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Abstract

While the deep neural networks achieved superior per-
formance in various tasks under the supervised regime, the
ML practitioners in the real world frequently encounter a
novel task that cannot acquire the labeled dataset shortly.
Even if they have become available in acquiring the target
samples from the unlabeled dataset, conventional labeling
procedures require the practitioners to invest in resource
consumption. Pursuing an effective solution to these prob-
lems, our study proposes a practical ML framework that
efficiently enables practitioners to solve novel tasks. Our
ML framework consists of two solutions consisting of early
and mature stages. First, the early stage solution lets the
practitioners solve the novel task under the few-shot classi-
fication setting. Second, the mature stage solution enhances
the labeling efficiency by retrieving samples that seem rele-
vant to the target. Upon these solutions, acquiring a quali-
fied representation power is the most important job. Under
the public benchmark datasets and image recognition tasks
in a large-scale car-sharing platform, we examined that
the paradigm of supervised learning, surprisingly not meta-
learning, produces the most beneficial representation power
to solve novel tasks. We further scrutinized the supremacy of
supervised representation derives from broader, nourished
high-level representations in the neural networks. We highly
expect our analyses can be a concrete benchmark to the ML
practitioners who solve novel tasks in their domain.

1. Introduction

Deep neural networks have accomplished significant
performances in various machine learning (ML) applica-
tions such as image recognition [10, 12] under the fully-
supervised large-scale annotated dataset. Suppose that the
ML practitioners successfully deployed a supervised model
under the supervised regime. In this case, unfortunately,
there comes a hardship regarding the following question:

”What if the ML practitioners should solve a novel task
where sufficient samples are not accessible?” Note that we
denote this problem as a novel task problem. In the real
world, ML practitioners frequently encounter a novel task
in which they cannot acquire sufficient annotated samples
shortly. This problem frequently occurs when the ML prac-
titioner shall wait for a particular time until sufficient sam-
ples are accumulated in the database. This insufficiency
might be derived from the inherent difficulty of dataset ac-
quisition (i.e., samples regarding the accident or disaster)
or the nature of user-generated data (i.e., samples from
the newly-launched business are rare). As the supervised
paradigm requires a large annotated dataset, the ML practi-
tioners cannot simply apply the conventional procedure due
to the overfitting. One presumable approach is dividing the
problem into two stages: early stage and mature stage. An
early stage describes a circumstance where the ML practi-
tioner cannot acquire sufficient samples in the database, but
only have a few-labeled one. Note the novel task problem in
the early stage has been actively studied as a few-shot clas-
sification [20, 15, 17]. The mature stage implies that the
unlabeled database includes a particular number of novel
samples in novel tasks, but the practitioners should invest
particular resources into annotation procedures.

In the early stage, the ML practitioners can easily think
of applying the meta-learning [8]. The meta-learning aims
to adapt neural networks fastly to the classes not seen in the
training set given only a few samples of each of these novel
classes. Suppose the ML practitioners already have one la-
beled base dataset and a few samples at each label of the
novel task. We can easily apply the meta-learning paradigm
by regarding the base dataset as a meta-training dataset and
few novel samples as a support set. The ML practition-
ers can simply train the neural networks with meta-training
approaches on the base dataset and let the trained model
solve the few-shot classification with the support samples.
While this meta-learning approach might allow the practi-
tioners to establish a promising baseline to solve the novel
task, it bears several drawbacks. First, the meta-learning’s
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representation power is not stable. As the performance of
meta-learner deviates according to the chosen meta-training
method [8, 18], the practitioners should experimentally val-
idate the most effective one fit to their domain. Second, the
meta-learning approach requires additional resource con-
sumption of the ML practitioners. The ML practitioners
should additionally train the meta-learner model from the
given base dataset, and deploy it in the production environ-
ment. If the number of novel tasks increases, the resource
consumption also increases excessively from training, de-
ploying, and managing multiple meta-learners.

