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Abstract

While deep neural networks achieved supreme accom-
plishments in image recognition tasks, they conventionally
utilize a benchmark dataset that presumes a well-designed
label space where each image corresponds to a particular
class; we denote these data as obvious samples. However,
we claim this assumption is not always justified in the real
world as well as widely-utilized ImageNet. We discover that
a label ambiguity problem exists, in which several samples
are inherently ambiguous and can be annotated as a par-
ticular label. In this study, we propose a series of anal-
yses on the label ambiguity and suggest a solution to re-
solve it along with the following contributions. First, we
define label ambiguity types that exist in conventional im-
age recognition and publicize the corresponding datasets
retrieved from ImageNet and the real world. We further
reveal that this label ambiguity degrades the classification
performance; thus, we justify the necessity of careful treat-
ment of the label ambiguous samples. Second, we propose
Consistent Sample Selector (CSS), a novel framework that
solves this label ambiguity problem. Given obvious and am-
biguous samples, the proposed CSS learns representations
on each label with obvious samples and selects ambiguous
samples that embrace semantics consistent with the obvi-
ous ones; thus, it aims to update the training set by con-
catenating obvious samples and selected ambiguous ones.
Lastly, we empirically examine our CSS effectively elevates
the classification performance and simultaneously improves
the inductive bias, similar to how human vision recognizes.

1. Introduction

Recent advancements in deep neural networks accom-
plished supreme success in various computer vision appli-
cations based on public benchmark sets [10, 36, 9, 6]. One
implicit consensus on this public benchmark is that its la-
bel space is well-designed; each label’s samples share sim-
ilar characteristics. We denote these samples as obvious
samples, as one sample clearly belongs to one single label.
However, due to the label ambiguity of natural image sam-
ples, we urge that this assumption is not always justified,
especially in the real world. When the practitioners estab-
lish computer vision applications, they start with building a
dataset. During this dataset acquisition procedure, several
samples frequently exist that are inherently ambiguous to
be assigned to a particular class; we denote these samples
as ambiguous samples. As these ambiguous samples have
attributes of multiple classes simultaneously, they can be
labeled differently following the annotator’s bias. We pre-
sume this inconsistent labeling demerits learning represen-
tations on each label; thus, we necessitate a solution against
it. We define the label ambiguity problem as a deteriorated
classification performance due to the careless inclusion of
ambiguous samples in the labeled dataset.

While prior works solved this label ambiguity problem
by generating multiple weak annotations on these ambigu-
ous samples, they require a particular amount of resource
consumption for labeling; the practitioner should employ
many labelers. To improve this limit, we tighten this as-
sumption: the practitioners can acquire one label per sam-
ple. Following the conventional data annotation procedure,
a labeler annotate a given sample as one of the labels if it
is an obvious sample. Conversely, a labeler isolates a given
sample as an ambiguous one if it cannot be clearly anno-
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tated as one label. Suppose the practitioners have a well-
labeled dataset with obvious samples and a set of unlabeled
ambiguous samples. How can we maximize the classifica-
tion performance as well as representation quality?

To this end, we shed light on the label ambiguity prob-
lem, a cutting-edge problem in image recognition problem
by proposing a series of analyses. The key contributions are
as follows. First, we propose in-depth elaborations regard-
ing the label ambiguity problem. We firstly define two label
ambiguity types and publicize corresponding datasets for
the research community. Furthermore, we empirically ex-
amine that careless use of these ambiguous samples indeed
deteriorates classification performance; thus, there should
be a sophisticated treatment towards the label ambiguity.
Second, we suggest a Consistent Sample Selector (CSS),
a novel solution that solves the label ambiguity problem.
We empirically examine that our CSS escalates the classi-
fication performance compared to other baselines. Third,
we scrutinized the underlying reasons behind our CSS’s
supremacy in resolving the label ambiguity problem. We
discover that a model trained with CSS understands a given
image similar to a human’s visual understanding. We ad-
ditionally reveal that a model trained under the CSS has a
larger knowledge capacity; thus, it can describe more pat-
terns of a given image.

