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Abstract

It is broadly accepted that there is a “gender gap” in
face recognition accuracy, with females having lower accu-
racy. However, relatively little is known about the cause(s)
of this gender gap. We first demonstrate that female and
male hairstyles have important differences that impact face
recognition accuracy. In particular, variation in male facial
hair contributes to a greater average difference in appear-
ance between different male faces. We then demonstrate
that when the data used to evaluate recognition accuracy is
gender-balanced for how hairstyles occlude the face, the
initially observed gender gap in accuracy largely disap-
pears. We show this result for two different matchers, and
for a Caucasian image dataset and an African-American
dataset. Our results suggest that research on demographic
variation in accuracy should include a check for balanced
quality of the test data as part of the problem formula-
tion. This new understanding of the causes of the gender
gap in recognition accuracy will hopefully promote ratio-
nal consideration of what might be done about it. To pro-
mote reproducible research, the matchers, attribute classi-
fiers, and datasets used in this work are available to other
researchers.

1. Introduction
Deep learning algorithms rule the world of face recogni-

tion research. Thus a natural reaction to observing different
face recognition accuracy across demographic groups is to
point to imbalance in the quantity of training data across
the demographic groups. But what if the difference in test
accuracy is not caused by imbalance in the quantity of train-
ing data? What if the difference in test accuracy is caused
by imbalance in the quality of test data? We show that the
observed gender gap in face recognition accuracy largely
disappears when female and male test images are balanced
on basic elements of how hairstyle affects appearance.

The observation that face recognition algorithms achieve
different accuracy for females and males goes back at least
to 2002 [33]. The general observation seen in various re-
search efforts, including the NIST report on demographic
effects [32], is that females tend to have a worse impos-

Male Pairs Female Pair

Figure 1: Which of the male impostor pairs in the left four
columns is the fairest comparison to the female impostor
pair in the fifth column? The (beard, no beard) pairing in
the leftmost column, the (bald, not bald) pairing in the sec-
ond column and the (shorter, longer) hairstyle pairing in the
third column all lead to greater dissimilarity due to hairstyle
difference. The male impostor pair in the fourth column is
most hairstyle balanced with the female impostor pair in
the fifth column. No previous paper has looked at hairstyle
balance in this level of detail in making an accuracy com-
parison across demographic groups.

tor distribution (higher false-match rate) and worse genuine
distribution (higher false non-match). We replicate this ef-
fect for both African-Americans and for Caucasians, for
both the ArcFace matcher and also for a matcher trained
with training data gender-balanced on number of identi-
ties and number of images. We then consider elements of
hairstyle that differ strongly between females and males,
and how those elements impact recognition accuracy. Then
we select a subset of the original test data that has hairstyle-
balanced female / male face visibility, so that it represents a
fair evaluation of accuracy across gender. (See Section 6 for
the definition of hairstyle-balanced.) The gender gap in face
recognition accuracy largely disappears, for both matchers
and datasets, when accuracy is evaluated with hairstyle-
balanced test data.

This work suggests that differences in hairstyle-related
occlusion of the face is a major causal factor of the gender
gap in accuracy. To promote reproducible research, the face
matchers, face attribute classifiers and datasets used in this
research are all available to other researchers.

This paper is organized as follows. Section 2 presents
some of the related recent works. Section 3 introduces the
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datasets and matchers used. Section 4 documents the base-
line gender gap in recognition accuracy across the datasets
and matchers. Section 5 analyses how each of three dimen-
sions of hairstyle – baldness, male facial hair and hairstyles
– can affect recognition accuracy. Section 6 shows how
gender-balancing the test data based on how hair occludes
the face changes the initial gender gap in accuracy. Section
7 shows experimentally that the results drawn in section 6
are not just by chance. Section 8 draws conclusions from
the experiments done and discusses few future directions.

2. Related Work
In recent years, the topic of demographic accuracy dif-

ferences in face recognition has attracted attention from
news media [18, 27, 36, 39] and researchers. For a broad
overview of research in the area, see recent surveys [6, 20].
Here we briefly touch on selected related works.

