
GeoFill: Reference-Based Image Inpainting with Better Geometric
Understanding

–Supplementary Material–

Yunhan Zhao1*, Connelly Barnes2, Yuqian Zhou2,3, Eli Shechtman2, Sohrab Amirghodsi2, Charless Fowlkes1

1UC Irvine 2Adobe Research 3IFP, UIUC
{yunhaz5, fowlkes}@ics.uci.edu {cobarnes, elishe, tamirgho}@adobe.com yuqian2@illinois.edu

Outline

In the supplementary document, we provide additional ab-
lation studies to further support our findings, as well as de-
tails of our experiments and more visualizations. Below is
the outline.
• Section 1: Convergence criteria. We describe the con-

vergence criteria of our optimization step in detail.
• Section 2: Joint optimization evaluation: inpainting

performance. We demonstrate the importance of the
joint optimization module by comparing the performance
of GeoFill with parameters estimated before and after the
joint optimization.

• Section 3: Joint optimization evaluation: depth and
pose accuracy. We further evaluate the performance
of the optimization module by measuring the accuracy
of depth maps and camera poses individually against
ground-truth using ScanNet.

• Section 4: Performance w.r.t intrinsic parameters.
Quantitative comparisons of our approach with different
focal lengths.

• Section 5: Further analyses of initial alignments. We
provide additional qualitative and quantitative evaluations
of GeoFill and TransFill without the CST module.

• Section 6: Visualizations of hole ablation study. We
include qualitative comparisons between GeoFill and
TransFill under various hole sizes.

• Section 7: Average running time of GeoFill. We report
the average running time of each step in GeoFill.

• Section 8: User study against other baselines. A user
study of GeoFill against OPN, ProFill, and TransFill.

• Section 9: Handling appearance changes from camera
movement. We show qualitative results of GeoFill han-
dling some common appearance changes due to camera
movement.

• Section 10: Failure cases. Visual examples of failure
cases of GeoFill.

*Work done while an intern at Adobe.

• Additional Visual Results. We include more inpainting
results in Fig. 6 and 7.

1. Convergence Criteria
The convergence criteria define when the optimization

should stop. Our optimization halts the loop at a given scale
and continues to the next scale if the following condition
is met or the predefined maximum number of iteration is
achieved. The formula below measures the objective func-
tion value changes within the last m iterations.

ϵi =
|
∑i

i−(m/2)−1 li −
∑i−m−1

i−(m/2) li|∑i
i−(m/2)−1 li

, (1)

where i represents the ith iteration. If ϵi is smaller than a
predefined ϵopt, we assume the objective function has con-
verged. Since we adopt a coarse-to-fine optimization strat-
egy, we check the same condition at every level of the pyra-
mid. In other words, we move to the finer scale level only
if Eqn. 1 is met or maximum number of iterations at the
current level is reached. We also keep track of the optimal
parameters at each level and use them as the initialization in
the next level. In practice, we set the convergence threshold
ϵopt to 10−6 for all levels. The number of loss values to
track in computing convergence criteria is m = 10.

2. Joint Optimization Evaluation: Inpainting
Performance

We show the importance of our optimization module
by comparing the performance of GeoFill with initial es-
timated parameters and optimized parameters. As shown
in Table 1, GeoFill with optimized parameters has substan-
tially better performance. Initial parameters are computed
from SIFT and pretrained models such as OANet, which can
make erroneous predictions, especially for image pairs with
holes. Experimental results demonstrate our optimization
module successfully mitigates such errors and improves the
inpainting performance.
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Table 1: Quantitative comparison of our method with ini-
tially estimated parameters and optimized parameters.

Model PSNR↑ SSIM↑ LPIPS↓
GeoFill (optim) 31.47 0.9748 0.0525

GeoFill (init) 30.66 0.9719 0.0548

Table 2: Relative camera pose evaluation of initial guess
and our optimized results, where R and t represent the ro-
tation and translation, respectively.

R ↓ t ↓

mean (◦) med (◦) mean (◦) med (◦)

