6] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon
Lee. Dataset distillation with infinitely wide convolutional
networks. arXiv preprint arXiv:2107.13034, 2021.

[7] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen
Tu. Dual contradistinctive generative autoencoder. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 823–832, 2021.

[8] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In European Conference on Computer
Vision, pages 524–540. Springer, 2020.

[9] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Ken-
neth O Stanley, and Jeff Clune. Generative teaching net-
works: Accelerating neural architecture search by learning
to generate synthetic training data. International Conference
on Machine Learning (ICML), 2020.

[10] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

[11] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019.

[12] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In International Conference
on Machine Learning, 2021.

[13] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In International Con-
ference on Learning Representations, 2021.

[14] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. Neural Information Processing Systems, 2020.

