Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation: SUPPLEMENTARY MATERIAL

Zishuo Zheng\(^{1,2}\), Chunyu Lin\(^{1,2}\), Lang Nie\(^{1,2}\), Kang Liao\(^{1,2}\), Zhijie Shen\(^{1,2}\), Yao Zhao\(^{1,2}\)

\(^{1}\)Institute of Information Science, Beijing Jiaotong University, Beijing, China

\(^{2}\)Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China

{zszheng, cylin, nielang, kang.liao, zhjshen, yzhao}@bjtu.edu.cn

1. Overview

In this material, we first show a detailed illustration of our network architecture in Sec.2. This illustration offers details on all the network modules and is intended to complement the general description provided in the paper. Then we show class-level qualitative results for the panoramic semantic segmentation experiments at different input resolutions in Sec.3. Furthermore, we illustrate more experimental results of our solution in Sec.4. Finally, We validate the extensibility of our model by the panoramic depth estimation in Sec.5.

2. Detailed Network Architecture

We show the detailed network architecture in Fig.1. The proposed solution takes as input an equirectangular RGB image (256 × 512) and outputs a segmentation image at the same resolution of the input. To be more specific, we use the residual U-Net-style architecture \([9] [3]\) as backbone to generate 4 levels feature maps. Then these features are fed into the feature pyramid network and Mix-MLP layer to yield powerful representations without changing sizes. Subsequently, these features are compressed in parallel, keeping the horizontal dimension unchanged and compressing the vertical one, and keeping the vertical dimension unchanged and compressing the horizontal one. To align different resolution 1D representations, we interpolate these tenors so that they have the same horizontal dimension (64) and vertical dimension (128). Finally, we concatenate them to obtain the bi-directional representations with different channels (1024 for horizontal and 2048 for vertical which are hyperparameters,) with the primary consideration is that the width of the panoramic image is twice the height. In the decoding process, we upsample two flattened representations to output two 2D feature maps having the same sizes (64 × 128). Particularly, for most padding operations, we use circular padding for the left-right boundaries of the feature maps. We exploit zero padding (ZP) in the Mix-MLP layer and decode part (A-Conv \([5]\)).

3. Detailed Semantic Segmentation Results

Detailed per-class IoU and per-class Acc results are given in Table.1 and Table.2. For low-resolution RGB-D input (64 × 128), we achieve the highest IoU on 9 out of 13 classes and the best Acc on 8 out of 13 classes. For high-resolution RGB-D input (1024 × 2048), we achieve the highest IoU on 9 out of 13 classes and the best Acc on 7 out of 13 classes. More importantly, the rest classes without achieving the highest quantitative results can also be the second-highest. Furthermore, we can also observe that nearly every class benefits from our complementary bi-directional representation. This is especially noticeable for classes with horizontal distribution and large distortion shape, like chair, ceiling, floor, and wall.

4. More Qualitative Results

We exhibit more qualitative comparisons with the previous work—HoHoNet \([6]\) in Fig.2 and Fig. 3, where our solution can deal with different indoor scenes and yield the best performance on visual appearance.

5. Algorithm extensibility

Theoretically, our network also can handle other pixel2pixel tasks. So we further validate our extensibility in other pixel2pixel tasks, such as panoramic depth estimation task in the same dataset. We removed the self distillation (because the loss function needs to be redesigned) and did not change any other structures. We strictly followed the experimental protocol in other solutions \([8] [10]\). As shown in the Table.3, the results show that our model outperforms the current SOTA approaches in most metrics (especially in the most important metric, RMSE). It also demonstrates that the proposed model has the potential to solve other tasks. Fig. 4 shows the qualitative comparison results which indi-
cate that the complementary features help our network build a better panoramic perception capability.

References

Figure 1. The detailed display of our network architecture.
Table 1. Detailed quantitative per-class IoU (%) results on Stanford2D3D [1]. The top two result are shown in red and blue.

