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Abstract

While cars have become a significant object in computer
vision applications, there are fewer spotlights on publicly-
available car-related datasets. Among previously-proposed
car datasets, we discover several improvement avenues.
As most previous car datasets consist of web-crawled or
surveillance camera-taken images, they are insufficient to
illustrate various attributes, such as points of view or parts.
Moreover, prior datasets primarily deal with a car model
recognition task; thus, the scope of applicative studies was
limited. To improve these avenues, we propose a Socially-
Obtained CAR (SOCAR) dataset, a real-world car image
dataset consisting of car images with more prosperous at-
tributes. The key contributions of our study are as follows.
First, under coordination with a large-scale car-sharing
platform, we retrieve user-taken car images on both exter-
nal and internal attributes and establish a dataset consist-
ing of 10K images on 14 classes. Second, we design each
class to represent a particular car’s state; therefore, the SO-
CAR dataset enables the practitioners to solve various im-
age recognition tasks such as understanding defects, dirt,
or car wash. Lastly, we suggest baseline experiment re-
sults on the proposed dataset and experimentally examine
the trained model effectively capture discriminative regions
similar to human vision. We highly expect practitioners to
use our SOCAR dataset for academic research on under-
standing car attributes or computer vision applications.

1. Introduction
Background and Motivation As the car has become

one of the essential transportation in society, it has be-
come an important object in modern computer vision stud-
ies. Upon the rise of deep neural networks, numerous works
proposed car-related applications that recognize car models
[9, 3, 12], or identify defects on a car’s surface to automate
post-accident procedures [11, 16, 8]. To nourish car-related
applications, numerous studies publicized large-scale car
image datasets [9, 20, 10]; however, we claim these datasets

are insufficient to be utilized in the real world, where un-
expected novel attributes exist. We illustrate the limits of
previously-proposed datasets below, which also become key
motivations of our study.

First, most previously-proposed datasets consist of web-
crawled or synthetically-taken car images. As the car im-
ages are usually taken outside, various factors (i.e., illumi-
nation, angle, point of view, weather) impact the car im-
ages in the real world. While the car image recognition
model should understand the car’s attributes under the in-
fluence of these external factors, we claim that web-crawled
or synthetically taken images are insufficient to meet these
requirements. Second, several datasets have a limited scope
of car attributes. Although a car has a variety of attributes
(i.e., external and internal parts), most prior datasets primar-
ily focus on the external surface of the car; thus, computer
vision practitioners can only let the model learn the external
characteristics of the car. Last but not least, image recogni-
tion tasks based on the previous datasets are primarily lim-
ited to car model classification. Not only understanding a
car’s model, but we also presume that real world practition-
ers would have many interests in understanding a car’s sta-
tus. For example, given a car’s external image, practition-
ers can automate post-accident insurance claims by classi-
fying whether the car is damaged or not [11, 14, 16]. The
practitioners at the car-sharing platform would effectively
manage the car’s hygiene status by classifying whether the
given image shows dirty attributes (i.e., dirt on the surface
or trashes on the mats). However, prior datasets are insuffi-
cient to let practitioners establish these applications.

Key Contributions and Our Novelty To this end, we
propose a Socially-Obtained CAR (SOCAR) dataset, which
improves the aforementioned limits of previously-proposed
datasets. The key contributions of our study are as follows.
First, the practitioners can utilize our dataset to train the
model to better understand the car’s characteristics. We
configure the SOCAR dataset with car images taken under
various circumstances (i.e., background or point-of-view).
Thus, we presume the model can acquire a more robust,
practical inductive bias compared to the one trained un-
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der synthetically created, or web-crawled datasets. Second,
the SOCAR dataset empowers practitioners to solve vari-
ous car-related image recognition tasks in the real world.
We establish our dataset with 14 labels, each describing a
car’s various statuses (i.e., normal, defect, or dirt) under
both external and internal attributes. While prior datasets
primarily focused on recognizing external attributes, based
on our dataset, we expect the computer vision community
can extend the target tasks, such as damage recognition, dirt
recognition, or wash recognition. Third, we empower the
practitioners to validate whether their models are robust to
various weather conditions. While the SOCAR dataset’s
training set has car images taken on a sunny day, the test
sets include car images under various weather conditions
(Rainy, After Rainy day, Snowy, After Snowy day). As
the influence of weather conditions (often unexpected in the
real world) is the most significant but challenging hurdle in
car-related applications, we expect our SOCAR dataset to
become an effective evaluation suite. Fourth, we illustrate
the procedures of establishing a dataset; thus, future prac-
titioners who desire to make a similar dataset can refer to
the proposed procedures. Lastly, we provide baseline ex-
periment results on two image recognition tasks: damage
recognition and dirt recognition. We aim to provide a solid
guideline for future researchers by providing image recog-
nition performances at various model architectures.