The earliest work we are aware of to report lower ac-
curacy for females is the 2002 Face Recognition Vendor
Test (FRVT) [33]. Evaluating ten algorithms of the pre-
deep learning era, identification rates of the top systems are
6% to 9% lower for females. Klare et al. [28] analyzed
demographic accuracy differences using multiple matchers
(commercial, nontrainable, and trainable; all pre deep learn-
ing) and reported that “The female, Black, and younger co-
horts have worse ROC curves and thus have lower accu-
racy”. They also showed impostor and genuine distributions
with the same relation across gender as in Figure 2.

There is relatively little work that attempts to identify
the cause of the gender gap in recognition accuracy. For
example, even the most extensive study in the area, the
NIST report [32] on demographic effects, lists “analyze
cause and effect” under the heading of “what we did not
do”. Past researchers have speculated causes such as the
use of cosmetics [15, 28, 30], more varied hairstyles [10],
or shorter height for women, leading to non-optimal cam-
era angle [15, 24]. Since the advent of deep learning,
imbalanced training data is often suggested as the cause
[20, 31, 34]. Few works have made any experimental analy-
sis to attempt to determine the size of any speculated cause.

Imbalance in the training data is explored as a possible
cause of the the gap in recognition accuracy in [11]. Ex-
periments with VGGFace2 [14] and MS-Celeb [25], vari-
ous loss functions, and multiple test sets did not reveal evi-
dence to support the speculation that gender-balanced train-
ing data results in balanced accuracy on test data. Exper-
iments examining different pose, expression, makeup use
and forehead occlusion by hair between females and males
in the MORPH dataset were reported in [10]. Differences
were found between females and males in each of these fac-
tors, but balancing for the factors individually or together
did not equalize female/male accuracy in the test data.

Research on how facial hair and hairstyles affect recog-

nition accuracy is limited. Studies before the deep-learning
era [22, 23] reported that accuracy is better if there is facial
hair in one of the images. However, Lu et al. [30] used deep
learning matchers to study effects of facial hair and reported
that facial hair does not change the key features of faces, and
state-of-the-art deep learning models can handle most fa-
cial hair variations. Terhörst et al. [37] investigate the influ-
ence of 47 attributes on the verification accuracy using the
MAADface datset. However, this work does not evaluate
hair-related attributes across demographics. Also, MAAD-
Face is based on VGGFace2 [14], which is known to have
issues with accuracy of identity labels in VGGFace2 [8],
which may carry over to affect MAADFace.

The closest related works [7, 13] attempt to explain the
difference in female/male genuine distributions by balanc-
ing the test image sets on fraction of the image occupied by
the face. However, they do not distinguish between male
face images with and without facial hair. Also, they do not
clearly identify a cause for the difference in female/male
impostor distributions, and speculate that it is due to bio-
logical differences in appearance. Our work uses a more
detailed and complete analysis of facial hair and hairstyle to
show that the observed female/male differences in both im-
postor and genuine distributions are largely accounted for
by hairstyle differences.

3. Dataset and Matchers
We use the MORPH dataset and the Notre Dame

Male/Female Accuracy Dataset. (MFAD). MORPH [5, 35]
was originally collected for research in face aging and has
become widely used in the study of demographic variation
in accuracy [7, 10, 11, 19, 21, 29]. MORPH is appropri-
ate for for demographic studies, as noted by Drozdowski
et al. [19], “due to its large size, relatively constrained im-
age acquisition conditions, and the presence of ground-truth
labels (from public records) for sex, race, and age of the
subjects”. We use the version of MORPH used in [13],
larger than the version used in [19], with 35,276 images
of 8,835 Caucasian males, 10,941 images of 2,798 Cau-
casian females, 56,245 images of 8,839 African-American
males, and 24,857 images of 5,929 African-American fe-
males. MORPH faces were detected and aligned using
img2pose [9] (which in our experience slightly outperforms
RetinaFace[16]) for face detection and alignment.

MFAD is drawn from images previously acquired at
Notre Dame, with human subjects approval allowing re-
lease of the images. Using a second dataset other than
MORPH guards against results being dependent on a par-
ticular dataset. MFAD images were acquired indoors, with
roughly frontal pose and neutral expression. There are
5,444 images of 575 Caucasian females and 7,003 images
of 687 Caucasian males.