2. Related Works
Semi-Supervised Learning The semi-supervised learn-

ing (SSL) shares a similar objective with our circumstance:
both approaches use learned representations from well-
labeled samples to understand unlabeled ones [3, 2, 7, 8,
30, 33, 21, 17]. However, the details are clearly different
because the unlabeled samples at SSL have a solid ground
truth; they can be annotated as one of the given labels. Con-
versely, the unlabeled samples at label ambiguity problem
do not have ground truth, as they can be annotated as vari-
ous labels. While the SSL differs in detail, we employ the
SSL method as a baseline because it shares similar mo-
tivation and objective with our label ambiguity problem.
Throughout recent works on SSL, we categorize these stud-
ies into two streams: consistency regularization and pseudo-
labeling. First, consistency regularization approaches aim
to establish a function that is invariant to the input pertur-
bations or augmentations [30], and this function would ef-
fectively utilize unlabeled samples to understand the given
label space [2]. Second, pseudo-labeling approaches pro-
vide pseudo labels on unlabeled samples based on the in-
ductive bias built upon the labeled samples [17]. Among
these works, we employ the pseudo-labeling paradigm, es-
pecially Uncertainty-guided Pseudo-label Selection (UPS)
[29] as it is state-of-the-art in public benchmark settings of
SSL study.

Uncertainty Estimation Recent studies on deep neu-

ral networks started to understand how confident the model
predicts a given sample, as well as its accuracy[28, 5, 4,
12]. As reasonably-estimated uncertainty can benefit un-
derstanding the model’s decisions or make deep neural
networks more trustworthy; thus, numerous studies have
been proposed [38, 23, 24, 20]. The early approach is
a confidence-based method, which extracts the logit vec-
tor yielded by the trained model and regards a prediction
on a given sample as confident if its logit value goes be-
yond a particular threshold [14, 15]. As this approach is
such a naive one, the bayesian approach has been proposed
[16, 35].

3. Preliminaries
3.1. Scenario

This section describes a scenario that illustrates how real
world practitioners encounter ambiguous samples. When
the practitioners aim to establish a dataset, they firstly ac-
cumulate a set of unlabeled samples. Then, they acquire
a labeling scheme that defines the characteristics of each
label, and the labelers follow this scheme to annotate un-
labeled samples. The labeler annotates an unlabeled sam-
ple as one label when it has characteristics of a particular
label, and we define these annotated ones as obvious sam-
ples. Conversely, supposing an unlabeled sample cannot
be assigned to one label, labelers isolate these samples. For
example, labelers isolate the sample when it has multiple at-
tributes of each label or ambiguous characteristics between
multiple labels. We denote these isolated ones as ambigu-
ous samples. Consequentially, when the practitioners estab-
lish a dataset, they have two types of sub-datasets: 1) a set
of well-labeled obvious samples, 2) a set of unlabeled am-
biguous samples. We highlight that our study assumes the
existence of the aforementioned two sub-datasets.

3.2. Label Ambiguity and Datasets

We define label ambiguity as a circumstance where an
image cannot be annotated as one of the given labels. As
a root cause of this phenomenon, we scrutinize that an am-
biguous sample has attributes of multiple labels. We pre-
sume this characteristic makes the labelers get confused;
thus, they shall isolate these samples during the annotation
procedure. While previous studies on label ambiguity did
not clearly define ambiguous samples and this multidisci-
plinary, our study firstly breaks down two categories of am-
biguity: object ambiguity and texture ambiguity. We elabo-
rate on these ambiguity types in the following sections and
publicize the corresponding datasets shown in Figure 1. We
also describe the number of samples at the training, valida-
tion, and test set in Table 1. We will publicize the whole
dataset via an accessible URL shortly. Note that training set
have both obvious and ambiguous samples while the vali-
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dation and test sets have obvious samples only. We hereby
emphasize that our study aims to escalate understanding on
given labels under the existence of ambiguous samples.

Texture Ambiguity We define texture ambiguity as
when an ambiguous sample’s discriminative characteristics
are texture-wise attributes, and it is interpreted differently
following the labeler’s bias. Referring to Figure 1, suppose
we solve a binary classification on car images between two
labels: Normal and Defect. Note that Normal implies a
car without any defects (i.e., scratch, dents) where Defect
means a car with damaged areas. We denote discrimina-
tive characteristics between these labels as a texture-wise at-
tribute, as samples at both labels look similar to each other,
but the texture on their surface differs. In this case, the
severity of this damaged area matters for labelers. What
if ambiguous samples shown in Figure 1 is given to the la-
beler? It certainly has a damaged area on the surface, but
some labelers might annotate it as Normal because the dam-
aged area is too small. The others annotate it as Defect be-
cause there at least bears a damaged area. Unfortunately, we
could not retrieve texture-wise ambiguous samples in the
public benchmarks. Instead, in collaboration with Anony-
mous Institution Name, which is the largest car-sharing plat-
form in Anonymous Country Name, we establish real-world
classification tasks regarding car images: car defect classifi-
cation and car dirt classification. We describe these datasets
below.