We hereby highlight our work’s novelty in the follow-
ing avenues. First, to the best of our knowledge, our work
firstly enables the computer vision communities to solve
such extended car-related image recognition tasks. Second,
our dataset includes real world car images including various
attributes. Furthermore, the SOCAR dataset is the first eval-
uation suite for evaluating the image recognition model’s
robustness to weather conditions in a car-related domain.

2. Related Works

2.1. Car-related Computer Vision Applications

Previously-proposed car-related applications primarily
focus on car model recognition tasks. As an early approach,
Krause et al., propose a benchmark car model dataset and
define this task as a fine-grained classification [9]. More-
over, Fang et al., utilized CNNs to identify discriminative
cues of each car model [3]. Lu et al., also proposed a hi-
erarchical car model recognition method consisting of two
stages: car logo classifier and sub-class classifiers [12]. Fur-
thermore, recent car-related applications have started to fo-
cus on car damage recognition, which identifies whether a
car image has a damaged area or not. Especially, car in-
surance companies and car sharing platforms actively con-
tributed to these studies to automate post-accident proce-
dures or prevent the over-claim of their customers. Prior
works primarily utilize web-crawled car images to solve

these tasks. Zhang et al., proposed a tire damage detection
approach with CNN [23], and Patil et al., once utilized the
transfer learning method to identify a car’s damaged pat-
tern [14]. Li et al., employed object detectors for predict-
ing the damaged area at the given image [11]. Singh et al.,
proposed a car damage recognition method that classifies
whether the car has damage or not, but also the severity
of the damage [16]. Balci et al., once proposed a damage
detection method under the surveillance camera-taken im-
ages, while most works are based on web-crawled images.
Lastly, Khana et al., once suggested a car part recognition
model with CNN [6].

2.2. Car-related Datasets

While numerous car-related application studies exist,
there are few publicized benchmark datasets in the com-
puter vision society. As a very classic contribution, Krause
et al., proposed the Stanford-Cars dataset, which consists
of 16,185 samples with 196 car models [9]. Based on this
Stanford-Cars, numerous fine-grained classification studies
have been proposed to identify car models. Along with the
importance of car-related datasets, Yang et al., also pro-
posed the CompCars dataset, which consists of 136,728
entire car images, 27,618 car parts images, and 50,000
front-view car images captured by a surveillance camera.
[20]. While previously proposed Stanford-Cars only in-
cluded web-crawled samples, CompCars has two improved
contributions. First, it includes car images accumulated
from the surveillance camera; thus, it empowers broader use
cases for the practitioners. Second, car images in the Comp-
Cars embrace both external and internal attributes of the car,
while Stanford-Cars only have external attributes. Along
with this trend, Kuhn et al., suggested BRCars dataset con-
sists of 300,325 samples [10] describing various car mod-
els’ exterior and interior attributes. This dataset provides
a more realistic problem setting regarding car-related ap-
plications as it bears real-world samples taken from vari-
ous points of view. Our study shares similar motivation
with the BRCars dataset (providing realistic problem set-
tings with a real-world dataset). However, we claim that our
SOCAR dataset has improved contribution because it en-
ables practitioners to solve various image recognition tasks
(i.e., car defect recognition, car dirt recognition), while pre-
vious datasets are focused on car model classification tasks.

3. Dataset Establishment Procedure
3.1. Source of Dataset

We hereby describe how we acquire the raw images from
the real world car-sharing operations. The car-sharing plat-
form enables users to borrow a car with a smartphone ap-
plication. When users want to use the car, they search for
the nearest parking station, reserve the car, open up the car
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Figure 1. Sample images at the SOCAR dataset. From the upper left, in clockwise order, each image illustrates External Normal, External
Defect, External Dirt, External Wash, Washing Machine, Dashboard, Cupholder, Cupholder Dirt, Glovebox, Water Fluid, Front Seat, Rear
Seat, Trunk, and Mat Dirt. Note that the red box implies discriminative cues for recognizing the given label.

(a) SOCAR-Defect-Test (b) SOCAR-Dirt-Test
Figure 2. Sample images at the SOCAR-Damage-Test and SOCAR-Dirt-Test. The left image implies External Defect and External Dirt
at SOCAR-Damage-Test and SOCAR-Dirt-Test, respectively. The right image illustrates External Normal sample. Note that the red box
implies discriminative cues for recognizing the given label.