The two matchers used are ArcFace [17] and a
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(a) MORPH Caucasian (b) MORPH African-American (c) MFAD Caucasian

Figure 2: The “gender gap” in face recognition accuracy. C M, C F, AA M and, AA F stands for Caucasian Male, Caucasian
Female, African-American Male and African-American Female respectively. The observation that females have worse im-
postor and genuine distribution was made by Klare et al. [28] a decade ago. The same qualitative pattern is seen here. The
top row compares impostor and genuine distributions for the MORPH and MFAD dataset using standard ArcFace matcher;
bottom row shows comparisons for a version of ArcFace trained on a smaller, explicitly gender-balanced dataset.

gender-balanced matcher [11]. The ArcFace used is the
R100(mxnet) version available at [3]. Input to ArcFace
is an aligned 112x112 face, and output is a 512-d feature
vector that is matched using cosine similarity. The gender-
balanced matcher [11] is a ResNet-based [26] matcher
whose training data is explicitly balanced on number of fe-
male and male identities and images, available at [12]. The
input is a 112x112 face image, and the output is a 512-d
feature vector that is matched using cosine similarity.

4. Baseline Gender Gap In Accuracy
The impostor and genuine distributions in Figure 2 are

representative of the gender gap observed by various re-
searchers. The top row results are from ArcFace and the
bottom row from the gender-balanced matcher. The first
column is for the Caucasian subset of MORPH [5, 35],
the second column for the African-American subset of
MORPH, and the last column for MFAD Caucasian images.
In all six instances of (different matcher × different racial
group), the female impostor distribution (and so the FMR)
and the female genuine distribution (and so the FNMR) are
worse. This is the baseline “gender gap”. To quantify the
gap, the d’ difference between the corresponding female
and male distribution is given. A larger d’ indicates a larger
gap between the female and male distributions. The Arc-
Face results show that the gender gap exists for the best-
known open-source state-of-the-art matcher, when trained

on imbalanced training data. The results from the gender-
balanced matcher emphasize that simply balancing number
of identities and images in the training data is no guarantee
of balanced accuracy on test data. Also, accuracy is overall
lower for the gender-balanced matcher.

5. Gender-Based Differences In Hairstyle
This section discusses three dimensions of hairstyle:

bald hairstyle, facial hair (e.g., beard) and “size” of hairstyle
as measured by the fraction of the 112x112 face image that
represents hair. Results document that female and male face
images, as groups, differ greatly on each of these dimen-
sions, and also that a difference in any of these dimensions
can cause a noticeable difference in the impostor and / or
genuine distribution.

5.1. Bald Hairstyle

A bald hairstyle is one with little to no visible hair on the
top of the head. To detect baldness, we used a fusion of the
modified Bilateral Segmentation network (“BiSeNet”) al-
gorithm [2, 40] results and Microsoft Face API [4] results.
A pre-trained version of BiSeNet segments a face image
into semantic regions, with region 17 corresponding to hair
flowing from the top of the head, not including facial hair
such as beard or mustache. A 112x112 cropped (frontal)
face image with less than 2% of its pixels labeled as hair by
BiSeNet generally corresponds to a bald hairstyle. The Mi-
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Facial Hair / No Facial Hair Classification Using MS Face + Rekognition Fusion
Dataset Prediction Caucasian Males Caucasian Females African-American Males African-American Females

MORPH Facial Hair 24,958(70%) 2(0.1%) 50,570(90%) 132(0.5%)
No Facial Hair 10,646(30%) 10,938(99.9%) 5,640(10%) 24,721(99.5%)

MFAD Facial Hair 1710(25%) 0 (0%) - -
No Facial Hair 5293(75%) 5444(100%) - -

Bald/ Not-bald Classification Using BiSeNet Hair Ratio + MS Face
Dataset Prediction Caucasian Males Caucasian Females African-American Males African-American Females

MORPH Bald 1,371(4%) 3(0.1%) 5,868(10.5%) 30(0.2%)
Not Bald 33,873(96%) 10,937(99.9%) 50,342(89.5%) 24,823(99.8%)

MFAD Bald 30(0.4%) 0(0%) - -
Not Bald 6973(99.6%) 5444(100%) - -

Table 1: Females and males, Caucasians and African-Americans, differ strongly in facial hair and baldness.

