
Proactive Deepfake Defence via Identity Watermarking

Supplementary Material

A. Preliminary
Pseudorandom Noise (PN) sequence is widely used in

signal processing, which is usually a binary sequence with
a spectrum similar to a random sequence but generated by
a deterministic algorithm. Linear feedback shifter register
(LFSR) is one of the simplest ways to generate a PN se-
quence. In an LFSR, any bit is determined by a linear com-
bination of the previous n bits, which can be formulated as:

Bn = A0B0 ⊕A1B1 ⊕A2B2 ⊕ ...⊕An−1Bn−1 (12)

Since any bit is a function of the previous n bits, every
LFSR can produce a sequence of bits that appears random
and has a period of 2n − 1. There are several commonly
used PN sequences which are: maximum length sequence
(MLS), Gold sequences, Kasami sequences and JPL se-
quences.

MLS sequence is the most representative PN sequence
which is generated using maximal LFSR. They are periodic
and reproduce every binary sequence (except the zero vec-
tor) that can be represented by the shift registers, i.e., for
m length registers they produce a sequence of with length
2m − 1. The auto-correlation of an MLS is approached
to unit impulse function as MLS length increases. This
property makes the MLS suitable for synchronization and in
the detection of information in single-user Direct Sequence
Spread Spectrum systems.

The Gold sequence is another well-known PN sequence
that belongs to the category of product codes for they pro-
duced by XOR’ing two same length MLS. The two MLS
must maintain the same phase relationship till all the addi-
tions are performed. A slight change of phase even in one
of the MLS produces a different Gold sequence altogether.
Gold codes are non-maximal and therefore they have poor
auto-correlation property when compared to MLS. How-
ever, it possesses good cross-correlation properties which
are useful when multiple devices are broadcasting in the
same frequency range, such as the applications like CDMA
and satellite navigation.

B. Application Scenario
Fig. 8 demonstrate how to deploy our method in the real

world. In the scenario without applying our method (Fig. 8
top panel), a user shared his/her images to a social net-
work, such as Facebook or Instagram. Once the image is
uploaded online, the user cannot verify its authenticity any-
more. Therefore, malicious users can not only pick victims’
photos and manipulate them to create Deepfakes but also

Figure 8. Comparison between the unprotected social network (top
panel) and the social network protected by our method (bottom
panel) in handling misinformation spreading by Deepfake attacker.

release the synthesized results while falsely claiming these
images are authentic. The misinformation will cause severe
reputation loss for the victim and raise security and privacy
concerns.

On the contrary, in the scenario where the user employed
our method (Fig. 8 bottom panel), the images shared on-
line will be embedded with the user’s personalized water-
mark. The embedded watermark is invisible to humans and
robust to conventional manipulations. Thus there is negli-
gible impact on the image’s visual quality and application
utility. Nevertheless, unlike other visible or invisible wa-
termarking techniques, our watermark is sensitive to Deep-
fake manipulations. Once the malicious users apply Deep-
fake techniques on watermarked images, the corresponding
embedded message will be destroyed. According to the ex-
istence of the watermark, the real and fake images can be
effectively differentiated. Therefore, the user can utilize our
method to reduce the negative impact of Deepfake by iden-
tifying the forged information and authenticating the real
information.

C. Network Architecture

Our framework is built upon FaceShifter’s AEI-Net [24]
but modified by us to implement face identity watermarking
rather than face-swapping. The entire network, illustrated
in Fig. 9, consists of an Identity Encoder, a U-Net style At-
tributes Encoder, and a Generator composed of 8 cascaded
AAD Residual Blocks. Detailed structures of each compo-
nent are in Fig 10.



Figure 9. Detailed architecture of Watermark Injection.

Figure 10. Network structures. Following the structures of
FaceShifter [24]: Conv k,s,p represents a Convolutional Layer
with kernel size k, stride s and padding p. ConvTran k,s,p repre-
sents a Transposed Convolutional Layer with kernel size k, stride
s and padding p. All Leaky ReLUs have α = 0.1. AAD Res-
Blk(cin, cout) represents an AAD ResBlk with input and output
channels of cin and cout.