Figure 1. Comparison between conventional labeling procedure
and the proposed labeling procedure

In the mature stage, acquiring novel labels from the un-
labeled database is a straightforward method to solve the
novel task. However, it requires excessive annotation ef-
forts from the practitioners. Conventional labeling proce-
dures consist of the following steps as shown in the upper
diagram at Figure 1. As a foremost job, The ML practi-
tioners prepare a few samples at each label to provide an
annotation guideline for the labelers. The ML practitioners
retrieve every unlabeled sample from the database to cre-
ate a pre-labeling dataset and offer it to the labelers with
the annotation guide. Given an unlabeled sample, the la-
beler annotates it as a target label if it fits the labeling guide
and rejects it when it does not belong to any labels. Upon
this conventional labeling procedure, we figured out sev-
eral inefficiencies. First, the ML practitioners cannot know
whether the pre-labeling dataset includes the target labels
or not a priori. If the unlabeled pre-labeling dataset does
not include target labels at all, unfortunately, the ML practi-
tioners shall repeat the procedure with much resource con-
sumption. Even the pre-labeling set includes target label
samples, the practitioners would waste labeling costs as the
pre-training set includes a particular amount of irrelevant
samples.

Among recent studies on meta-learning, [18] examined
that supervised representation power on the training set can

significantly outperform existing meta-learners. Motivated
by this recent work, we propose a practical ML framework
to solve novel tasks with the supervised learner instead of
meta-learners. Pursuing an efficient solution to this novel
task problem, our study presents a case study in a large-
scale car sharing platform illustrating how we solved the
problem in the real world based on the proposed framework.
We aim to introduce our approach to the novel task with
novel labels problem and provide lessons learned from ap-
plying the proposed approach in the real world car sharing
platform. We expect our study to be a concrete baseline for
the candidate ML practitioners who solve similar problems.
The key contributions of our study are as follows.

• Upon the public benchmark datasets in meta-learning
studies, we experimentally discovered that [18]’s
proposition is generally valid under both 1-shot and
5-shot settings, except for the case where the test set‘s
distribution is shifted from the training set under the
5-shot setting.

• We unveiled the effective representation power of the
supervised learner is located in the higher layers of
the CNN. Especially, the comparative advantage of su-
pervised representation is the capacity to describe the
given image’s various contextual information. We dis-
covered the supervised learner could illustrate much
broader, fruitful contextual representations regarding a
given image; thus, it contributes to the supreme perfor-
mance in various few-shot classification tasks.

• We set two real-world scenarios in a large-scale car
sharing platform (where novel tasks are not exces-
sively shifted from the training set), and validated that
the supervised learner achieves a better few-shot clas-
sification performance than meta-learners.

• Given a set of the unlabeled dataset and a few target
samples, we discovered that the supervised learner re-
trieved more relevant samples than the meta-learners.
While the retrieval performance is not superficial, we
at least examined that the supervised learner‘s repre-
sentation is much more competitive in understanding
novel labels in novel tasks.

2. Preliminaries
2.1. Problem Definition

First and foremost, we set a circumstance where the ML
practitioners have already solved at least one image recog-
nition task under the supervised regime, and we denote this
task as a base task. This setting also presumes that the prac-
titioners have one labeled dataset for the base task, and we
denote this dataset as base dataset. Upon the aforemen-
tioned setting, we defined few-shot novel task problem as
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an image classification where its label space is distinct from
the base dataset. Specifically, this novel task problem re-
quires the practitioners to fulfill two solutions: early stage
solution and mature stage solution. In the early stage of the
novel task problem, the ML practitioners cannot acquire a
sufficient number of labeled samples for novel task; thus,
it requires the practitioners to solve a few-shot classifica-
tion task. Conversely, in the mature stage, the practitioners
can solve the novel task with a supervised classifier as the
practitioners can acquire a particular amount of target sam-
ples from the unlabeled dataset. But, the obstacle lies in the
labeling procedure because the practitioners have to invest
much annotation efforts. Therefore, the mature stage solu-
tion requires the practitioners to resolve this labeling inef-
ficiency. In a nutshell, the ML practitioners should solve
tackle down two obstacles: 1) How can we solve the few-
shot classification task in the early stage? and 2) How can
we reduce the labeling inefficiency in the mature stage?
Our study aims to develop a practical ML framework that
resolves the aforementioned obstacles with the supervised
learner.

2.2. Image Recognition Tasks

In this section, we illustrate image recogni-
tion tasks in a large-scale car sharing platform.
AnonymousInstitution is the largest car shar-
ing platform in the Republic of Korea, and it operates
ten thousand fleets in every city (similar to ZipCar in
the United States). The core business of the car sharing
platform is letting the users borrow the car with a smart-
phone application. When users need to use a car, they
reserve the car on the application and visit the designated
parking station. Then, users can open the car on the
application, use it, and return it to the parking station
after their trips. AnonymousInstitution requires
them to take pictures of the car (i.e., surfaces, seat, or cup
holders) at particular events: before and after using the
car, accident, car wash, and so on. These images taken
by the users are uploaded to the database. To manage
a large number of fleets without much human engage-
ment, AnonymousInstitution has utilized various
machine learning models in operational procedures. In
pursuit of examining the effectiveness of the proposed
ML framework, we presume the ML practitioners in
AnonymousInstitution had solved one base task),
and they were about to solve two novel image classification
tasks (novel tasks). Given a base dataset, we aimed to
solve novel tasks with a proposed practical ML framework.
The image recognition tasks’ detailed descriptions are
elaborated in the following sections.