Table 1. Descriptions on each label and the number of samples at each class in SOCAR-Main
Class Name Description Number of samples

External Normal Car’s exterior surface without any defects or dirt 2000
External Defect Car’s exterior surface with defects such as scratch, dents, spacing, or breakage 2000
External Dirt Car’s exterior surface with dirt 1759

External Wash Car’s exterior surface with bubbles during the car wash 2000
Washing Machine User-taken car images taken inside of the car at the washing machine 2000

Dashboard Car’s interior dashboard 2000
Cupholder Car’s interior cupholder without any dirt 2000

Cupholder Dirt Car’s interior cuphollder with dirt or trash 539
Glovebox Car’s interior glovebox at the passenger seat 2000

Washer Fluid Washer fluid in the bonnet 2000
Front Seat Car’s interior front seat 1671
Rear Seat Car’s interior rear seat 1957

Trunk Car’s interior trunk 1748
Mat Dirt Car’s interior mat with dirt or trash 1628

Table 2. The number of samples at SOCAR-Defect-Test and SOCAR-Dirt-Test
SOCAR-Defect-Test SOCAR-Dirt-Test

Snowy Day After Snowy Day Rainy Day After Rainy Day After Rainy Day After Snowy Day
External Normal 1009 920 1216 823 External Normal 1667 1273
External Defect 136 146 70 90 External Dirt 386 642
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with a smartphone application, and start their trips. After
they finish their use, the users park the car at the parking
station where they borrowed it and lock the car, and end
the reservation. During these procedures of car use, anony-
mous company name forces the users to take pictures of the
car and upload them through the application at particular
events, such as before and after using the car, during an acci-
dent, car wash, repair, or charging washer fluids. The users
take pictures of the car’s exterior and interior attributes un-
der various circumstances, and these images are accumu-
lated in the central database of the car-sharing platform. As
shown in Figure 1, these samples become a source of the
SOCAR dataset, and we manually annotate these samples.

3.2. Annotation

As the source of car images are user-generated ones, ir-
relevant or less-qualified samples frequently exist. We pre-
sume providing every sample to the annotators would bear a
particular waste of resources; thus, we employ a simple but
effective method to reduce annotation costs. First, given a
set of unlabeled data, we establish a seed dataset consisting
of 500 samples at each label. Second, we train a seed clas-
sifier based on ResNet-50 with conventional cross-entropy
loss, which solves 14-class classification. Supposing this
trained model understands the discriminative cues of given
labels, we then implement an out-of-distribution (OOD) de-
tector following the method proposed in [18]. Note that
we utilize the OOD detector in [18] due to its state-of-the-
art performance in OOD detection studies. Given the unla-
beled sample, we provide it to the OOD detector and elimi-
nate it from the annotation procedure when it is identified as
an OOD. We expect the samples predicted as OOD would
presumably increase the annotation cost without adding la-
beled samples to the dataset. For the samples that are not
identified as OOD, we assign pseudo-labels for them fol-
lowing the prediction results yielded by the trained seed
classifier. Lastly, we let the labelers annotate these pseudo-
labeled samples by checking whether the pseudo-label is
correct or not. Note that we do not highlight the quanti-
tative impact of these annotation procedures in this work as
our study’s aim is proposing the labeled dataset, not propos-
ing novel data annotation procedure.

3.3. Preventing Privacy Concern

As the car images are generated from the real world, it is
crucial to ensure that the dataset does not include any pri-
vacy issues, especially human’s faces or bodies. Thus, we
employ a pre-trained human face detector [24] and human
body detector [22] and check every annotated sample. We
then eliminate the sample that has either detected face or
body to prevent privacy concerns. After we deleted face or
body-detected samples, we manually checked every sample
to ensure our dataset’s sanity regarding privacy concerns.

4. The SOCAR dataset
4.1. Key Characteristics

The SOCAR dataset has 14 classes describing the car’s
various statuses, and we summarize brief descriptions of
each class in Table 1. We hereby highlight that our SO-
CAR dataset reflects various realistic attributes of the car
by adding diverse circumstances in the real world. The de-
tailed descriptions are provided below.

