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Figure 1. Visualization of maps created using different constraints
for continuous perturbation: (a) and (b): perturbation with ε =
0.03; (c) and (d): perturbation with ε = 0.06. (b) and (d) show the
perturbation that are magnified 10 times larger for a clearer view.

1. Imperceptible Perturbation

In this section, we present the discussion and analysis of
perturbation constraints we explore in the main paper.

1.1. Image-based Map

Continuous Perturbation. In this paper, we set the con-
straint ε = 8

255 = 0.03 to satisfy the imperceptible require-
ment. Here, we investigate what happens if we set ε to 0.06
(equal to ε = 16 for images [0,255]). As shown in Figure

Figure 2. Visualization of attack outcomes with different con-
straints for sparse pixel binary perturbation. (a): perturbation with
ε = 50; (b): perturbation with ε = 75. The white bounding box in
each figure shows the local map area (100 × 100).

1, perturbation on Trajectron++ with ε = 0.06 is more no-
ticeable than the one with ε = 0.03, considering the map
we attack is a binary image in nuScenes dataset.

Binary Perturbation. For binary perturbation, we set
ε = 50 as the maximum number of pixels that can be modi-
fied by the attack within a local map of size 100 × 100. We
visualize the sparse pixel binary perturbation that are gen-
erated by white box attacks on Trajectron++ with different
ε in Figure 2. The white bounding box in each figure shows
the local map area. Perturbation with ε = 50 is more natural
than the one with ε = 75.

With black box attacks on image-based map models, we
denote each particle as a list of patches to generate binary
perturbation with PSO. Thus, we not only restrict the binary
perturbation with constraint ε = 50 but also limit the patch
size to 6 × 6 for the imperceptible requirement. Figure 3
demonstrate the difference between two patches sizes: 6 ×
6 and 8 × 8. It is obvious that a patch of size 8 × 8 is too
noticeable compared with the smaller one.

1.2. Node-based Map

With our proposed attacks on node-based map models,
we generate adversarial perturbation that can change the x-
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Figure 3. Visualization of outcomes with different constraints for
sparse pixel binary perturbation. (a): perturbation with ε = 50;
(b): perturbation with ε = 75. The white bounding box in each
figure shows the local map area (100 × 100).

Figure 4. Visualization of white box attacks on Trajectron++. (a):
original trajectory prediction; (b): attacked trajectory prediction.
Green points are ground-truth future trajectory, red points are pre-
dicted future trajectory, gray points are history trajectory

y coordinates in the map nodes. Thus, we set the constraint
of perturbation based on the limits of physical properties.
Given that the urban lane width is around 4 meters in the
nuScenes dataset, we set 1 meter as the maximum bound
for the perturbation as all nodes will stay in their lane even
with perturbation.

2. Qualitative Analysis.
We provide two scenarios in the main paper to reveal the

impact of our proposed attacks on both image-based and
node-based map encoding models. In this section, we show
three more scenarios to demonstrate attack impacts under
various situations.

2.1. Turning at the intersection.

As we mentioned in the main paper, we observe that the
TP models are very vulnerable to our proposed attacks at the
intersection, which is a much more complicated road situa-
tion. Here, we provide two scenarios under such a circum-
stance, one from Trajectron++ and the other from PGP.

Figure 5. Visualization of white box attacks on Trajectron++. (a):
original trajectory prediction; (b): attacked trajectory prediction.
Green points are ground-truth future trajectory, red points are pre-
dicted future trajectory, gray points are history trajectory

In Figure 4, the vehicle is going to turn left at the in-
tersection in the future trajectory (green points). The TP
model makes a correct turning prediction with ground truth
map representation. However, after the attack, adversarial
perturbation provides the model with wrong map features
and fools the model to predict a right turn in the future,
maximizing the prediction errors. Similarly, in Figure 6, the
model correctly predicts the vehicle driving straight forward
along its lane in the future. But after adding perturbation to
the map nodes, the vehicle is predicted to make a left turn
at the intersection.

In both scenarios, the victim models make a totally
wrong turning prediction in the future trajectory after our
proposed attacks. Our experimental results show that turn-
ing at the intersection is the most common road situation
where map-based attacks cause high prediction errors.

2.2. Driving along the lane

In the main paper, we show one scenario where adversar-
ial perturbation causes a large deviation along the lane and
makes the victim model predict a fake lane shift in the fu-
ture trajectory. Except for the deviation of trajectory, speed
changes can also cause high prediction errors along the lane
by our proposed attacks.

As shown in Figure 5, the vehicle is driving forward
along the lane at a steady speed in the future. Without per-
turbation, the model can make a proper prediction of the ve-
hicle’s future trajectory in Figure 5(a). However, the model
predicts that the vehicle will slow down in the near future af-
ter the attack in Figure 5(b). Without changing the direction
of the prediction trajectory, such an attack can potentially
cause serious danger or result in an accident.
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Figure 6. Visualization of white box attacks on PGP. (a) and (b):
original trajectory prediction and map; (c) and (d): attacked tra-
jectory prediction and map. Green points are ground-truth future
trajectory, red points are predicted future trajectory in the left col-
umn. In the right column, each point is a map node and the color
of each node is based on its rotation angle.
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