Base Task The base task in the car sharing platform is
a car state recognition task. The car state recognition is a
10-class classification where each label illustrates a car‘s

states, and every class is as follows: Normal, Defect, Dirt,
Bubble Wash, Cars inside of the Washing Machine, Dash-
board, Cup Holder, Glovebox, Washer Fluid, Seat. To solve
this task in a supervised regime, we have acquired a labeled
dataset (base dataset) denoted as Car-Image, and we vi-
sualized example images of the Car-Image and accessible
URLs at supplementary material. Regarding the novel task
problem, we utilized this Car-Image as a base dataset. It
becomes a training set each learner described in the section
2.3.

Novel Task 1: Shape-Shifted Task The first target task
is shape-shifted image recognition. The shape-shifted im-
age recognition is a 3-class image classification between
three labels: Receipts, Documents, and Wheel. This task
had occurred when the company launched a new business
with auto repair shops. When the company requests an
auto repair shop to change the wheel, each shop resolves
the request and sends images regarding repair operations.
The auto repair shop sends Document images and Receipts
images to prove a contract and transaction, respectively.
Moreover, each shop sends Wheel images to prove that it
completed a repair request of wheel change. These sam-
ples were accumulated in the database, and we aimed to
establish an image recognition model that classifies a given
sample‘s label. Note that we named this image recognition
task as a shape-shifted task as these three labels are distinct
from the base dataset, especially in shape. Each label of the
shape-shifted task is illustrated in Figure ??. (a) at supple-
mentary material.

Novel Task 2: Texture-Shifted Task The Texture-
Shifted image recognition is a 3-class image classification
among three labels: Black Cars, Gray Cars, and Cars
with Snow. While the Shape-Shifted task describes a cir-
cumstance where novel samples are distributionally shifted
on their shapes, we synthetically established this Texture-
Shifted samples that have different textures from the train-
ing set. Note that the Normal, Defect, Dirt, and Bubble
Wash samples in the Car-Image only include white cars. We
presume the samples in Black Cars, Gray cars experience
a texture shift from the training set due to their colors. The
Cars with Snow samples describe a car’s surface with the
snow on its surface; this, we presume the snow would cause
a distribution shift in the perspective of texture. Each la-
bel of the texture-shifted task is described in Figure ??. (b)
supplementary material.

2.3. Experimental Settings

Research Questions Upon the base dataset and two
novel tasks, we established several research questions to ex-
amine whether the supervised-learner can solve novel task
problem in both the short and long run. Our research starts
from validating the effectiveness of supervised-learner in
the public benchmark setting. We then excavate underly-

423

Anonymous Institution
Anonymous Institution
Anonymous Institution
Anonymous Institution


ing takeaways of the effectiveness and examine whether the
supervised learner achieves significant performance in the
real world setting. The detailed research questions are as
follows.

• RQ 1. Does the meta-learner always outperform the
supervised learner?

• RQ 2. What contributes to the qualified representation
power for novel tasks?

• RQ 3. Does the supervised learner solve real world
few-shot classification better?

• RQ 4. Does the supervised learner retrieve relevant
samples from the unlabeled dataset well?

Baselines Our study employed several baselines to ex-
amine the effectiveness of supervised learners. For the base-
lines in the study, we aim to acquire many representation
powers derived from various model training paradigms. As
baselines of meta-learners, we utilized one metric-based ap-
proach [15], and one optimization-based approach (Model-
Agonistic Meta-Learning; MAML) [4]. We selected these
two methods among various meta-learners as they accom-
plished significant performance in a few-shot classification
task under the public benchmark dataset. Furthermore, fol-
lowing the experiment setup in [18], we also employed the
self-supervised learning paradigm as our study’s baseline
method following the reported effectiveness in [18]. Among
various self-supervised learning methods, we employed a
contrastive learning approach denoted as Bootstrap Your
Own Latent (BYOL) [5] as it achieved promising perfor-
mance in public benchmark datasets of the representation
learning domain. Lastly, we additionally employed a neural
network with a frozen weight pre-trained on the ImageNet
[2]. As the ImageNet-weight has been widely utilized in
various computer vision tasks due to its qualified represen-
tation power, we presume neural networks trained on the
ImageNet would become a concrete baseline of our study.

