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In this supplementary document, we present some fur-
ther experimental details and results that could not fit in
the main paper. We discuss the motivation and details for
the new setting for the CASIA-B dataset with novel camera
viewpoints as further experiment details, followed by some
experimental details and additional ablation studies for hy-
perparameters we choose in the main paper; these include
the balancing term λ in the final loss function and the ratio
of feature exchange in the temporal shift operation. We then
show some visualization results for the inferred body shapes
directly from silhouette compared with the reconstruction
results by SMPLify-X [28] for selected RGB frames.

A. Experiment Details
Discussion for the novel view settings. In addition to

the original CASIA-B setting in which the training and test
set share the same viewpoints, the new setting of CASIA-B
only includes 2 to 6 viewpoints in the training set, while we
evaluate the model on the test viewpoints of the remaining
five camera viewpoints, 108°, 126°, 144°, 162°, and 180°.
In a real-world instance of silhouettes taken by a camera, the
camera’s perspective can come from any direction, which is
the primary purpose of introducing this new setting. Com-
pared to the original setting, our setting is more suitable for
evaluating the generalization capacity of the gait recogni-
tion model when meeting novel camera viewpoints.

Variations for Silhouette Feature Encoder. In the ex-
periment, we choose four methods as our sihouette feature
encoder: GaitSet, GaitPart, GaitGL and GLN. GaitSet [6]
uses the frame sequence in the gait video as a set of inde-
pendent frames. By using set processing methods, such as
set pooling, GaitSet can extract set-level features for pre-
serving spatial and temporal information. GaitPart [10] in-
troduces split the gait image into four different parts and
assess the motion pattern for each part separately to focus
on more local movements. GLN [15] learns both discrimi-
native and compact representations from the silhouettes. It
extracts both silhouette-level and set-level features from dif-
ferent stages for gait recognition. GaitGL [23] applies the
features from both global and local patterns by using both
global visual information and local region details.

B. Ablation studies
In this subsection, we discuss five different ablation stud-

ies for the composition of our model, including the choice

of balancing term λ2, the model we use for human body
shape reconstruction from selected RGB images, knowl-
edge distillation function LKD for knowledge transfer be-
tween two modalities, fusion method for backpropagating
body shape feature from single image frames to silhouette
sequence, and the ablation for feature exchange between
neighbor frames.

Ablations for the Balancing Term λ2. To balance the
identity loss LID and knowledge distillation loss LKD, we
set the balancing term follow the ablations on CASIA-B
[43] for all three splits, NM, CL and BG, with GLN-HBS
and GaitGL-HBS for some other variations of λ2. We show
the results in Table 7, where top-1 accuracy is reported ex-
cluding identical-view cases. We note that when we have
the balancing term λ2 set to 1, GLN-HBS and GaitGL-
HBS both show the best performance. With λ2 as 1, our
model can find a balancing point between distinguishing
different identities from silhouette sequences and transfer-
ring knowledge from inferred 3-D body shape from selected
RGB frames by SMPLify-X [28].

Body Prior Reconstruction. Since we need a strong hu-
man body prior to help disentangle the skinned body shape
from appearance variances, to reconstruct human body prior
from RGB frames, we compare the methods two skinned
models, SMPL [25] from SMPLify [3] and SMPL-X [28]
from SMPLify-X [28], for 3-D body reconstruction. Com-
pared with SMPL-X, SMPL does not require the output
for human skeletons extracted by OpenPose [4]. We as-
sess both methods on the CASIA-B dataset for three set-
tings with GLN. For SMPLify, the average accuracies are
96.7, 93.4 and 82.6 for NM, BG and CL, respectively, while
for SMPLify-X, the average accuracies are 96.7, 93.6 and
83.2. Although SMPL shows some improvement compared
with GLN without 3-D human body shape, the inaccurate
reconstructions from SMPLify make the network unable to
distinguish between body shapes and appearance variances,
making it unable to beat SMPLify-X reconstructions.