• Car-Defect: This dataset includes two obvious labels
of Normal and Defect. The Normal samples have car
images without any defects, while Defect samples are
car images with the damaged surface. We set ambigu-
ous samples as car images with weak damage on their
surface.

• Car-Dirt: This dataset includes two obvious labels of
Normal and Dirt. The Normal samples have car im-
ages without any dirty areas, while Dirt samples are
car images with the dirty surface. We set ambiguous
samples as car images with weak dirt on their surface.

Object Ambiguity We define object ambiguity as when
an ambiguous sample simultaneously embraces multiple la-
bels’ object-wise attribute. Referring to Figure 1, suppose
we solve a binary classification between Frog and Tadpole,
and the discriminative characteristics between two labels
are the existence of leg object. How would the labelers an-
notate ambiguous samples shown in Figure 1? When we
design a labeling scheme as ‘a frog should have legs, and
a tadpole does not have legs’, these samples would be an-
notated as ‘Tadpole’. But, most conventional Tadpole sam-
ples do not have any legs; then, we presume the inclusion
of these ambiguous samples (tadpoles with a few legs) into
the Tadpole label would deteriorate the learned representa-
tion. Conversely, if we change the labeling scheme to ‘a

frog should have at least one leg, and tadpole should not
have any legs‘, they would be annotated as Frog. To analyze
this object ambiguity, we create two classification datasets
consisting of two labels with obvious samples and one set
of ambiguous samples. We subsample these datasets from
the ImageNet [10], and denote them as ImageNet-Frog and
ImageNet-Panda. We emphasize that even the ImageNet
(a widely-used public benchmark dataset) surprisingly em-
braces ambiguous samples in the label; we reconfirm the
importance of analyzing the label ambiguity problem as it
has not been cautiously dealt with in the prior computer vi-
sion studies. The detailed descriptions on these datasets are
as follows.

• ImageNet-Frog: Given samples under the Frog and
Tadpole label in ImageNet, we re-label them. We an-
notate frog images with four legs as Frog label, tadpole
images with no legs as Tadpole, and let the other sam-
ples be ambiguous ones.

• ImageNet-Panda: We select Panda and Raccoon
classes as obvious classes. And the Red Panda class
that has both the shape of a panda and raccoon are as-
signed to ambiguous samples.

Figure 1. Sample images on the proposed datasets. Note that we
draw red bounding box for discriminative cues.

Table 1. Dataset configuration

Dataset Training Set Val Set Test SetObvious Ambiguous
Car-Defect 4757 5552 1189 1385
Car-Dirt 1755 491 377 377

ImageNet-Frog 722 102 179 100
ImageNet-Panda 1568 1077 524 522

3.3. Implementation Details

For CNN architectures, we employ widely-utilized
ResNet-50 and Progressive Multi-Granularity Networks
(PMG). As we presume several classification tasks bear
fine-grained discriminative characteristics, we decide to ad-
ditionally use PMG architecture following its compelling
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performances in fine-grained recognition studies [9, 18, 37,
11]. We set the learning objective as minimizing conven-
tional cross-entropy loss, optimize with Adam optimizer,
and use dropout under the rate of 0.2. Please refer to the at-
tached code and artifacts for mode detailed implementation
details.

4. Do Ambiguous Samples Indeed Degrade
Classification Performance?

Objective and Setup As a preliminary analysis, we
hereby examine whether the careless use of ambiguous
samples indeed degrades the classification performance.
Given obvious samples from two classes (class 1 and 2)
and ambiguous samples, we postulate four settings of the
training set. For the first option, as a baseline, we employ
a training set consisting of obvious samples only. As we
did not utilize any ambiguous samples in the training stage,
we presume this option is the safest but naive one. For
the other options, we set three cases of careless use of am-
biguous samples: adding ambiguous samples to the obvious
samples of class 1 or 2, and randomly splitting ambiguous
samples into the half, and add them to each class. We ad-
ditionally examine how the number of ambiguous samples
affects classification performance. We set the ambiguous
ratio, which describes the percentage of utilized ambigu-
ous samples. Upon three ambiguous rations of 100%, 50%,
and 25%, we measure the accuracy and F1-score on the test
set following four classifiers trained upon different settings.
The experiment results are shown in Table 2.