Background Variety The images are taken under vari-
ous backgrounds. As various studies proposed earlier, im-
age recognition models are easily biased to the background,
not the primary object or characteristics in a given image
[13]. To evade this risk, we intentionally include samples
with various backgrounds, as shown in Figure 3 (a). The
samples at Figure 3 (a) belong to the External Normal label.
The samples in each class in the SOCAR dataset are taken
at indoor parking lots or outside roads; thus, we presume
samples in the SOCAR dataset sufficiently reflect various
backgrounds.

Variety at POVs and Car Parts The images depict-
ing the exterior part have various POV(Point of View)s and
parts to prevent the model from being overly biased toward
these attributes. For example, referring to Figure 3 (b), we
show the samples in the External Dirt label. While these
samples are annotated as the same class, they are taken at
various POVs. Furthermore, upon the Figure 3 (c), they
also belong to the External Dirt as well as depicting various
car parts. By diversifying POVs and car parts in the SO-
CAR dataset, we presume the inductive biases learned in
the model would become similar to the human vision, not
simply biased to the particular attributes.

Defect Variety As various defect types exist in the real
world, we aim to depict most of these characteristics in the
dataset. As shown in Figure 3, we empirically discover four
defect types: scratch, dent, spacing, and harsh breakage. As
we aim to evade letting the model be biased to the particular
defect type, we retrieve damaged car images at each defect
type and manually add them to the External Defect class.
Note that samples at each damage type are not balanced.

Dirt Variety We further diversified the characteristics of
dirt in the SOCAR dataset. Especially, for Cupholder Dirt
and Mat Dirt, we aim to include various dirt characteristics.
Referring to Figure 3 (d), we show samples belonging to
the Mat Dirt. These images include dust, cookie crumbs, or
any trash. We aim to empower the learned model to under-
stand various patterns of dirty attributes of the car, which
frequently exist in the real world.

4.2. Description on Subsets

The SOCAR dataset consists of three subsets: SOCAR-
Main, SOCAR-Defect-Test, and SOCAR-Dirt-Test. First,
the SOCAR-Main are the subsets where practitioners can
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(a) Background Variety (b) POV Variety (c) Part Variety (d) Defect Variety (e) Dirt Variety
Figure 3. Various characteristics of the SOCAR dataset

train their image recognition models and test their perfor-
mance. In this study, we split the SOCAR-Main into the
training and test sets following the ratio of 9:1 with a ran-
dom seed. Furthermore, SOCAR-Defect-Test and SOCAR-
Dirt-Test are the external validation sets that the practitioner
can use to check the robustness of trained models on im-
ages taken under various weather conditions. For SOCAR-
Defect-Test, there exist four weather conditions: Snowy,
After Snowy, Rainy, and After Rainy. Snowy and Rainy
include car images under snowy and rainy weather, where
rain drops and snow confuses the model in recognizing the
damaged area, respectively. We additionally add car im-
ages taken after these snowy and rainy days because specks
of dirt remain after the rain and snow yield dirty attributes
on the car’s surface, which confuses the model in recog-
nizing the damaged surface. For SOCAR-Dirt-Test, there
exist two weather conditions Snowy and Rainy. We exclude
After Rainy and After Snowy option for SOCAR-Dirt-Test
because there’s no tangible differences between Rainy and
After Snowy. Please refer to Table 1 and Table 2 for the
detailed numbers.

5. Experiments

5.1. Image Recognition at SOCAR-Main

Objective and Setup First and foremost, we provide im-
age recognition performances of various deep neural net-
works. We aim to examine whether the SOCAR dataset’s
label space is well-designed enough to be classified by con-
ventional deep neural networks. We also expect these re-
sults would be a solid baseline of models trained under the
SOCAR dataset; thus, future works might refer to these re-
sults to check whether they correctly implement their mod-
els. We employ widely-utilized convolutional neural net-
work (CNN) architectures and vision transformers (ViT) for
deep neural network architectures. The utilized networks
are ResNet [4], DenseNet [5], ResNext [19], Wide ResNet
[21], EfficientNet [17], and ViT [1]. In addition, we also
utilize Progressive Multi-Granularity (PMG) [2] network
in the experiment, as we presume discriminative cues be-
tween given labels could be interpreted as fine-grained ones.

Note that PMG is state-of-the-art in fine-grained classifica-
tion studies. We set the learning objective as minimizing
cross-entropy loss under the Adam [7] optimizer. We high-
light that no data augmentation strategies have been used for
the fair evaluation. Please refer to the supplementary ma-
terials for more detailed implementation details. Further-
more, given the trained classifier, we investigate whether
it correctly captures the discriminative cues of the given
class. We employ Grad-CAM [15] to visualize the region
where the trained model primarily focuses on. By explor-
ing mostly activated regions at the given image, we aim to
validate whether the inductive bias is correctly conveyed to
the image recognition model. Upon these setups, experi-
ment results and Grad-CAM results are shown in Table ??
and Figure 4, respectively. Note that the Grad-CAM results
are based on ResNet-50 classifier.