Knowledge Distillation. We show the results for dif-
ferent knowledge distillation methods [27, 2, 30, 39, 17],
in addition to the experiment directly using the feature out-
put from the teacher network, in Table 5. Since GLN and
GaitGL are the two state-of-the-art methods with the best
performance in Table 1, we compare several knowledge dis-
tillation methods on all three variations of the CASIA-B
dataset for GLN and GaitGL with SMPLify-X as the 3-D
human body shape reconstruction model for RGB images.



Knowledge Distillation NM #5-6 BG #1-2 CL #1-2

Function LKD GLN [15] GaitGL [23] GLN [15] GaitGL [23] GLN [15] GaitGL [23]

Origin Method 96.5 97.3 93.1 94.4 81.5 83.5
+ RGB Body Prior 96.7 97.5 93.5 95.0 83.3 84.4

+ RKD [27] 96.1 97.0 92.9 94.0 82.2 83.6
+ Hint [30] 96.8 97.4 93.3 94.4 83.1 84.0
+ L2 [2] 96.7 96.9 93.2 94.1 82.9 84.0
+ NST [17] 96.8 97.2 93.3 94.4 82.8 84.1
+ CRD [39] 96.8 97.5 93.6 94.9 83.3 84.3

Table 5. Ablation results for different knowledge distillation methods. Results are reported in mean accuracies on CASIA-B. ‘RGB body
prior’ indicates features used are directly encoded from the teacher model, SMPLify-X [28] for selected RGB frames.

Fusion Methods NM #5-6 BG #1-2 CL #1-2

GLN [15] GaitGL [23] GLN [15] GaitGL [23] GLN [15] GaitGL [23]

Origin Method 96.5 97.3 93.1 94.4 81.5 83.5
+ MaxPool 95.0 95.9 92.2 92.6 79.3 81.0
+ AvgPool 96.4 97.2 93.0 94.4 82.6 83.7
+ RNN 96.5 97.2 93.0 94.3 82.1 83.6
+ LSTM 96.4 97.3 93.4 94.6 82.9 84.0
+ GRU 96.7 97.5 93.3 94.6 83.0 83.9
+ TS 96.8 97.7 93.6 94.8 83.2 84.1

Table 6. Ablation results for different feature fusion methods for propagating inferred human body shape feature from RGB images to gait
sequence on CASIA-B. TS represents temporal shifting. MaxPool and AvgPool are max pooling and average pooling respectively. Results
are reported in mean accuracies.

Among all the knowledge distillation methods, CRD shows
the best performance, and we choose to use CRD as our
LKD for features of 3-D body shape transfer from RGB
frame sr to gait sequence g. In addition, we also note from
the table that using the distilled feature from CRD is compa-
rable to the body prior directly extracted from selected RGB
frames by the teacher network, SMPLify-X [28], and even
better at some splits. With knowledge distillation, body
shape from gait sequence can be more stable than using a
single RGB image for reconstruction.

Fusion. In addition to the method selection for knowl-
edge distillation, we further show different methods for
propagating the single frame RGB features to gait se-
quences in Table 6. We assess different fusion methods on
CASIA-B using CRD for knowledge distillation and trans-
fer. In addition to the temporal shifting, annotated as TS
in the table, we assess two pooling and three RNN varia-
tions. We note that the max-pooling results are worse than
the original methods, indicating that the model starts over-
fitting on a few frames. Compared with average pooling and
three RNN variations, temporal shifting introduces the most
significant improvement. The ability to propagate single
frame information back to all frames and exchange the fea-
tures between nearby frames introduce more stability and
consistency for knowledge transfer.

Ablation for the Ratio of feature exchange. To tempo-

rally shift the features extracted from the body shape feature
encoder in the gait feature extraction branch, we follow [24]
to set the ratio of feature exchange to 12.5%. This num-
ber indicates that we use 75% of features from the current
frame, 12.5% from future frames, and 12.5% from the pre-
vious frame for the next step’s convolution operation. We
further research several different ratios of feature exchange
in Table 8. We note that when we exchange 12.5%, fol-
lowing [24], as what we did in the main paper, our mod-
els show the best performance. When we increase the ex-
change ratio to 33.3%, the feature from the current frame is
the same amount as the feature from the previous and next
frames. At this ratio, the model cannot extract enough in-
formation from the current frame to identify the person in
the sequence. When we set the exchange ratio as 0%, the
model degenerates to the average pooling case, where no
features are exchanged for temporal fusion before the aver-
age pooling layer.