Implementation Details Throughout the study, we em-
ployed five training paradigms in the journey of establishing
a practical ML framework: ImageNet, Supervised Learner,
Self-Supervised Learner, Meta-Learner-Optimization, and
Meta-Learner-Metric. As implementation details, we com-
monly utilized the neural networks architecture of ResNet-
50. For ImageNet option, we acquired the model’s parame-
ters trained on the ImageNet classification (which is easily
accessible in machine learning frameworks such as PyTorch
or Tensorflow). For the Supervised Learner, we utilized
the model’s parameters trained on the training set under
the supervised regime, and we established Self-Supervised
Learner by letting the model solve the contrastive learn-
ing tasks described in [5]. For Meta-Learner-Optimization

and Meta-Learner-Metric, we followed the implementa-
tion procedures in [15] and [4], respectively. Unlike the
meta-learners, ImageNet, Supervised Learner, and Self-
Supervised Learner does not have a module to perform
a target classification (novel task). Upon the experiment
setups in [18], we froze the model’s parameters at each
learner, acquired the representations on the support sam-
ples and trained a simple logistic regression model. For the
reproducibility of our implementations, we described our
code in anonymousURL.

Table 1. 3-way 1-shot classification results on the public bench-
mark dataset settings

Method
3-way 1-shot Classification

CIFAR-FS & CIFAR-FS CIFAR-FS & miniImageNet CIFAR-FS & Double-MNIST
(Minimal Shift) (Particular Shift) (Massive Shift)

ImageNet 39.75 ± 0.85 37.15 ± 0.69 33.99 ± 0.59
Supervised Learner 71.22 ± 0.87 55.78 ± 0.86 41.48 ± 0.76

Self-Supervised Learner 59.79 ± 0.43 39.29 ± 1.30 37.11 ± 0.61
Meta-Learner-Optimization 53.33 ± 0.31 40.45 ± 0.24 37.30 ± 0.38

Meta-Learner-Metric 49.18 ± 0.18 39.01 ± 0.34 36.98 ± 0.89

Table 2. 3-way 5-shot classification results on the public bench-
mark dataset settings

Method
3-way 5-shot Classification

CIFAR-FS & CIFAR-FS CIFAR-FS & miniImageNet CIFAR-FS & Double-MNIST
(Minimal Shift) (Particular Shift) (Massive Shift)

ImageNet 38.64 ± 0.71 37.72 ± 0.65 28.93 ± 0.55
Supervised Learner 84.46 ± 1.12 65.65 ± 1.02 39.19 ± 0.69

Self-Supervised Learner 79.19 ± 0.79 68.90 ± 0.83 43.67 ± 0.18
Meta-Learner: Optimization 78.75 ± 0.95 60.27 ± 0.29 54.58 ± 0.40

Meta-Learner: Metric 68.13 ± 0.94 59.80 ± 0.58 56.27 ± 1.59

3. Does the Supervised Learner Outperform
Meta-Learner under the Dataset Shift?

Setup As an answer to RQ 1., we aim to examine
whether the supervised learner bears more effective repre-
sentation power than other baselines. Although the prior
study [18] proved the supervised representation is much ef-
fective in several public benchmark datasets, we analyzed
this takeaway shall be validated in more various dataset set-
tings to let the ML practitioners apply it in the real world.
An improvement avenue of [18] exists in the domain sim-
ilarity between the training set and the test. Referring to
the experiment settings in [18], the training set and the test
set have been derived from the same source dataset. How-
ever, in the real world, there frequently exists a circum-
stance where the test set has a particular amount of do-
main shift [11] from the training set. As a starting research
question, our study aims to check whether the supervised
learner’s representation power is still effective when the test
set (novel task in our problem setting) experiences domain
shift from the training set.