Table 3. Experiment results on SOCAR dataset at various models
Model Accuracy Precision Recall F1 Score

ResNet-50 0.9757 0.9443 0.9761 0.9538
ResNet-100 0.9778 0.9330 0.9796 0.9441

DenseNet-169 0.9768 0.9445 0.9763 0.9541
DenseNet-201 0.9755 0.9306 0.9770 0.9414
ResNext-50 0.9778 0.9462 0.9791 0.9561

Wide ResNet-50 0.9768 0.9270 0.9778 0.9358
EfficientNet 0.9571 0.8310 0.8286 0.8287

PMG 0.9730 0.9233 0.9740 0.9319
ViT-16 0.9483 0.8964 0.9529 0.9082
ViT-32 0.9223 0.8618 0.9284 0.8674

Table 4. Experiment results on car defect recognition and car dirt
recognition at SOCAR-Main.

SOCAR-Test Car Defect Recognition Car Dirt Recognition
Accuracy F1 Score Accuracy F1 Score

Binary Classifier (ResNet50) 0.9190 0.9187 0.9618 0.9568
Binary Classifier (PMG) 0.9290 0.9289 0.9684 0.9645

14-Class Classifier (ResNet50) 0.9290 0.9288 0.9578 0.9521
14-Class Classifier (PMG) 0.9220 0.9217 0.9618 0.9566

Analysis We observe that conventional deep neural net-
works sufficiently accomplish precise image classification
performances on the SOCAR dataset; thus, we conclude
that the label space is well-designed. Furthermore, we dis-
cover the most activated region in each class corresponds
to the correct discriminative cues. Upon Figure 4, for ex-
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Figure 4. Grad-CAM results yielded by the trained classifier based on ResNet-50. From the first row to the last one, samples at each
row are External Defect, External Dirt, External Wash, Glovebox, and Mat Dirt. We discover that the trained model correctly captures
discriminative cues of the given classes. Please refer to the supplementary materials for the Grad-CAM results on the other classes.
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ample, we observe the trained model correctly identifies the
damaged area in External Defect. For External-Dirt and
External-Wash, the model correctly captures relevant area
at the car’s surface; dirty area at External Dirt and bub-
bles at External Wash. Not only the external attributes, but
the model also precisely identifies relevant discriminative
regions at Glovebox and Mat Dirt; therefore, we conclude
that the inductive bias is correctly acquired in the model.

Interestingly, we discover that ViT models achieve in-
ferior performance compared to CNN-based models. We
presume an underlying reason is the number of training
samples in the dataset. As prior studies once noted [1],
transformer-based models require an enormous amount of
training samples to learn discriminative cues on given la-
bels. We interpret that the given training samples are in-
sufficient to convey adequate inductive bias to the ViTs;
therefore, we highly recommend practitioners utilize CNN-
based models to achieve supreme performance on the SO-
CAR dataset.

5.2. Image Recognition under Various Weathers

Objective and Setup We then examine whether utilizing
irrelevant labels is advantageous in the target image recog-
nition task. Among various image recognition tasks, we
employ two tasks: car defect recognition and car dirt recog-
nition. The car defect recognition is a binary classification
between External Normal and External Defect, while the
car dirt recognition is also a binary classification between
External Normal and External Dirt. One possible solution
to these problems is acquiring training samples from the bi-
nary labels and training the model (denoted as Binary Clas-
sifier). However, at this point, we question whether utilizing
irrelevant labels is advantageous in learning discriminative
cues on given labels. For example, for car defect recog-
nition, samples at the External Normal and External Defect
are relevant labels, and the other 12 labels are irrelevant. We
hypothesize that utilizing irrelevant labels would enhance
the inductive bias of the trained model, as the model can
learn discriminative cues of given labels compared to the
other labels. We denote the model trained under the 14-
class as 14-Class Classifier.