C. Visualizations for Inferred Body Shapes.

We visualize some reconstructions of human body
shapes to assess the quality of inferred body shape vbs from
silhouette sequences. We convert vbs to the form of the body
shape feature β used by the skinned human body recon-
struction model SMPL-X [28] in the reverse way that we
normalize it. Since we do not predict human poses θ from



Balancing NM #5-6 BG #1-2 CL #1-2

Term λ2 GLN-HBS GaitGL-HBS GLN-HBS GaitGL-HBS GLN-HBS GaitGL-HBS

0.5 96.6 97.5 93.4 94.6 82.8 84.0
1 96.8 97.7 93.6 94.8 83.2 84.1
2 96.6 97.4 93.5 94.8 82.6 83.9
5 96.2 97.2 92.9 94.4 81.6 83.2

Table 7. Ablation results for different λ2 used for balancing LKD and LID .

Exchange NM #5-6 BG #1-2 CL #1-2

Ratio GLN-HBS GaitGL-HBS GLN-HBS GaitGL-HBS GLN-HBS GaitGL-HBS

0% 96.4 97.2 93.0 94.4 82.6 83.7
10% 96.7 97.7 93.5 94.8 83.2 83.9
12.5% 96.8 97.7 93.6 94.8 83.2 84.1
25% 96.5 97.2 93.0 94.4 81.9 83.1
33.3% 95.7 96.8 92.6 93.5 81.2 82.9

Table 8. Ablations for ratio used for feature exchange in the body shape feature encoder.
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Figure 4. Sampled silhouette visualization for error prediction.

silhouette with our model, we plot body shapes as T-poses
for all reconstructions. We choose two examples in the test
set of CASIA-B [43] with all three variants. To assess the
stability among different camera positions, we select four
camera positions for each subject: 0°, 36°, 72° and 108°.

We show the visualizations of inferred body shapes in
Fig. 5, along with one of the silhouettes sampled at each
camera viewpoint. We note that reconstructions from both
methods, SMPLify-X [28] and our body shape feature en-
coder, are pretty accurate for reconstructing human body
shapes in the selected frames or silhouettes. For example,
the first person is broader than the second, which can be
reflected in most reconstructed meshes. In addition, both
reconstructed shapes show good robustness again differ-
ent appearance variations and different viewpoints, while
shapes reconstructed from silhouette sequences by our body
shape feature encoder are more consistent for the same per-
son. Compared with a single frame of selected RGB im-
ages, a sequence input gives more information for recon-
structing the human body shape and is more precise in de-
scribing the shape using information from neighbor frames.

D. Limitation and Error Analysis
To distill and transfer knowledge from limited RGB im-

ages to the body shape feature encoder of the gait branch,
we use SMPLify-X [28] as our body prior extraction model
for providing body shapes. The quality of the generated
body prior from SMPLify-X is important. Although the
distillation network is able to correct some mistakes gen-
erated from SMPLify-X as Figure 5, if there are too many
mistakes from SMPLify-X, the distillation model will be
unable to generate any useful body shapes for the training
of body shape encoder in the gait branch.

During inference, our model has only one input, silhou-
ette sequences. We note that the incomplete gait images,
either from bad segmentation results or the person walking
to the boundary of the image, as shown in Figure 4, increase
the probability of error prediction. When these incomplete
silhouette images take a relatively large part of the video,
the model is more likely to give wrong predictions since the
silhouette is the only modality we have during inference.
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Figure 5. Visualizations for reconstructed human body shapes of two identities from selected RGB frames and silhouettes in the CASIA-B
test set. For each example, the camera position from top to down is 0°, 36°, 72° and 108° respectively. We align the camera position to the
front view for all variations and plot T-pose shapes for each person with the β we inferred from the human body shape encoder. ‘RGB’
and ‘silhouette’ represent the reconstruction is from the branch with selected RGB images (SMPLify-X [28]) or the gait feature extraction
branch (Body Shape Feature Encoder). Silhouettes shown in the first column only indicate the IDs of the people and camera viewpoints,
which are not the sequences used for body shape reconstruction.