D. Training Details

The concept diagram of our framework’s training pro-
cedure is illustrated in Fig. 11. In Fig. 11, black arrows
refer to data flows from the input image to the watermarked
image and Discriminator, while the red lines indicate data
flow for each loss function. Besides, the trapezoids with a
red dash represent a trainable network, while black sold line
trapezoids represent fixed networks. We utilize adversarial
training for our framework where the Discriminator adopts

Figure 11. Training procedure
Table 7. Parameters and FLOPs of different detection methods.

Parameters FLOPs
BTS 45.907M 95.1557G
CD 23.5101M 5.3965G

ICPR 0.1271M 0.8869G
PF 23.51M 2.1G

RFM 20.8111M 6.0116G
SBI 0.1288M 0.1981G

Ours
(Injection) 396.0907M 83.8398G

Ours
(Verification) 43.7977M 6.3236G

a multi-scale network [36].
Given an input face image X , the identity encoder and

attributes encoder respectively extract the 1D 1x512 iden-
tity representation zid(X) and multi-level attributes rep-
resentation zatt(X) from the image. Then we bit-wise
add watermark sequence zseq to the identity representation
zid(X) to produce watermarked identity zwid(X). The Gen-
erator finally integrates the watermarked identity zid(X)
and original attributes representation zatt(X) to produce the
watermarked facial image X̂ . After obtained X̂ , we calcu-
lating different losses according to E.q. 7,8,9,10 and update
all trainable networks. As we can see in the scheme, non-
extra annotations are required in our training process.

E. Computational Overhead
According to Table 7, the primary computational cost of

our method is the watermark injection, while the verifica-
tion(detection) stage’s overheads are close to other detec-
tion approaches. Considering the detection performance of
our method, we believe it is a balanced trade-off between
computational costs and detection accuracy.

F. Security Analysis
To verify the security of our method of confronting

worst-case threaten, we simulated attacks to the application



Table 8. Correlation results of Attack Model 1.

Sequences Auto-correlation results DR
types Peak Average PAR

Gaussian 0.78 0.53 1.47 0.6%
Gold 0.95 0.53 1.79 2.98%

Laplace 1.01 0.53 1.89 0.13%
MLS 0.77 0.53 1.46 1.6%

scenarios of our method. The objective of the adversaries
is to utilize the knowledge about our watermarking mech-
anism to forge the watermark. Here, we consider three
strong attack models:
Attack Model 1: The adversary can obtain the victim’s
entire watermarking framework and its corresponding
pre-trained models but knows nothing about the watermark
sequence. Thus, the adversary tries to embed different
sequences on Deepfaked images via the obtained network
to deceive the watermark verification step.
Attack Model 2: The adversary knows the victim’s
watermark sequence but cannot obtain the corresponding
framework. Thus, the adversary utilizes the knowledge
about our method trying to build and train a similar
watermarking network to embed the victim’s watermark on
Deepfaked images to deceive the watermark verification
step.
Attack Model 3: The adversary stealthily collects the
victim’s watermarked images and employs these images as
dataset to train his/her Deepfake method to generate fake
images to deceive the watermark verification step.

F.1. Attack Model 1

For Attack Model 1, we simulate the forging process by
utilizing one fixed watermarking framework to synthesize
four groups of watermarked images according to different
types of sequences. Then, we randomly generate another
sequence to act as the victim’s watermark and use the same
framework to implement watermark verification on these
watermarked images. As can be seen from Table 8, the cor-
relation results of different watermarked images are close
to non-watermarked images. Therefore, even if the victim’s
watermarking framework leaked, the forged watermarked
image cannot pass the corresponding watermark verifica-
tion step.

F.2. Attack Model 2

For Attack Model 2, we employ another face recogni-
tion network, namely circularface, as the identity encoder to
constitute a new watermark framework then utilize both ar-
cface ModelArc and circularface ModelCir watermark net-
works to generate watermarked images by embedded same

Table 9. Correlation results of Attack Model 2.