Analysis Upon the experiment results, we firstly clarify
that the careless use of ambiguous samples indeed degrades
the classification performance in every dataset. Compared
to the baseline (denoted as Class 1 v. Class 2), every care-
less addition of ambiguous samples yields a decrease in
classification performances. Based on these findings, we
hereby justify the necessity of a solution against this la-
bel ambiguity problem to prevent performance degradation
from the careless use of ambiguous samples. To take a fur-
ther step, we interestingly find that the pattern of the afore-
mentioned negative impact differs following the ambiguity
ratio. We once presumed that a model trained under a high
ambiguity ratio would experience much severe performance
drop. However, we discover that the high ambiguity ra-
tio does not always correlate to the high performance drop.
Instead, this pattern varies following the label space (i.e.,
the dataset consists of obvious samples) and how the prac-
titioners add ambiguous samples. For example, in Car-Dirt
dataset, Class 1 + Ambiguous v. Class 2 achieve a partic-
ular performance decrease at the ambiguous rate of 100%
and 25%, but accomplish a minimal drop at the ambiguous
rate of 50%. This pattern becomes different at Car-Defect
dataset while these two datasets are categorized in the same
texture ambiguity. The magnitude of the performance drop

is also different. While the careless use of ambiguous sam-
ples at ImageNet-Frog makes the drop within 10% of ac-
curacy, this magnitude becomes much larger than 30% at
ImageNet-Panda. Consequentially, as the landscape of per-
formance degradation differs following the data’s charac-
teristics, we expect a solution against this label ambiguity
problem to be established adaptive to the label space and
the obvious sample’s characteristics.

5. Our Approach: Consistent Sample Selector

5.1. Motivation

To tackle down the problem caused by careless use of
ambiguous samples, we ideate the following question: what
if we can select ambiguous samples that are beneficial to
recognizing given labels? We hypothesize that an ambigu-
ous sample with consistent cues with the obvious samples
will benefit the inductive bias, although they were not an-
notated as obvious ones. If so, what can be a proxy for
filtering this ‘beneficial’ sample adaptive to the represen-
tation of obvious samples? To answer the following ques-
tions, we expect the use of uncertainty can be a useful proxy
for describing beneficial ambiguous samples. For a reason
behind our ideation, previously-proposed studies on semi-
supervised learning [29] support that uncertainty yielded by
a well-trained classifier is a significant hint of understand-
ing samples that are not seen a priori. We interpret an am-
biguous sample with low uncertainty from the initial clas-
sifier would embrace consistent cues with the obvious sam-
ples; thus, this would contribute to a better understanding
of given classes. For an ambiguous sample with low un-
certainty, vice versa. Moreover, as we once declare that a
proxy for selecting meaningful ambiguous samples should
be adaptive to the given label space. We analyze the un-
certainty to satisfy the aforementioned requirement as it is
yielded by the model trained on a given label space; thus,
there’s no heuristically-designed human intervention to ex-
tract uncertainty on a given sample. To this end, our study
employs two representative uncertainty scores: Confidence
score and Bayesian score. The confidence score implies a
maximum logit value extracted right after the softmax acti-
vation, and the bayesian score is estimated with the promis-
ing uncertainty estimation method proposed in [12].

Before we design the solution, we hereby examine how
the model trained under obvious samples yields uncertainty
scores on unseen obvious and ambiguous samples. We pre-
sume the model would provide low Bayesian score and high
confidence score on unseen obvious samples as they bear
characteristics consistent with the given label space. Con-
versely, we expect the model would yield comparatively
higher Bayesian score and lower confidence score in am-
biguous samples. To examine our hypothesis, we trained a
classifier based on ImageNet-Frog’s obvious training sam-
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Table 2. Analysis of the impact of careless use of ambiguous samples toward image recognition.