Given the training samples of CIFAR-FS [1] as a training
set, we employed three test datasets: Test set at CIFAR-FS
[1], Mini-ImageNet [3], and Double-MNIST [16] (denoting
each test set as CIFAR-FS-Test, mini ImageNet-Test, and
Double-MNIST-Test). The CIFAR-FS-Test implies a cir-
cumstance where the training and test sets share the same
domain without any domain shifts (also known as distribu-
tion shifts or dataset shift) [11] (just as a conventional few-
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shot classification setting). The mini ImageNet-Test de-
scribes a particular dataset shift from the training set as sam-
ples in both CIFAR-FS-Training and mini ImageNet-Test
are natural images (semantically similar), but other factors
are different (i.e., size or resolution). The Double-MNIST-
Test implies a massive dataset shift from the training set. To
justify the aforementioned analysis with a quantified metric,
we checked the out-of-distribution (OOD) scores on each
test set in the perspective of the training set. If the trained
model on the training set (CIFAR-FS-Training) understands
a given sample properly, the OOD score would be low,
and vice versa. Among various OOD detection approaches
[21, 7], we employed the Maximum Softmax Probability
(MSP) method [7, 19], which is a concrete baseline in OOD
detection studies. The higher MSP implies high confidence
in the given sample, resulting in a low OOD score (less
likely to be out-of-distribution). Following the OOD score
distribution shown in Figure 2, we figured out that both mini
ImageNet-Test and Double MNIST-Test are distributionally
shifted from the training set, and Double MNIST-Test is
more shifted than the mini ImageNet-Test. In a nutshell,
we justified our problem settings with the aforementioned
three test sets are valid.

Upon the experiment setups described above, we ac-
quired trained neural networks from different training
paradigms elaborated on the section 2.3. We let each model
solve the 3-way n-shot classification task with the acquired
representation power, where the n is 1 and 5. Following the
evaluation suite in the benchmark paper [18], in every test
set, we measured a few-shot accuracy on 20000 episodes
under the paradigm of episodic training [17]. The 3-way
1-shot and 3-way 5-shot classification results are shown in
Table 1 and Table 2, respectively.

Analysis We figured out that adequate representation
power differs along with each problem setting following
the experiment results. As a foremost analogy, we discov-
ered the [18]‘s proposition is valid on their experiment set-
tings as the supervised learner accomplished the best per-
formance on the minimally-shifted dataset at both 1-shot
and 5-shot settings. We further examined that the super-
vised learner is effective in general circumstances except
for the 5-shot classification under the massively-shifted test
dataset. We analyzed that these results imply the effec-
tiveness of supervised representation power over the others.
Following the prior studies on the few-shot classification,
there primarily exist two drivers of good representation in
solving novel tasks: 1) the trained representation power and
2) the ability to fastly adapt its parameters. Under the 1-
shot setting, there are not many samples that each learner
can utilize to understand the novel labels. Thus, we expect
the trained representation power would significantly influ-
ence the few-shot classification performance rather than the
ability to adapt its parameters fastly. Upon the supreme per-

formance of the supervised learner, we analyzed the super-
vised representation as to the one generally applicable in
various problem settings even the test dataset is shifted from
the training set.

Figure 2. The OOD score distribution of each test data from the
distribution of training set (CIFAR-FS-Training)

On the other hand, under the 5-shot setting, we expect
both the trained representation power and the ability to
adapt the model‘s parameters to the novel tasks are corre-
lated to the experiment results. In the 5-shot setting, more
support samples exist that the meta-learners can utilize to
update their representation power. We expect the super-
vised learner accomplished the best performance under the
minimal shift because the trained representation power (that
shares the same domain with the test) was sufficient enough
to analyze novel samples. However, under the 5-shot mas-
sive shift, we presume that an ability to fine-tune its param-
eters on novel samples fastly has become more influential
than the trained representation power (as there are many
support samples rather than a 1-shot setting). As meta-
learners are intrinsically designed to adapt their parameters
to the novel tasks effectively, we expect they accomplished
better few-shot classification performance under the 5-shot
massive shift. Note that we acknowledge these takeaways
are presumable analogies regarding the experiment results
(which leaves an improvement avenue to the future works).
Consequently, we discovered that the supervised represen-
tation power generally understands novel samples without
fine-tuning; thus, the candidate ML practitioners can utilize
it in their tasks but should be cautious if their test dataset is
massively shifted from the training set.

