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1. Overview

In this material, we first show a detailed illustration of
our network architecture in Sec.2. This illustration offers
details on all the network modules and is intended to com-
plement the general description provided in the paper. Then
we show class-level qualitative results for the panoramic se-
mantic segmentation experiments at different input resolu-
tions in Sec3. Furthermore, we illustrate more experimental
results of our solution in Sec.4. Finally, We validate the ex-
tensibility of our model by the panoramic depth estimation
in Sec. 5.

2. Detailed Network Architecture

We show the detailed network architecture in Fig.1. The
proposed solution takes as input an equirectangular RGB
image (256 × 512) and outputs a segmentation image at the
same resolution of the input. To be more specific, we use the
residual U-Net-style architecture [9] [3] as backbone to gen-
erate 4 levels feature maps. Then these features are fed into
the feature pyramid network and Mix-MLP layer to yield
powerful representations without changing sizes. Subse-
quently, these features are compressed in parallel, keeping
the horizontal dimension unchanged and compressing the
vertical one, and keeping the vertical dimension unchanged
and compressing the horizontal one. To align different res-
olution 1D representations, we interpolate these tenors so
that they have the same horizontal dimension (64) and ver-
tical dimension (128). Finally, we concatenate them to ob-
tain the bi-directional representations with different chan-
nels (1024 for horizontal and 2048 for vertical which are
hyperparameters.) with the primary consideration is that the
width of the panoramic image is twice the height. In the de-
coding process, we upsample two flattened representations
to output two 2D feature maps having the same sizes (64
× 128). Particularly, for most padding operations, we use
circular padding for the left-right boundaries of the feature
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maps. We exploit zero padding (ZP) in the Mix-MLP layer
and decode part (A-Conv [5]).

3. Detailed Semantic Segmentation Results
Detailed per-class IoU and per-class Acc results are

given in Table.1, and Table.2. For low-resolution RGB-D
input (64 × 128), we achieve the highest IoU on 9 out of
13 classes and the best Acc on 8 out of 13 classes. For
high-resolution RGB-D input (1024 × 2048), we achieve
the highest IoU on 9 out of 13 classes and the best Acc
on 7 out of 13 classes. More importantly, the rest classes
without achieving the highest quantitative results can also
be the second-highest. Furthermore, we can also observe
that nearly every class benefits from our complementary
bi-directional representation. This is especially noticeable
for classes with horizontal distribution and large distortion
shape, like chair, ceiling, floor, and wall.

4. More Qualitative Results
We exhibit more qualitative comparisons with the pre-

vious work—HoHoNet [6] in Fig.2 and Fig. 3, where our
solution can deal with different indoor scenes and yield the
best performance on visual appearance.

5. Algorithm extensibility
Theoretically, our network also can handle other

pixel2pixel tasks. So we further validate our extensibility in
other pixel2pixel tasks, such as panoramic depth estimation
task in the same dataset. We removed the self distillation
(because the loss function needs to be redesigned) and did
not change any other structures. We strictly followed the
experimental protocol in other solutions [8] [10]. As shown
in the Table. 3, the results show that our model outperforms
the current SOTA approaches in most metrics (especially in
the most important metric, RMSE). It also demonstrates that
the proposed model has the potential to solve other tasks.
Fig. 4 shows the qualitative comparison results which indi-



cate that the complementary features help our network build
a better panoramic perception capability.
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Figure 1. The detailed display of our network architecture.



Table 1. Detailed quantitative per-class IoU (%) results on Stanford2D3D [1]. The top two result are shown in red and blue.

Method Overall beam board bookcase ceiling chair clutter column door floor sofa table wall window

Low-resolution RGB-D

UGSCNN [3] 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5

HexRUNet [9] 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 29.4

TangentImg [2] 37.5 10.9 26.6 31.9 82.0 38.5 29.3 5.9 36.2 89.4 12.6 40.4 56.5 26.7

HoHoNet [7] 40.8 3.6 43.5 40.6 81.8 41.3 27.7 9.2 52.0 92.2 9.4 44.6 61.6 23.4

Ours 47.2 8.9 50.1 44.0 85.1 47.7 35.2 11.5 54.6 93.9 18.6 48.5 66.2 35.0

High-resolution RGB-D

TangentImg [2] 51.9 4.5 49.9 50.3 85.5 71.5 42.4 11.7 50.0 94.3 32.1 61.4 70.5 50.0

HoHoNet [7] 56.3 7.4 62.3 55.5 87.0 66.4 44.3 19.2 66.5 96.1 43.3 60.1 72.9 51.4

Ours 57.1 10.0 59.9 55.0 88.6 72.9 46.8 19.2 63.9 96.6 44.3 63.7 73.4 47.8

Table 2. Detailed quantitative per-class Acc (%) results on Stanford2D3D [1]. The top two result are shown in red and blue.

Method Overall beam board bookcase ceiling chair clutter column door floor sofa table wall window

Low-resolution RGB-D

UGSCNN [3] 54.7 19.6 48.6 49.6 93.6 63.8 43.1 28.0 63.2 96.4 21.0 70.0 74.6 39.0

HexRUNet [9] 58.6 23.2 56.5 62.1 94.6 66.7 41.5 18.3 64.5 96.2 41.1 79.7 77.2 41.1

TangentImg [2] 50.2 25.6 33.6 44.3 87.6 51.5 44.6 12.1 64.6 93.6 26.2 47.2 78.7 42.7

HoHoNet [7] 52.1 9.5 56.5 56.6 95.1 57.9 40.7 12.5 64.5 96.8 10.6 69.1 79.3 28.4

Ours 61.2 26.3 68.6 58.9 95.3 65.0 48.5 16.7 70.0 97.3 32.4 74.0 81.5 44.4

High-resolution RGB-D

TangentImg [2] 69.1 22.6 62.0 70.0 90.3 84.7 55.5 41.4 76.7 96.9 70.3 73.9 80.1 74.3

HoHoNet [7] 68.9 16.7 79.0 71.8 96.4 79.2 59.7 26.9 77.7 98.2 58.0 79.6 85.9 66.3

Ours 69.9 22.8 77.9 71.0 96.9 84.9 61.1 26.4 76.0 98.3 60.8 79.9 86.8 61.5

Table 3. Quantitative comparison for depth estimation on Stanford2D3D[1].

Method MRE ↓ MAE ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

FCRN [4] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731

OmniDepth [10] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578

Equi [8] 0.1428 0.2711 0.4637 0.0911 0.8261 0.9458 0.9800

Cube [8] 0.1332 0.2588 0.4407 0.0844 0.8347 0.9523 0.9838

BiFuse [8] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860

HoHoNet [7] 0.1014 0.2027 0.3834 0.0668 0.9054 0.9693 0.9886

Ours 0.1039 0.1957 0.3678 0.0679 0.8933 0.9747 0.9901
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Figure 2. More results of our method on 64 × 128 resolution RGB-D input.



RGB HoHoNet Ours GT

Figure 3. More results of our method on 256 × 512 resolution RGB-D input
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Figure 4. Qualitative comparison on the panoramic depth estimation.