Ambiguous Ratio Settings
Texture Ambiguity Object Ambiguity

Car-Defect Car-Dirt ImageNet-Frog ImageNet-Panda
Acc F1-Score Acc F1-Score Acc F1-Score Acc F1-Score

Baseline Class 1 v. Class 2 0.9096 0.9281 0.9682 0.9682 0.8500 0.8474 0.9483 0.9715

100%
Class 1 + Ambiguous v. Class 2 0.8857 0.7159 0.9337 0.9336 0.8200 0.8125 0.5574 0.6981
Class 1 v. Class 2 + Ambiguous 0.8279 0.9201 0.9257 0.9255 0.8400 0.8377 0.6513 0.7697

Class 1 + 50 % Ambiguous v. Class 2 + 50 % Ambiguous 0.8992 0.9081 0.9390 0.9390 0.7600 0.7478 0.6781 0.7968

50%
Class 1 + Ambiguous v. Class 2 0.7386 0.8213 0.9629 0.9629 0.7600 0.7363 0.6284 0.7551
Class 1 v. Class 2 + Ambiguous 0.8742 0.9288 0.9496 0.9496 0.8400 0.8390 0.6628 0.7687

Class 1 + 50 % Ambiguous v. Class 2 + 50 % Ambiguous 0.8317 0.8922 0.9469 0.9469 0.8400 0.8284 0.6801 0.7731

25%
Class 1 + Ambiguous v. Class 2 0.7602 0.8393 0.9496 0.9496 0.8300 0.8205 0.6312 0.7598
Class 1 v. Class 2 + Ambiguous 0.8945 0.9118 0.9496 0.9496 0.8300 0.8205 0.6312 0.7598

Class 1 + 50 % Ambiguous v. Class 2 + 50 % Ambiguous 0.7444 0.8471 0.9602 0.9602 0.7800 0.7726 0.6130 0.7251

Figure 2. Overall architecture of Consistent Sample Selector

ples and measured both scores at obvious validation sam-
ples and training ambiguous samples. We illustrate each
option’s average scores in Table 3. Referring to this re-
sult, we discover that our hypothesis is valid. To take one
step further, we conclude that a sample with effective dis-
criminative cues (which belongs in obvious samples) can be
represented with low Bayesian score and high confidence
score. For the sample without much relevant discriminative
cues, vice versa.

To this end, we propose Consistent Sample Selector
(CSS), a simple but effective framework that utilizes par-
ticular ambiguous samples to elevate the classification per-
formance as well as representation quality. We denote our
framework as CSS as it aims to utilize ambiguous samples
that include knowledge or cues consistent with the training
set with obvious samples. Our CSS filters out ambiguous
samples with sufficient discriminative cues for the target
task and re-trains the model with these selected samples.
We illustrate an overall architecture of CSS in Figure 2, and
the detailed procedures are provided in the following sec-
tions.

Table 3. Average uncertainty scores yielded by a model trained
under obvious samples

Score Dataset
Obvious Ambiguous

Confidence Score 0.9836 0.9015
Bayesian Score 0.0559 0.1893

5.2. Methodology

Generating an Initial Classifier First and foremost,
CSS trains an initial classifier with obvious samples in the
training set. This step aims to convey a base inductive bias
to the model that illustrates given classes’ discriminative
cues. We presume a inductive bias based on obvious sam-
ples embraces a particular amount of discriminative charac-
teristics on given classes.

Selecting Ambiguous Samples with Consistency
Given the trained initial classifier, as a core procedure of
CSS, it select ambiguous samples with consistent knowl-
edge of the given classes. With the initial classifier trained
with only an obvious set, we aimed to find the ambiguous
samples that have consistent knowledge that strengthens the
representation generated only with obvious samples. Given
the trained initial classifier and ambiguous sample x(i), we
can get the predicted logit vector denoted as px. With this
p
(i)
x , we can get the Bayesian score of the sample denoted

as B(p
(i)
x ) and the confidence score with C(p

(i)
x ) itself.

Then, we decide whether to select this ambiguous sample
or not by applying thresholding. We set two thresholds for
Bayesian and confidence scores, respectively: κ and τ . We
select a given ambiguous sample if its Bayesian and confi-
dence score simultaneously goes larger than the aforemen-
tioned thresholds, and we formally describe this procedure
in Equation 1. Note that we let g(i)c as a binary indicator
illustrating whether we use the given ambiguous sample or
not. Consequentially, we acquire a pair of ambiguous sam-
ple x(i) and its corresponding indicator g(i)c . For ambiguous
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samples with an indicator of 1, we updated them to the obvi-
ous samples following the label with maximum confidence
(C(p

(i)
x )).

g(i)c = 1[B(p(i)x ) ≤ κ]1[C(p(i)x ) ≥ τ ]. (1)