GeoFill (optim) 1.588 1.062 3.688 3.457
GeoFill (init) 7.378 7.807 11.861 11.096

3. Joint Optimization Evaluation: Depth, Pose
Accuracy

In this section, we further demonstrate the effectiveness
of our joint optimization step by measuring the depth and
pose accuracy before and after the optimization. Since
both RealEstate10K and MannequinChallenge do not have
ground-truth labels, we choose the ScanNet [2] dataset
which comes with ground-truth camera poses and depth
maps. We randomly sampled 75 pairs of images with
approximately 30 frame difference. We generate random
holes in the same manner as described in our main paper
line 388. Each image pair comes from a unique scene in
the dataset. Note that ScanNet includes images with heavy
motion blur, which we manually filtered out. We evaluate
depth and relative camera pose separately by providing the
ground-truth for one of these (depth or camera pose) when
evaluating the accuracy of the other one. For example, when
evaluating the accuracy of depth maps, we first follow the
same pipeline described in the main paper. Then, instead
of estimating the relative pose, we provide the ground-truth
camera pose and evaluate the accuracy of the depth map de-
termined by our pipeline before and after the optimization.
Note that we only optimize scale and offset when evaluat-
ing depth accuracy. A similar analogy applies when evalu-
ating the accuracy of camera poses: we provide the ground
truth depth map to our pipeline and then evaluate the accu-
racy of the relative pose before and after optimization. For
pose evaluation, we report the geodesic errors [1] for both
rotations and translation directions. For depth evaluation,
we follow the commonly adopted metrics used in the litera-
ture [3, 4]. As shown in Table 2 and Table 3, both depth and
pose errors are significantly reduced after the optimization
module, which demonstrates the ability of the optimization
module to find more accurate depth and poses in our chal-
lenging case where the images have holes.

4. Performance w.r.t Intrinsic Parameters
GeoFill handles incoming image pairs using fixed cam-

era intrinsic parameters instead of explicitly knowing the

Table 3: Depth evaluation of our initial guess and optimized
results. The evaluation metrics include absolute relative dif-
ference (Absr), squared relative difference (Sqr), root mean
squared log error (RMS-log), and accuracy with a relative
error threshold of δk < 1.25k, k = 1, 2.

Models Absr ↓ Sqr ↓ RMS-log↓ δ1 ↑ δ2 ↑
GeoFill (optim) .258 .233 .302 .683 .851
GeoFill (init) .372 .766 .403 .609 .788

Figure 1: Visual plots showing the performance of GeoFill with
different focal lengths. PSNR diff is computed by using GeoFill
with new focal length subtract GeoFill with focal length equals to
750.

Table 4: Initial alignment comparisons of our method com-
pared to TransFill without the CST Module on Mannequin-
Challenge dataset (FD=10).

Model PSNR↑ SSIM↑ LPIPS↓
GeoFill 28.85 0.9702 0.0553

GeoFill (no CST) 26.84 0.9626 0.0615
TransFill 28.01 0.9680 0.0569

TransFill (no CST) 24.04 0.9526 0.0760

ground-truth camera intrinsic parameters. In the main pa-
per, we use fixed camera intrinsic parameters by setting the
focal length of all images to 750 pixels and the principal
point to the center of the image. It is intuitive to set the
principal point to the center of the images with unknown
intrinsic parameters, therefore, we focus on studying the
effect of focal lengths. We compare the performance of
GeoFill with the camera focal lengths of 600, 750, 900,
1050, and 1200 pixels. As shown in Fig. 1, GeoFill with
different focal lengths has very slight differences in terms
of PSNR. There is a slight trend that the performance drops
as the focal length increases. We believe this indicates that
the ground-truth focal length is close to 600 and higher fo-
cal lengths make the optimization have a harder time find-
ing improved relative poses. Nevertheless, GeoFill can still
adapt to different focal lengths by jointly optimizing depth
scale, offset, and relative pose, therefore, it still can render
similar images across a variety of focal lengths.

5. Further Analyses of Initial Alignments

GeoFill adopts the CST module from TransFill to fur-
ther improve any small residual spatial misalignments and
correct color and exposure differences. We first visually
compare the quality of our single proposal to the merged
proposal from TransFill without the CST on RealEstate10K



Figure 2: Qualitative comparisons of our approach against TransFill with different hole sizes. Please zoom in to see that ours looks good
but there are broken structures, ghosting, and distortion artifacts in TransFill.

dataset. As shown in Fig. 3, the single proposal from Ge-
oFill is significantly more accurate than merged heuristic
proposals from TransFill, demonstrating the superiority of
our approach over TransFill. Additionally, we also show the
quantitative comparisons of GeoFill and TransFill without
the CST module on the MannequinChallenge dataset. As
shown in Table 4, we find GeoFill without the CST module
has a huge advantage over TransFill merged homographies.

6. Visualizations for Hole Ablation Study

In the main paper, we show the quantitative comparisons
between our approach and TransFill with various hole sizes.
Here, we provide visual comparisons to better understand
the performance boost for larger holes. We simulate larger
holes by generating the same hole shape with larger stroke
width. As shown in Fig. 2, GeoFill has a robust perfor-
mance while TransFill has ghosting artifacts and misalign-
ments as the hole grows larger.

Table 5: User study results of GeoFill against ProFill, OPN,
and TransFill.