Given the image recognition task, we trained both Bi-
nary Classifier and 14-Class Classifier with the samples
at SOCAR-Training. For the test sets, we utilized both
SOCAR-Test and SOCAR-Defect-Test for car defect recog-
nition, while SOCAR-Test and SOCAR-Dirt-Test for car
dirt recognition. We followed the same implementation de-
tails shown in Section 5.1, and evaluated the trained model
with four evaluation metrics: Accuracy, Precision, Recall,
and F1-score. Furthermore, to examine whether using irrel-
evant labels convey adequate inductive biases, we compare
Grad-CAM results at Binary Classifier and 14-Class Clas-
sifier. We acquired several samples at SOCAR-Defect-Test

and SOCAR-Dirt-Test and applied Grad-CAM with trained
models for car defect recognition and car dirt recognition,
respectively. The experiment results are shown in Table 4,
Table 5, and Table 6. We also visualize compared Grad-
CAM results at Binary Classifier and 14-Class Classifier in
Figure 5.

Analysis Upon the experiment results, we discover that
using irrelevant samples is advantageous in recognizing tar-
get labels. Moreover, 14-Class Classifier, which is the
model trained under every label of the SOCAR dataset,
achieved supreme performance in every setting. We an-
alyze that an underlying reason for these results exists at
the learned inductive bias. Upon Figure 5, we observe
the most activated region at the Binary Classifier insuffi-
ciently captures the discriminative cues. For samples in the
External Defect, Binary Classiifer frequently captures the
correct discriminative region while 14-Class Classifier cor-
rectly identifies corresponding area. For samples in the Ex-
ternal Dirt, we observe that Binary Classifier fails to fully
recognize discriminative regions while the 14-Class Classi-
fier sufficiently covers the relevant area. We interpret that
the binary classifiers acquired an inductive bias particularly
focused on discriminating given two labels, but the use of
irrelevant labels at 14-Class Classifier contributes to the ac-
quisition of representation power similar to human vision.
Consequentially, we recommend practitioners utilize every
label in the SOCAR dataset to acquire better image recog-
nition performances and precise inductive biases similar to
human vision.

6. Conclusions
We propose the SOCAR dataset, a novel car-related

dataset consisting of ten thousand real world car images.
Compared to previously-proposed car-related datasets, our
dataset has the following novelties. First, the SOCAR
dataset includes car images retrieved from real world car-
sharing operations; thus, it provides richer attributes to the
practitioners. Second, classes in the SOCAR dataset de-
scribe various car statuses, such as defect, dirt, or wash.
We highly expect the practitioners can establish various aca-
demic contributions or computer vision applications related
to the car. Lastly, for reproducibility, we perform a series of
experiments based on the proposed dataset and report cor-
responding results. We also examine that the trained model
precisely captures discriminative cues of the given sample;
thus, the inductive bias is correctly conveyed to the model.
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(a) Car Defect Recognition (b) Car Dirt Recognition
Figure 5. Grad-CAM results yielded by the trained Binary Classifier and 14-Class Classifier based on ResNet-50. The 1st and 4rd column
imply the original image, the 2nd and 5th column describes the Grad-CAM result at 14-Class Classifier, and the third and sixth columns
illustrate Grad-CAM results at Binary Classifier. We observe the 14-Class Classifier effectively captures discriminative cues of the given
classes while Binary Classifier insufficiently recognizes them. Thus, we recommend that the practitioners use every label in the SOCAR
dataset to convey inductive bias in the model similar to human vision.

Table 5. Experiment results on car defect recognition at SOCAR-Defect-Test.
Car Defect
Recognition

Accuracy F1 Score
Snowy Day After Snowy Day Rainy Day After Rainy Day Snowy Day After Snowy Day Rainy Day After Rainy Day

Binary Classifier (ResNet50) 0.7799 0.8204 0.8096 0.8705 0.5768 0.6521 0.6737 0.7704
Binary Classifier (PMG) 0.7683 0.8039 0.8009 0.8593 0.5677 0.6514 0.6770 0.7547

14-Class Classifier (ResNet50) 0.8927 0.8981 0.8594 0.8902 0.6626 0.7230 0.6972 0.7798
14-Class Classifier (PMG) 0.8849 0.8817 0.8428 0.8902 0.6381 0.6968 0.6642 0.7762

Table 6. Experiment results on car dirt recognition at SOCAR-
Dirt-Test.

Car Dirt
Recognition

Accuracy F1 Score
After Rainy Day After Snowy Day After Rainy Day After Snowy Day

Binary Classifier (ResNet50) 0.9123 0.8444 0.8474 0.8173
Binary Classifier (PMG) 0.9065 0.8548 0.8404 0.8293

14-Class Classifier (ResNet50) 0.9157 0.8470 0.8519 0.8152
14-Class Classifier (PMG) 0.9133 0.8595 0.8457 0.8311
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