Re-training the classifier Lastly, CSS establishes an up-
dated training set by concatenating an initially-given train-
ing set with the selected ambiguous samples. Then, we
re-train the classifier with this updated training set. We
highlight that this re-training procedure first adds consis-
tent samples to the initial training set and trains the model,
not simply fine-tunes the initially-trained model on consis-
tent samples. We empirically check this fine-tuning exces-
sively drops the classification performance as these small
(compared to the training set) ambiguous samples confuse
the model to acquire correct representations of the given
classes. To this end, the CSS results in a re-trained clas-
sifier that better understands given classes’ characteristics
compared to the one trained only with obvious samples.
Throughout the following analyses, we examine the effec-
tiveness of CSS in image recognition tasks and whether it
indeed improves the quality of inductive bias.

6. Effectiveness of CSS
Objective and Setup
First and foremost, we aim to validate whether the pro-

posed CSS improves the classification performances in im-
age recognition tasks. For comparative studies, we em-
ploy several baseline approaches. We firstly consider a su-
pervised model training only with obvious training sam-
ples, denoted as OO, and we presume the practitioners can
naively use them. Moreover, we additionally apply the
model calibration method to the OO as calibrated classi-
fiers are known to be robust in various challenging environ-
ments [25, 1]. We hypothesize that a robust classifier would
acquire a more contextual understanding of given images;
thus, we expect it can be a solid baseline. We use a super-
vised classifier with label smoothing [26, 22] and denote it
as OO-LS.

Moreover, we employ Uncertainty-guided Pseudo-label
Selection (UPS) as a baseline, the state-of-the-art method
in pseudo-labeling approaches of semi-supervised learning
[40, 34]. We highlight that our CSS has several novelties
compared to the UPS. While UPS simultaneously utilizes
positive and negative learning, our CSS only employs pos-
itive learning. Positive learning lets the model predict the
correct label while negative learning forces the model to
choose the incorrect label. As unlabeled samples in the SSL
have a solid ground-truth label, we presume using both pos-
itive and negative learning can benefit representation learn-
ing. However, unlabeled (ambiguous) samples do not have
a single ground-truth label in the label ambiguity problem

setting. Instead, these unlabeled samples tend to simulta-
neously include discriminative cues of multiple labels. We
expect the model can sufficiently predict the correct label
of the given ambiguous sample while it cannot choose the
incorrect label (as both labels can be correct labels).

Lastly, we employ Uncertainty-Guided Pseudo-Labeling
(UGPL) which deals with the label ambiguity problem [27].
We highlight our work’s novelties compared to the UGPL
as follows. First, the proposed CSS utilizes both confi-
dence and Bayesian score as a proxy for selecting benefi-
cial samples, while the UGPL only employs a confidence
score only. Second, the UGPL is only examined under
the synthetically-created samples, but our study validates
its effectiveness in both public benchmark and real-world
datasets. Moreover, as we expect label smoothing to en-
hance the inductive bias’s quality, we also implement UGPL
along with label smoothing (denoted as UGPL-LS). We ac-
knowledge that the proposed CSS and baselines commonly
require empirically-optimized thresholds; thus, we measure
the classification performances at various threshold levels
and report the best ones. The comparative experiment re-
sults are described in Table 4.

Analysis Following the results shown in Table 4, we pro-
pose the following takeaways. First, we discover that the
proposed CSS accomplishes the best classification perfor-
mance in every label ambiguity type. While the careless
use of ambiguous samples degraded the classification per-
formance (shown in the earlier section), we prove that the
appropriate use of ambiguous samples can sufficiently es-
calate the classification performance. Second, compared to
UPS, eliminating negative learning at CSS was beneficial
in understanding ambiguous samples. We confirm our hy-
pothesis on the inferior impact of negative learning is cor-
rect; ambiguous samples can be interpreted as the ones with
discriminative cues of multiple labels. Therefore, the model
should be trained in the manner of predicting correct labels,
not predicting incorrect labels. Lastly, compared to UGPL,
the use of the Bayesian score contributes to better perfor-
mance escalation. We interpret that the simultaneous use of
confidence and Bayesian score improves the quality of se-
lected ambiguous samples. Still, we acknowledge there ex-
ists an improvement avenue that the machine learning prac-
titioners should empirically optimize the best thresholds of
confidence and bayesian score. We note that further studies
can deal with automated or parameterized ways of selecting
these thresholds in future works.