<table>
<thead>
<tr>
<th>Method</th>
<th>Overall</th>
<th>beam</th>
<th>board</th>
<th>bookcase</th>
<th>ceiling</th>
<th>chair</th>
<th>clutter</th>
<th>column</th>
<th>door</th>
<th>floor</th>
<th>sofa</th>
<th>table</th>
<th>wall</th>
<th>window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-resolution RGB-D</td>
<td></td>
</tr>
<tr>
<td>UGSCNN [3]</td>
<td>38.3</td>
<td>8.7</td>
<td>32.7</td>
<td>33.4</td>
<td>82.2</td>
<td>42.0</td>
<td>25.6</td>
<td>10.1</td>
<td>41.6</td>
<td>87.0</td>
<td>7.6</td>
<td>41.7</td>
<td>61.7</td>
<td>23.5</td>
</tr>
<tr>
<td>HexRUNet [9]</td>
<td>43.3</td>
<td>10.9</td>
<td>39.7</td>
<td>37.2</td>
<td>84.8</td>
<td>50.5</td>
<td>29.2</td>
<td>11.5</td>
<td>45.3</td>
<td>92.9</td>
<td>19.1</td>
<td>49.1</td>
<td>63.8</td>
<td>29.4</td>
</tr>
<tr>
<td>TangentImg [2]</td>
<td>37.5</td>
<td>10.9</td>
<td>26.6</td>
<td>31.9</td>
<td>82.0</td>
<td>38.5</td>
<td>29.3</td>
<td>5.9</td>
<td>36.2</td>
<td>89.4</td>
<td>12.6</td>
<td>40.4</td>
<td>56.5</td>
<td>26.7</td>
</tr>
<tr>
<td>HoHoNet [7]</td>
<td>40.8</td>
<td>3.6</td>
<td>43.5</td>
<td>40.6</td>
<td>81.8</td>
<td>41.3</td>
<td>27.7</td>
<td>9.2</td>
<td>52.0</td>
<td>92.2</td>
<td>9.4</td>
<td>44.6</td>
<td>61.6</td>
<td>23.4</td>
</tr>
<tr>
<td>Ours</td>
<td>47.2</td>
<td>8.9</td>
<td>50.1</td>
<td>44.0</td>
<td>85.1</td>
<td>47.7</td>
<td>35.2</td>
<td>11.5</td>
<td>54.6</td>
<td>93.9</td>
<td>18.6</td>
<td>48.5</td>
<td>66.2</td>
<td>35.0</td>
</tr>
</tbody>
</table>

| High-resolution RGB-D |
TangentImg [2]	51.9	4.5	49.9	50.3	85.5	**71.5**	42.4	11.7	50.0	94.3	32.1	**61.4**	70.5	**50.0**
HoHoNet [7]	**56.3**	**7.4**	**62.3**	**55.5**	**87.0**	66.4	**44.3**	**19.2**	**66.5**	**96.3**	**43.3**	**60.1**	**72.9**	**51.4**
Ours	**57.1**	**10.0**	**59.9**	**55.0**	**88.6**	**72.9**	**46.8**	**19.2**	**63.9**	**96.6**	**44.3**	**63.7**	**73.4**	**47.8**

Table 2. Detailed quantitative per-class Acc (%) results on Stanford2D3D [1]. The top two result are shown in red and blue.

<table>
<thead>
<tr>
<th>Method</th>
<th>Overall</th>
<th>beam</th>
<th>board</th>
<th>bookcase</th>
<th>ceiling</th>
<th>chair</th>
<th>clutter</th>
<th>column</th>
<th>door</th>
<th>floor</th>
<th>sofa</th>
<th>table</th>
<th>wall</th>
<th>window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-resolution RGB-D</td>
<td></td>
</tr>
<tr>
<td>UGSCNN [3]</td>
<td>54.7</td>
<td>19.6</td>
<td>48.6</td>
<td>49.6</td>
<td>93.6</td>
<td>63.8</td>
<td>43.1</td>
<td>28.0</td>
<td>63.2</td>
<td>96.4</td>
<td>21.0</td>
<td>70.0</td>
<td>74.6</td>
<td>39.0</td>
</tr>
<tr>
<td>HexRUNet [9]</td>
<td>58.6</td>
<td>23.2</td>
<td>56.5</td>
<td>62.1</td>
<td>94.6</td>
<td>66.7</td>
<td>41.5</td>
<td>18.3</td>
<td>64.5</td>
<td>96.2</td>
<td>41.1</td>
<td>79.7</td>
<td>77.2</td>
<td>41.1</td>
</tr>
<tr>
<td>TangentImg [2]</td>
<td>50.2</td>
<td>25.6</td>
<td>33.6</td>
<td>44.3</td>
<td>87.6</td>
<td>51.5</td>
<td>44.6</td>
<td>12.1</td>
<td>64.6</td>
<td>93.6</td>
<td>26.2</td>
<td>47.2</td>
<td>78.7</td>
<td>42.7</td>
</tr>
<tr>
<td>HoHoNet [7]</td>
<td>52.1</td>
<td>9.5</td>
<td>56.5</td>
<td>56.6</td>
<td>95.1</td>
<td>57.9</td>
<td>40.7</td>
<td>12.5</td>
<td>64.5</td>
<td>96.8</td>
<td>10.6</td>
<td>69.1</td>
<td>79.3</td>
<td>28.4</td>
</tr>
<tr>
<td>Ours</td>
<td>61.2</td>
<td>26.3</td>
<td>68.6</td>
<td>58.9</td>
<td>95.3</td>
<td>65.0</td>
<td>48.5</td>
<td>16.7</td>
<td>70.0</td>
<td>97.3</td>
<td>32.4</td>
<td>74.0</td>
<td>81.5</td>
<td>44.4</td>
</tr>
</tbody>
</table>