4. What Drives A Good Representation?
Setup As an answer to the RQ 2., we further scrutinized

what factor drives a supreme representation power of the
supervised learner. Following the recent studies of inter-
preting the representation power [9], we aim to examine
which layer of the deep neural networks contributes to the
supervised learner‘s significant few-shot classification per-
formance. We empirically assumed the ML practitioners
would not frequently experience an excessively-shifted test
dataset; thus, we narrowed the scope of analysis to the min-
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imal shift. Under the conventional CNN architectures such
as ResNet [6], the lower layers (which locates near the in-
put image) are known to learn primitive features of the im-
age, such as dots or lines (denoted as low-level features).
On the other hand, representations at higher layers (which
are located near the final softmax layer) illustrate contextual
information of the image (denoted as high-level features)
[13, 14, 13]. Upon the aforementioned notion, our study
aims to examine what representation (low-level features or
high-level features) significantly contributes to the effec-
tiveness of supervised learner. Accordingly, our study esti-
mated the representation similarity among multiple learners
leveraging centered kernel alignment (CKA) [9], a useful
tool to measure the similarity between two representations
extracted from different neural networks. To discover the
layer that contributes to the qualified representation power
of the supervised learner, we measured the representation
similarity between the supervised learner and other learners
at both the lowest and highest layers. We fed samples in
CIFAR-FS-Test to each learner to compare their represen-
tations, and every learners are trained under the CIFAR-FS-
Training except for the ImageNet. The result is described in
Table 3.

Table 3. Representation similarity between the Supervised Learner
and other Learners

Supervised & Representation Similarity
Lower Layer Hgher Layer

Supervised Learner 1.0 1.0
ImageNet 0.8288 0.2926

Self-Supervised 0.7418 0.0928
Meta-Learner 0.7918 0.0067

Analysis Following Table 3, we resulted in that contex-
tual representations at the higher layers of the neural net-
work particularly contribute to the effective few-shot classi-
fication performance. Upon the lower layers, the low-level
representation of the supervised learner is similar to those of
the other learners. We interpret the low-level layers at each
learner acquired similar knowledge; thus, we analyzed the
low-level features do not seem to be significantly relevant
to the supremacy of the supervised learner. On the other
hand, we figured out that the supervised learner’s high-level
representations are distinct from those of the other learn-
ers. We presume contextual knowledge acquired under the
supervised paradigm is advantageous to understand novel
samples. Furthermore, we additionally visualized layer-
wise representation similarities at a single model to com-
pare an overall shape of the representation power. For ex-
ample, given a ResNet-50 model trained under the super-
vised regime (supervised learner), we measured the similar-
ities among every 50 residual blocks of the model, yield-
ing a representation similarity matrix. As this matrix shows
the correlations among every residual block of the model,
we expect it to represent a unique characteristic of each

learner’s knowledge. The representation similarity matrices
at each learner are visualized in Figure 3.

Figure 3. Layer-wise similarity matrix at each learner

Upon the Figure 3., we discovered the supervised
learner‘s high-level representations are less correlated
themselves while those of the other learners are highly cor-
related. On the supervised learner, representations at high-
level layers have comparatively lower similarities to each
other. We analyze these less-correlated high-level repre-
sentations imply that each high-level layer illustrates differ-
ent elements (characteristics) of the image, which means a
larger capacity of describing an image. This larger capacity
also implies a broader contextual knowledge of the image,
and we presume this fruitful contextual representation of a
given image contributes to better performance. On the other
hand, high-level representations of the ImageNet and Self-
Supervised Learner are particularly correlated themselves,
and the high-level representations at the meta-learner are
nearly the same. We expect the more similar high-level rep-
resentations imply that the model learns a limited, narrow
contextual knowledge on a given image. Then, it would
not contribute to the effective understanding of the knowl-
edge. In a nutshell, we figured out that an underlying rea-
son behind the supervised learner‘s significant representa-
tion power resides in the high-level layers of the neural net-
works. Especially, we discovered that higher layers trained
under the supervised regime could illustrate more nourished
contextual patterns regarding given samples; thus, this large
capacity of contextual illustration contributes to the signif-
icant few-shot classification performance of the supervised
learner.

5. Early-Stage: Few-Shot Classification
Setup After we examined the supervised representa-

tion‘s effectiveness and where does this effectiveness comes
from, we further applied the supervised learner in the real
world. Pursuing an answer to the RQ 3., we aim to vali-
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Table 4. 3-way 1-shot results on the domain dataset settings, espe-
cially for shape-shifted and texture-shifted tasks.