7. Does CSS improve Representation Quality?
Objectives and Setup We then further scrutinize

whether the CSS provides qualified inductive bias, not just
only achieving good performance. To evaluate this repre-
sentation quality, we regard a model that recognizes a given
image similar to the human vision as a qualified one. As
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Table 4. Comparative experiment results. The bold number implies the best performance in a given dataset.

Methods
Object Ambiguity Texture Ambiguity

Car-Defect Car-Dirt ImageNet-Frog ImageNet-Tadpole
Acc Prec Recall F1-Score Acc Prec Recall F1-Score Acc Prec Recall F1-Score Acc Prec Recall F1-Score

OO 0.9067 0.9992 0.8404 0.9281 0.9629 0.9628 0.9630 0.9629 0.8500 0.8455 0.8510 0.8474 0.9483 0.9973 0.9483 0.9715
OO-LS 0.9314 0.9319 0.9316 0.9314 0.9655 0.9659 0.9659 0.9655 0.8700 0.8657 0.8715 0.8678 0.9559 0.9984 0.9559 0.9761

UPS 0.8823 0.8892 0.8872 0.8823 0.9348 0.9381 0.9342 0.9348 0.8763 0.8729 0.8728 0.8763 0.9519 0.9943 0.9512 0.9629
UGPL 0.9350 0.9355 0.9352 0.9350 0.9735 0.9735 0.9737 0.9735 0.8700 0.8657 0.8715 0.8678 0.9579 0.9984 0.9579 0.9774

UGPL-LS 0.9401 0.9401 0.9402 0.9401 0.9788 0.9789 0.9787 0.9788 0.8900 0.8882 0.8855 0.8867 0.9655 0.9984 0.9655 0.9813
CSS (OURS) 0.9437 0.9448 0.9440 0.9437 0.9788 0.9787 0.9789 0.9788 0.9899 0.9999 0.9937 0.9448 0.9693 0.9703 0.9693 0.9693

Figure 3. Grad-CAM results yielded by the CSS and baselines. We conclude that the proposed CSS empowers the model to recognize
discriminative cues of given image most similar to the human vision.

a wide range of prior studies pursues a model that under-
stands similar to humans, we evaluate our definition of this
qualified representation is sufficiently justified. Our study
utilizes Grad-CAM [32, 31], which is a widely-utilized
method to visually interpret where the model primarily fo-
cuses on for recognizing a given image. We prepare two
classifiers trained only with obvious samples and CSS, and
examine whether the CSS yields a inductive bias that better
understands the image compared to the other one. The re-
sults are shown in Figure 3. Note that we utilize the trained
model under CSS as the one with the best classification per-
formance in each dataset.

Analysis Upon the results shown in Figure 3, we an-
alyze that CSS surprisingly conveys improved inductive
bias compared to the baseline. We observe that CSS lets
the model correctly recognize discriminative cues while the
baseline mistakenly focuses on the other area. Throughout
the analyses, we discover several takeaways. First, while
the trained model only with obvious samples achieves a
promising performance, it does not always guarantee that
model correctly captures the discriminative cues. Second,
we examine that CSS conveys better inductive bias as well
as enhanced classification performance. We analyze that
adding selected ambiguous samples benefit the model to

scrutinize discriminative cues in given classes deeply; thus,
it reduces the discrepancy between the trained model and
human visual recognition.

8. What drives an Improved Inductive Bias?
Objective and Setup We further scrutinize what drives

the aforementioned improved understanding. We presume
an answer exists in knowledge capacity. We hypothesize
a model trained under CSS would illustrate wider knowl-
edge than the others; thus, it enables the model to acquire
more contextual understanding. To understand the knowl-
edge capacity of the trained model, we utilize Centered Ker-
nel Alignment (CKA). Note that we use CKA in the anal-
ysis as it is state-of-the-art in its research area. The CKA
measures representation similarity between two models and
quantifies it in the range of 0 (not similar) to 1 (very simi-
lar). Given a trained model, we acquire a layer-wise similar-
ity that measures representation similarity scores among the
layers within the same model. Suppose representation sim-
ilarity scores are high among the layers. It implies that rep-
resentations that exist in various layers are similar to each
other; thus, the model cannot implicit fruitful knowledge
unless it has many layers. For the low layer-wise similarity,
vice versa. In a nutshell, we analyze whether the proposed
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CSS makes the model embrace more knowledge compared
to the others. The results are shown in Figure 4.