| High-resolution RGB-D |
TangentImg [2]	**69.1**	**22.6**	**62.0**	**70.0**	90.3	**84.7**	**55.5**	**41.4**	**76.7**	**96.9**	**70.3**	**73.9**	**80.1**	**74.3**
HoHoNet [7]	68.9	16.7	**79.0**	**71.8**	**96.4**	79.2	**59.7**	**26.9**	**77.7**	**98.2**	**58.0**	**79.6**	**85.9**	**66.3**
Ours	**69.9**	**22.8**	**77.9**	**71.0**	**96.9**	**84.9**	**61.1**	26.4	**76.0**	**98.3**	**60.8**	**79.9**	**86.8**	**61.5**

Table 3. Quantitative comparison for depth estimation on Stanford2D3D [1].

<table>
<thead>
<tr>
<th>Method</th>
<th>MRE ↓</th>
<th>MAE ↓</th>
<th>RMSE ↓</th>
<th>RMSE(log) ↓</th>
<th>δ1 ↑</th>
<th>δ2 ↑</th>
<th>δ3 ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCRN [4]</td>
<td>0.1837</td>
<td>0.3428</td>
<td>0.5774</td>
<td>0.1100</td>
<td>0.7230</td>
<td>0.9207</td>
<td>0.9731</td>
</tr>
<tr>
<td>OmniDepth [10]</td>
<td>0.1996</td>
<td>0.3743</td>
<td>0.6152</td>
<td>0.1212</td>
<td>0.6877</td>
<td>0.8891</td>
<td>0.9578</td>
</tr>
<tr>
<td>Equi [8]</td>
<td>0.1428</td>
<td>0.2711</td>
<td>0.4637</td>
<td>0.0911</td>
<td>0.8261</td>
<td>0.9458</td>
<td>0.9800</td>
</tr>
<tr>
<td>Cube [8]</td>
<td>0.1332</td>
<td>0.2588</td>
<td>0.4407</td>
<td>0.0844</td>
<td>0.8347</td>
<td>0.9523</td>
<td>0.9838</td>
</tr>
<tr>
<td>BiFuse [8]</td>
<td>0.1209</td>
<td>0.2343</td>
<td>0.4142</td>
<td>0.0787</td>
<td>0.8660</td>
<td>0.9580</td>
<td>0.9860</td>
</tr>
<tr>
<td>HoHoNet [7]</td>
<td>0.1014</td>
<td>0.2027</td>
<td>0.3834</td>
<td>0.0668</td>
<td>0.9054</td>
<td>0.9693</td>
<td>0.9886</td>
</tr>
<tr>
<td>Ours</td>
<td>0.1039</td>
<td>0.1957</td>
<td>0.3678</td>
<td>0.0679</td>
<td>0.8933</td>
<td>0.9747</td>
<td>0.9901</td>
</tr>
</tbody>
</table>
Figure 2. More results of our method on 64×128 resolution RGB-D input.
Figure 3. More results of our method on 256×512 resolution RGB-D input
Figure 4. Qualitative comparison on the panoramic depth estimation.