Filtered Non-Filtered
Model PR p-value PR p-value

ProFill 100% p < 10−6 96.25% p < 10−6

OPN 97.37% p < 10−6 95.00% p < 10−6

TransFill 70.90% p < 2× 10−3 68.13% p < 2× 10−3

7. Average Running Time of GeoFill

We randomly sampled 50 images at 1280x720 pixels
and compute the average time of each step. Monocular
depth estimation takes 3.83s, sparse correspondence estima-
tion takes 0.596s, triangulation takes 0.0009s, initial relative
pose takes 0.0052s, joint optimization takes 58.2s, mesh
rendering takes 1.03s, refinement and merging step takes
2.53s. The reported time uses default parameters described
in the experiment section. Although the joint optimization
step takes up the vast majority of the time, its current im-
plementation is naive and not optimized. If desired, various



Figure 3: Visual comparisons of GeoFill and TransFill without the CST module.

Figure 4: Visual examples of failure cases of GeoFill.

engineering optimizations could be made such as using a
custom kernel with proper low-level optimizations such as
fusion for the renderer instead of a naive pure PyTorch im-
plementation, using FP16 mode, using only the sparse edge
map pixels during optimization (these are quite sparse so
significant acceleration should be possible), using second-
order optimization techniques that could potentially con-
verge in fewer steps, carefully tuning input resolution, num-
ber of pyramid levels, iteration limits, break thresholds, etc.
We considered these to be lower-level engineering details
that we did not focus on in our paper’s implementation,
since we were focusing more on research aspects.

8. User Study

To better evaluate the performance of GeoFill against
other baselines, we conduct a user study via Amazon Me-
chanical Turk (AMT). We compare our method against
OPN, ProFill, and TransFill by showing users image pairs
with binary choice questions. The users are requested to
choose the inpainting results that look more realistic and
faithful. To improve the quality of collected data, we adopt
a qualification test with trivial questions to filter noisy re-
sults. For each method pair, we randomly sampled 80 ex-
amples in RealEstate10K dataset with FD=50, and each ex-
ample was evaluated by 7 independent users. We present



Figure 5: Qualitative results of GeoFill handling some common
appearance changes such as in white balance and exposure due to
camera movement.

two approaches to computing the preference rate. The first
one is the filtered approach, in which we filter the responses
to retain only those where one method is “preferred” if 6
or more users select it. The filtering helps suppress noise
in the responses of Mechanical Turk workers, whose work
quality can vary. The second one is the non-filtered ap-
proach where we retain all responses and choose the method
as “preferred” where a simple majority of 4 or more users
select it. We reported GeoFill’s Preference Rate (PR) in
Table 5. GeoFill has much higher preference rates against
OPN and ProFill. Compared against TransFill, we receive
a PR around 70% on filtered and non-filtered approaches.
TransFill is still very robust on small holes and relatively
small camera motions in the randomly sampled data. There-
fore, GeoFill is favored by users over TransFill but less
strongly than in the other comparisons. We performed a
one sample permutation t test with 106 simulations using
the null hypothesis that each pair are preferred equally by
users: the p-values are all sufficiently small that the prefer-
ence for our method is statistically significant.

9. Handling Appearance Changes from Cam-
era Movement

As we stated in the main paper, we focus on the common
scenario of capturing photos with the same camera freely
moving around. However, there are potential appearance
changes of the same parts of the scene due to the camera
movement, for example, changes due to automatic expo-
sure or automatic white balance between source and target
images. This is a common yet non-trivial challenge when
applying GeoFill in real-world applications. In this section,
we show some visual examples of image pairs with appear-
ance changes in the dataset. As shown in Figure 5, GeoFill
still inpaints plausible results even when the appearance of
the same part of the scene is different between source and
target images.

10. Failure Cases
We show some failure cases of GeoFill under extreme

conditions. Fig. 4 shows three common failure cases of Ge-
oFill. The image pair on the left contains transparent sur-
faces in the images. These objects often cause monocular
depth estimators to fail and can lead to bad optimization
results. In the second failure case, the drastic changes in
the lighting environment affect the feature correspondence
matching and depth prediction, which makes the final result
from GeoFill less accurate. In the last case, dynamic ob-
jects, e.g., pedestrians, make our optimization module esti-
mate inaccurate parameters. We discuss in the last section
of our main paper ways that future work might address these
issues.

Additional Visual Results
We include additional qualitative comparisons of Ge-

oFill against other baselines in Fig. 6. Additionally, we
also show the inpainting performance of GeoFill on user-
provided images, RealEstate10K, and MannequinChallenge
dataset in Fig. 7.
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Figure 6: Qualitatively comparison of GeoFill against other baselines on user-provided images (top 3 rows), RealEstate10K
(mid 3 rows), and MannequinChallenge dataset (last 3 rows).



Figure 7: Visual illustration of inpaiting performance of GeoFill on user-provided images, RealEstate10K, and Mannequin-
Challenge dataset.