(a) Obvious Only (b) CSS (OURS)
Figure 4. Visualized representation similarity of CNNs trained un-
der the different settings. Note that both x and y axis implies
blocks at ResNet-50.

Analysis Referring to Figure 4, we discover that CSS ac-
quires a less-similar representation landscape compared to
the others; thus, it enables the model to acquire more knowl-
edge. The representation landscape trained only with obvi-
ous samples shows a clear block structure [19], which im-
plies layers in a block share such similar knowledge. We in-
terpret that training a model only with obvious samples can-
not effectively leverage every layer within a model. Con-
versely, a model trained under the CSS embraces less se-
vere block structure, as well as lower layer-wise similarity
scores. We regard this representation landscape with fewer
similarities to prove that CSS allows the model to illustrate
wider knowledge; thus, it enables the model to capture dis-
criminative cues on given classes correctly.

9. Do iterating CSS Maximize Performance?
Objective and Setup Lastly, supposing a re-trained

model acquires superior classification performance and in-
ductive bias, what if we re-train the model multiple times?
We question whether iterating the proposed CSS procedures
for N times can further improve the classification perfor-
mance. Given obvious training samples and ambiguous
samples, we proceed with a single iteration of CSS. Then,
it yields the following artifacts: an updated training set, a
re-trained model, and not-selected ambiguous samples (de-
noted as residuals). For the N = 2 iteration, we proceed
with the CSS’s second and third steps on residuals with a
re-trained classifier. At each iteration, we measure the clas-
sification performance and the number of selected ambigu-
ous samples at the CSS’s second step. Upon these setups,
the experiment results are described in Table 5.

Analysis Referring to Table 5, we observe that iterated
CSS does not accomplish enhanced performance rather than
a single iteration. We hypothesize these results stem from
the fixed threshold on uncertainty scores at CSS. When we
process the first iteration of CSS, the classifier’s represen-
tation changes compared to the initial model (trained with

obvious training samples only). Given a sample, the initial
and re-trained models would interpret it differently; then,
the confidence and uncertainty levels would also become
different. We hereby expect the second iteration of CSS
should take different threshold levels (as a model yielded
after the first iteration has different inductive bias), but the
proposed CSS utilizes thresholds optimized to the first it-
eration. Accordingly, these not-optimized thresholds create
an inferior selection of ambiguous samples at N > 2 itera-
tions; thus, it creates performance degradation. We presume
these thresholds shall be adapted following updated induc-
tive bias, but we leave this point as an improvement avenue.
Consequentially, we recommend that practitioners use our
CSS for a single iteration, and we presume it can be further
improved with different thresholds at each iteration.

Table 5. Classification performance and the number of selected
ambiguous samples (#) at each CSS iteration

Dataset Texture Ambiguity Object Ambiguity
Car-Defect Car-Dirt ImageNet-Frog ImageNet-Panda

Loops Acc # Acc # Acc # Acc #
1(Baseline) 0.9168 361 0.9788 87 0.9899 71 0.9483 9

2 0.9096 2655 0.9309 45 0.9499 17 0.9039 4
3 0.9038 2792 0.9267 45 0.9699 11 0.8659 3
4 0.9024 3208 0.8514 23 0.9599 10 0.8505 2
5 0.8944 3358 0.8859 20 0.9599 9 0.7662 2

10. Discussions and Conclusion
In this study, we firstly categorize label ambiguity into

two types (texture and object ambiguity) and examine the
careless use of these ambiguous samples degrade the classi-
fication performance. We then propose CSS as a solution to
this problem. Throughout experiments, we prove our CSS’s
effectiveness in classification performance as well as its en-
hanced representation quality. We additionally analyze that
CSS empowers the model to recognize given image similar
to humans as well as embraces wider knowledge rather than
other settings. Lastly, we validate that iterating the proposed
CSS does not contribute to much performance escalation;
thus, we recommend the practitioners use the CSS with a
single iteration. Still, we acknowledge that our CSS has
several improvement avenues. As the CSS requires preset
thresholds on Bayesian and confidence scores, future works
would look for a parameterized, or automated procedure for
selecting them. Furthermore, the CSS shall be validated in
various tasks such as multi-class classifications, object de-
tection [39] or semantic segmentation [13].
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