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1. Depth and yaw from keyedge-ratios
In the paper, we derived the depth dobj and yaw angle θ

from a pair of keyedge-ratios (rba, rbc). The calculation for
other keyedge-ratios are similar. Given all four keyedge-
ratios rab, rbc, rcd, rda, we first reorganize them into four
tuples (rad, rab), (rba, rbc), (rcb, rcd), (rdc, rda). Each tu-
ple has a reference keyedge which occurs in both keyedge-
ratios (e.g., a in (rad, rab)). We use a common notation
(r1, r2) to represent the first and second elements of each
tuple. Then for each tuple, the solution of depth and yaw
has the same form:
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where θ is the yaw angle and di is the depth of the reference
keyedge. Rθ

w, Rθ
l , Rd

w, and Rd
l are placeholders of which

the value follows Tab. 1.
Then the depth of the object center is:

dobj = di +
1

2
∆d (3)

where the value of ∆d is listed in Tab. 2.
As discussed in the paper, the depth and yaw de-

rived from keyedge-ratios only depends on the pair of the
keyedge-ratios and the physical length l and width w of the
object.

2. Camera-centric indexing
With camera-centric indexing, index 1 is always as-

signed to the keyedge with shortest distance to the camera
center. Notice that the distance is not the depth (which is the
projected distance in the front direction). When the keyedge
with the shortest distance also has the smallest depth, all
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reference
keyedge Rθ

w Rθ
l Rd

w Rd
l

a r1 − 1 −(r2 − 1) r2 − 1 r1 − 1
b r2 − 1 r1 − 1 r1 − 1 r2 − 1
c −(r1 − 1) r2 − 1 r2 − 1 r1 − 1
d −(r2 − 1) −(r1 − 1) r1 − 1 r2 − 1

Table 1. Value of the placeholders in Eq. (1) and Eq. (2) for each
tuple of keyedge-ratios.

reference
keyedge ∆d

a l sin θ − w cos θ
b l sin θ + w cos θ
c −l sin θ + w cos θ
d −l sin θ − w cos θ

Table 2. Value of ∆d in Eq. (3) for each tuple of keyedge-ratios.

four keyedge-ratios [r21, r41, r32, r34] are equal or smaller
than 1. Otherwise, the keyedge-ratios can go slightly larger
than 1. In practice, the keyedge with shortest depth has
shortest distance for most objects in our tested datasets.
We use the distance for camera-centric indexing because it
changes accordingly with the allocentric angle and visible
faces of an object, which largely affects the appearance of
the object in an image.

3. More details on the experimented networks

Given that our proposed local perspective module can
be plugged-in to various network structures, here we give
more details on the regressed variables and corresponding
loss functions on the experimented networks outside of the
local perspective module, so that readers have a better idea
of the overall architecture.

3.1. MonoFlex [1]

The regressed variables are:

• Classification score (focal loss [2])



• 2D bounding box (GIoU loss [3])

• 2D projected center (L1 loss)

• Projected keypoints (L1 loss)

• Physical size (L1 loss)

• Depth and its uncertainty (Uncertainty-aware loss,
same form as Eq. (9))

The size of the regression head of the local perspective mod-
ule follows the design of other regression heads of this net-
work, i.e., 1 FC layer with 256 dimensional features.

3.2. MonoRCNN [4]

The regressed variables are:

• Classification score (cross entropy loss)

• 2D bounding box (L1 loss)

• 2D projected center (L1 loss)

• Projected keypoints (L1 loss)

• Physical size (L1 loss)

• Physical height and inverse visual height and their un-
certainty for depth estimation (Uncertainty-aware loss,
same form as Eq. (9))

The size of the regression head of the local perspective mod-
ule follows the design of other regression heads of this net-
work, i.e., 2 FC layer with 1024 dimensional features.

3.3. PGD [5]

The regressed variables are:

• Classification score (cross entropy loss)

• Centerness (BCE loss)

• 2D projected center (smooth L1 loss)

• 2D bounding box (smooth L1 loss)

• Physical size (smooth L1 loss)

• Velocity (smooth L1 loss)

• Depth and its weight (smooth L1 loss)

The size of the regression head of the local perspective mod-
ule follows the design of other regression heads of this net-
work, i.e., 1 FC layer with 256 dimensional features.
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