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1. Stochastic Rounding Equivalence Proof
Stochastic rounding is an umbrella term that encom-

passes many different methods. The most common method
is setting the probability of rounding up to be proportional
to the normalized distance between the value and its ceil-
ing. Mathematically, let x be a real number, ⌈x⌉ be its
rounded-up (ceiling) value, and ⌊x⌋ be its rounded-down
(floor) value. The most common stochastic rounding pro-
cedure used in deep learning consists of the following func-
tion:

f(x) =

{
⌈x⌉ w.p. p = x−⌊x⌋

⌈x⌉−⌊x⌋
⌊x⌋ w.p. p = ⌈x⌉−x

⌈x⌉−⌊x⌋
(1)

assuming for example that x ∈ [0, 1], then if x = 0.8, the
probability that it will round to 1 is 80%. In hardware a
stright-forward way of implementing this operation is by
simply adding a number sampled from a uniform distribu-
tion, and flooring its value:

ν ∼ U(0, ⌈x⌉ − ⌊x⌋)

f(x) = ⌊x+ ν⌋
(2)

where U(0, a) is a uniform distribution from 0 to a. This
has a close relation to the idea of dithering [2, 1], in which
noise is intentionally added to the signal in order to suppress
error. In the following part, we proof this equivalence.

Theorem 1.1. The function f(x) = ⌊x + ν⌋ for ν ∼
U(0, ⌈x⌉ − ⌊x⌋) is equivalent to stochastic rounding as de-
fined in equation 1.

Proof. The function f(x) can be rewritten in the following
format:

f(x) =

{
⌈x⌉ w.p. p(x+ ν ≥ ⌈x⌉)
⌊x⌋ w.p. p(x+ ν < ⌈x⌉)

Note that for any value of x and any quantization gap
⌈x⌉ − ⌊x⌋, we have that ⌊x⌋ ≤ x ≤ ⌈x⌉.

p(x+ ν ≥ ⌈x⌉) =
∫ ∞

⌈x⌉
x+ U(0, ⌈x⌉ − ⌊x⌋)dy (3)

=

∫ ∞

⌈x⌉
U(x, x+ ⌈x⌉ − ⌊x⌋)dy (4)

=

∫ ∞

⌈x⌉
U(x, x+ ⌈x⌉ − ⌊x⌋)dy (5)

=

∫ ∞

⌈x⌉

1

x+ ⌈x⌉ − ⌊x⌋ − x
1y∈(x,x+⌈x⌉−⌊x⌋)dy

(6)

where 1y∈(a,b) is the indicator function, which is equal to
1 when the condition y ∈ (a, b) is satisfied, otherwise it is
equal to 0.

By definition we have that x < ⌈x⌉, therefore:

p(x+ ν ≥ ⌈x⌉) =
∫ x+⌈x⌉−⌊x⌋

⌈x⌉

1

⌈x⌉ − ⌊x⌋
dy (7)

=
x+ ⌈x⌉ − ⌊x⌋ − ⌈x⌉

⌈x⌉ − ⌊x⌋
(8)

=
x− ⌊x⌋
⌈x⌉ − ⌊x⌋

(9)

The proof for p(x+ ν < ⌈x⌉) is analogous.

Theorem 1.2. The function f(x) = ⌊x + ν⌋ for ν ∼
U(0, ⌈x⌉ − ⌊x⌋) is unbiased in expectation



Figure 1. Stochastic Rounding using ResNet18 on CIFAR10 being applied at different percentages of tensor values, and around zero values.

Proof.

E[f(x)] = ⌈x⌉ x− ⌊x⌋
⌈x⌉ − ⌊x⌋

+ ⌊x⌋ ⌈x⌉ − x

⌈x⌉ − ⌊x⌋
(10)

=
⌈x⌉x− ⌈x⌉⌊x⌋+ ⌊x⌋⌈x⌉ − ⌊x⌋x

⌈x⌉ − ⌊x⌋
(11)

= x (12)

2. Stagnation Problem Analysis
There are two main ideas for why to use Stochastic

Rounding when doing quantization for training: i) it is an
unbiased estimator of the real value of x; ii) it avoids stag-
nation, which happens when gradients get rounded to zero
and therefore do not contribute to the learning of the neural
network.

We have briefly investigated the reasons why stochastic
rounding works and we have assembled the results in Figure
1. The figure shows the accuracy when training ResNet18
on CIFAR10 for different configurations of stochastic quan-
tization. The lines labelled “Prob 0.x” means that at any it-
eration, only a random set of x% of the tensor values are be-
ing stochastically rounded, and the rest are rounding to the
nearest value. For example, “Prob 0.2” means that a random
20% of the values are being stochastically rounded. The line
labelled “csr around zero” means that only the values that
would be rounded to zero are stochastically rounded.

The results show that using stochastic rounding on val-
ues around zero, which means avoiding stagnation, per-
forms as well as using stochastic rounding in all of the
values (“Prob 1.0”). When a low percentage of values are
stochastically rounded, such as 20%, the training becomes
too unstable and achieves significantly lower final accuracy.
This indicates that the most likely reason why stochastic
rounding works is because it avoids the weights of the neu-
ral network from getting stagnated at a certain value due
to the gradients being rounded to zero. We believe this pro-
vides some insight into the reasons why stochastic rounding
seems to be so effective when quantizing gradients specifi-
cally.
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