Networks Auto-correlation results DR
Peak Average PAR

ModelArc 0.71 0.53 1.33 1.28%
ModelCir 0.73 0.53 1.37 1.63%

sequence respectively. To simulate the deceive process, we
use ModelArc’s network to verify ModelCir’s outputs and
ModelCir’s network to verify ModelArc’s outputs. The
correlation results reported in Table 9 demonstrate that dif-
ferent frameworks cannot generate the same watermarked
results even embedded in the same sequence.

F.3. Attack Model 3

For Attack Model 3, we train Faceshifter [24] by 40k
Gold sequence watermarked images to imitate the attack
scenario and test the specific performance. The Faceshifter
is one of the most representative Deepfake methods which
generates Deepfake image by utilizing the source image’s
identity and target image’s attributes. Hence, the fake im-
age from Faceshifter would preserve the source’s identity
feature and the target’s attributes feature.

After training the Faceshifter model to coverage, we
subdivide the Deepfake generate process into six dif-
ferent cases: 1) Using the non-watermarked image as
source and non-watermarked image as the target, de-
noted as IdoriAttori; 2) Using the non-watermarked im-
age as source and watermarked image as the target, de-
noted as IdoriAttwat; 3) Using the watermarked image
as source and non-watermarked image as the target, de-
noted as IdwatAttori; 4) Using the watermarked im-
age as source and watermarked image as the target, de-
noted as IdwatAttwat; 5) Using the non-watermarked im-
age as source and non-watermarked image as the tar-
get but verification with different Gold sequence, denoted
as IdwatAttoriDS; 6) Using the non-watermarked im-
age as source and non-watermarked image as the target
but verification with different Gold sequence, denoted as
IdwatAttwatDS.

The experiment results are summarized in Table 10. We
can see even the Faceshifter is trained with the watermarked
images, but unless the fake image is generated from the
source image which has the same watermarked sequence
with the verification model, otherwise the correlation results
and DR are the same with the non-watermarked image.

G. Proactive Comparison

According to the requirement of AGF, we employ AGF
to fingerprint 15k Celeba images and train FaceShifter
model A on these fingerprinted images. Then, we use



Figure 12. Our method’s ROC ↑, Accuracy ↑ and F1 Score ↑ on different Deepfake and datasets images. The ROC curve indicates our
method has excellent discriminability on both low- and high-resolution Deepfake results. Besides, according to the trend of Accuracy and
F1 Scores, our method can achieve different performances under different PAR thresholds.

Table 10. Correlation results of Attack Model 3.

Networks Auto-correlation results DR
Peak Average PAR

IdoriAttori 1.13 0.52 2.15 3.6%
IdoriAttwat 0.58 0.52 1.11 0.1%
IdwatAttori 3.02 0.53 5.68 92.9%
IdwatAttwat 3.6 0.53 6.77 94.67%

IdwatAttoriDS 0.58 0.53 1.1 1.33%
IdwatAttwatDS 0.64 0.52 2.62 1.2%

trained FaceShifter model A to generate 5k Deepfake re-
sults on original Celeba images without AGF fingerprint.
We employ the AGF to conduct detection on the set, which
mixes the 5k Deepfaked images with another randomly se-
lected 5k original Celeba images and summarized results in
Table 4.

We train another FaceShifter model B for our method
on the same 15k Celeba images but without AGF finger-
prints. We employ our method to inject watermarks into 5k
Celeba images, which are the same image in the AGF pro-
cess. Then, we use trained FaceShifter model B to generate
Deepfake results based on our watermarked images and mix
another 5k original Celeba image to form a test set. We em-
ploy our method to conduct detection on this test set and
report the results in Table 4.

H. Classification Analysis
To further explore our method’s real and fake classifi-

cation capability, we plot our method’s ROC, accuracy, and
F1-Score curves when adopting decision thresholds ranging
from 1 to 10 with a step size of 1. As illustrated in Fig. 12,
our method can achieve excellent classification capability
when facing different Deepfake methods. Besides, the F1
Score and ACC curves indicate that our method has better
detection performance on CIAGAN and StarGAN2 when
adopting a threshold of 3 and 7, respectively.