Method Shape-Shifted Task Texture-Shifted Task
3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot

ImageNet 40.02 ± 1.11 57.63 ± 0.97 40.08 ± 0.71 59.72 ± 0.88
Supervised Learner 70.04 ± 1.24 81.87 ± 1.22 65.99 ± 1.02 79.61 ± 0.96

Self-Supervised Learner 71.53 ± 1.25 79.65 ± 1.23 64.19 ± 1.08 75.83 ± 0.91
Meta-Learner-Optimization 62.49 ± 1.49 71.39 ± 1.27 60.48 ± 1.20 75.41 ± 0.80

Meta-Learner-Metric 55.56 ± 1.67 66.10 ± 0.86 58.78 ± 0.98 67.82 ± 1.25

date whether the supervised learner can be an effective early
stage solution to solve the novel task problem. As we elab-
orated on section 2.1, during the early stage of novel task
problem, the ML practitioners cannot acquire sufficient la-
beled samples on the novel task; thus, they shall solve the
novel task under the few-shot classification setting. There-
fore, our study designed an experiment to check whether
the supervised learner trained with the Car-Image (base
dataset) can solve the two novel, real world tasks (shape-
shifted task, texture-shifted task) under the few-shot clas-
sification problem setting. Suppose the supervised learner
accomplishes effective few-shot classification performance
on the two novel tasks. In that case, we can recommend
the ML practitioners adapt our early-stage solution to solve
tasks in their domain.

While the two novel tasks look semantically shifted from
the Car-Image, we checked the OOD score distribution of
each novel dataset at Figure 4. We expect this description
regarding the distributional shift of the novel dataset would
contribute to the clear understanding of our experiment to
the candidate ML practitioners. Following the OOD score
distribution in Figure 4., both tasks were shifted from the
Car-Image-Training, and the Shape-shifted task experiences
a larger dataset shift. Moreover, both novel tasks are not
massively shifted compared to the domain shift between the
CIFAR-FS & Double-MNIST; thus, we would like to high-
light that the real world novel tasks in our study are not ex-
cessively shifted from the dataset. As detailed experiment
setups, we measured the few-shot classification accuracy in
20000 episodes at each task under the 1-shot and 5-shot set-
tings. Note that both novel tasks are 3-way n-shot problem
as each task includes three labels. The experiment results
are shown in Table 4.

Analysis Following the experiment results shown in Ta-
ble 4., we discovered the supervised learner outperformed
other baselines in every problem settings except for 3-
way 1-shot classification at Shpe-Shifted Task. Still, we
evaluate our supervised learner accomplished competitive
performance to the best accuracy of the Self-Supervised
Learner as their performances have a minor gap. Regard-
ing the experiment results at 3-way 1-shot classification on
Shape-Shifted Task, we could not figure out why the Self-
Supervised Learner achieves better performance rather than
the supervised learner. Similar to our analogy in the prior
section, we leave this question as an improvement avenue
of our study. Consequentially, we examined the supervised

Figure 4. The OOD score distribution of each novel datasets from
the distribution of training set (Car-Image)

learner’s effective few-shot classification performance on
various problem settings; thus, we recommend the candi-
date ML practitioners refer to our early-stage solution on
their tasks.

6. Mature Stage: Zero-Shot Image Retrieval

Setup Towards the RQ 4., our study aims to examine
the validity of our mature stage solution to the novel task
problem. We validate whether the supervised learner can
retrieve the samples relevant to the target label from the un-
labeled dataset, given few-labeled target samples. As the
learner is not trained with samples of the target label, we de-
note this solution as a zero-shot image retrieval. We would
like to highlight this zero-shot image retrieval is challeng-
ing as the unlabeled Pool is in an open-set setting (which has
samples irrelevant to the task). Upon this setting, we pre-
sume the supervised learner can become an effective image
retriever if its representation power is qualified enough. In
the experiment, we set two target labels Document and Cars
with Snow, which exist in Shape-Shifted Task and Texture-
Shifted Task, respectively. We acquired 3000 random unla-
beled samples from the live database as a target unlabeled
dataset (denote as Pool). Note that samples in the Pool
share the same label space with Car-Image, and it does not
have any duplicated samples with Car-Image and datasets
of Shape-Shifted Task and Texture-Shifted Task. As the Pool
does not include samples of the target labels, we syntheti-
cally added target samples to it. We additionally retrieved a
small-sized unlabeled dataset from the live database (with-
out any duplicated samples with Pool), acquired 50 samples
at each target label, and added to the Pool. Therefore, we
could assure that the Pool includes 50 samples of the target
labels. Given the Pool and five samples at each target task,
we let the learner estimate an average similarity between the
unlabeled sample and the given five samples. We employed
two similarity metrics: Euclidean distance and cosine simi-
larity. We iterate this similarity estimation on every sample
in the Pool and select Top-50 samples with high similarity
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scores. As an evaluation metric, we measured the number of
correctly-retrieved target samples in the retrieved 50 sam-
ples (Top-50 Accuracy). Note that the larger number im-
plies a good performance of the learner as it retrieved many
relevant samples from the Pool. We compared the perfor-
mance of five learners on the aforementioned setting, and
the experiment results are shown in Table 5.

Table 5. Zero-shot Retrieval experimental results

Method
Similarity Metric

Euclidean Distance Cosine Similarity
Document Cars with Snow Document Cars with Snow

ImageNet 2 8 2 6
Supervised Learner 8 18 3 12

Self-Supervised Learner 6 12 4 12
Meta-Learner-Optimization 0 2 2 9

Meta-Learner-Metric 0 2 4 10

Analysis Following Table 5., we figured out the super-
vised learner retrieved the largest number of relevant sam-
ples from the Pool. Regardless of the similarity estima-
tion method and target labels, the supervised learner out-
performed the image retrieval performance rather than other
learners; thus, we validated that the supervised learner also
can be applied in a zero-shot image retrieval as a mature
stage solution to the novel task problem. Moreover, we dis-
covered that the supervised learner achieved better retrieval
performance on Cars with Snow rather than Document. We
expect this result happens as the Cars with Snow samples
are less distributionally-shifted from the training set com-
pared to the Documents. Please check Figure 4 to check
the domain shift of two target labels from the training set,
Car-Image. Like the prior analogies in various few-shot
classification tasks, we discovered again that the supervised
representation becomes effective rather than other learners
when the target label shifts less from the training set. Al-
though we justified the effectiveness of supervised learner
in zero-shot image retrieval, the absolute retrieval perfor-
mances are not remarkable. We acknowledge that this be-
comes an improvement avenue of our study. In a nutshell,
we recommend the candidate ML practitioners can apply
the proposed mature stage solution on their task, but its ef-
fectiveness shall be improved to be actively applied in the
real world.

7. Related Works
The meta-learning aims to empower a fast-adaptability

toward the model to let it efficiently solve novel tasks.
Especially, few-shot learning, which leverages few sup-
port samples on the novel task, is one prominent paradigm
of meta-learning. Upon the few-shot learning studies,
there exist two categories: optimization-based approach and
metric-based approach. First, the optimization-based meta-
learning trains fast-adapt parameters to converge with only a
few support sets fastly. MAML [4], and its derived versions
are representative methods of the optimization-based ap-
proach. A key takeaway of the MAML is utilizing gradient-

steps to converge the model’s parameters to adapt fastly to
other novel tasks. Second, the metric-based meta-learning
method embeds a given image into a fixed-shape repre-
sentation vector. Metric-based approaches measure simi-
larity between support samples and the validation sample.
ProtoNet [15] and Relation Network [17] are highly pop-
ular ones under the metric-based meta-learning. In this
study, we employed two meta-learning methods (MAML
and ProtoNet) as baseline models representative approaches
at the optimization-based and metric-based paradigm, re-
spectively.

8. Discussions and Conclusion

In this study, we aim to conduct an evidential study on
the practical ML framework that efficiently solves the novel
task in the real world. We design our framework with
two-stage solutions in the early and mature stages. The
early stage solution aims to escalate the classification per-
formance in novel tasks, given a few labeled samples. The
mature stage solution contributes to reducing labeling in-
efficiencies through zero-shot image retrieval. To imple-
ment this framework, we conducted a series of experiments
to examine whether the supervised representation can be
utilized in both solutions upon the shared motivation with
[18]. First and foremost, we discovered that the super-
vised learner is generally applicable in few-shot classifi-
cation tasks under public benchmarks and real-world im-
age recognitions. We further scrutinized this supremacy of
the supervised learner derives from the nourished high-level
representations within the trained neural networks. Lastly,
we validated the supervised learner can be utilized as a zero-
shot image retriever to escalate the labeling efficiency in the
mature stage solution. Still, there exist several improvement
avenues of our study. Future works shall validate a factor
that drives different few-shot classification performances at
different learners. Moreover, we shall improve the zero-shot
image retrieval performance and excavate a key element of
qualified representation power in this zero-shot problem set-
ting. Lastly, the proposed ML framework and related take-
aways had better be examined under various classification
dataset settings, or various computer vision(i.e., object de-
tection, semantic segmentation). As a closing remark, we
highly expect our study can be a concrete benchmark to
the candidate ML practitioners who solve the novel tasks
in their domain.
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