(a) Impact of Bald Hairstyle On Accuracy (b) Impact of Facial Hair on Accuracy (c) Impact of Fullness of Hairstyle

Figure 3: Bald hairstyle, facial hair, and “fullness” of hairstyle impact the genuine and impostor distributions.

crosoft Face API predicts baldness with a confidence rang-
ing from 0 to 1. We found that a threshold of 0.97 results
in high confidence for a bald hairstyle. We label an im-
age as bald if (a) less than 2% of pixels are labeled as hair
in the BiSeNet segmentation and (b) Microsoft Face API
baldness prediction is ≥ 0.97. The fraction of the datasets
labeled as bald is given in Table 1. For MORPH, just 0.1%
of Caucasian female and 0.2% of African-American female
images are labeled as bald. In contrast, 4% of Caucasian
male and over 10% of African-American male images are
labeled as bald. For MFAD, no female images and 0.4% of
male images were labeled as bald.

As an example of how frequency of bald hairstyle can
impact accuracy, Figure 3a shows the impostor and genuine
distributions for MORPH African-American male broken
out by (a) pairs of images both labeled bald, (b) both not
bald, and (c) bald/not-bald pairs. The impostor distribution
for bald/not-bald image pairs shows the lowest similarity,
followed by not-bald pairs, and then bald pairs. On aver-
age, images of two different persons, one bald and one not,
look less similar (have lower FMR) than images of different
persons both bald or both not bald.

5.2. Facial Hair

Beard, mustache, sideburns, five o’clock shadow and re-
lated facial hair are generally limited to male images. We
used a three-part fusion of results from the Microsoft Face

API and Amazon Rekognition [1] to classify images as
clean-shaven or facial hair. Microsoft Face predicts pres-
ence of beard, mustache, and sideburns, individually, each
with confidence score values of 0, 0.1, 0.4, 0.6 and 0.9. In
our experience, a score of 0.6 or 0.9 is generally accurate for
presence of facial hair, but some instances of facial hair still
occur at lower confidence values. For this reason, images
with Microsoft Face confidence less than 0.6 are filtered
with results from Amazon Rekognition. Amazon Rekog-
nition gives a True/False for facial hair along with a confi-
dence score from 50 to 100. An Amazon Rekognition re-
sult of True with a confidence greater than 85 is taken as
indicating facial hair. Lastly, an image with a Microsoft
Face confidence of 0.4 and an Amazon Rekognition True
with confidence greater than 55 or an Amazon Rekognition
False with confidence less than 65 is taken as indicating fa-
cial hair. This fusion approach is reasonably accurate in
classifying images for facial hair / clean-shaven, but greater
accuracy would be desirable.

Using this fusion algorithm, the fraction of images la-
beled as facial hair / clean-shaven for each demographic is
given in Table 1. For MORPH, almost no female images are
labeled as facial hair, but 90% of African-American male
and 70% of Caucasian male images are. For MFAD, no fe-
male face images were labeled as facial hair, and 25% of
Caucasian male images were labeled as facial hair.

As an example of how frequency of facial hair impacts
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Figure 4: Increased hair ratio means greater face occlusion.
Top row has ≈10% of the 112x112 image occupied by pix-
els representing hair, middle row ≈30%, and bottom row
hair ≈60%. Different distribution of hair ratio can cause
differences in the impostor and genuine distribution.

accuracy, Figure 3b shows the impostor and genuine differ-
ences for MORPH Caucasian male images broken out by
pairs with both images classified as clean-shaven, both clas-
sified as facial hair, and (clean-shaven, facial hair) mix. Im-
age pairs with one image having facial hair and one clean-
shaven have an impostor distribution and a genuine distri-
bution with lower average similarity than pairs with both
images having facial hair, or with both being clean-shaven.

5.2.1 Misclassification in Facial Hair Prediction

As explained above, we use a fusion of Microsoft Face and
Amazon Rekognition results to classify an image as having
facial hair or clean-shaven. To check the accuracy of this
approach, we randomly selected 300 images for MORPH
African-American male and 300 for MORPH Caucasian
male. Each group of 300 had 100 with prominent beard
and facial hair, 100 with less prominent facial hair, and 100
clean-shaven. For Caucasian male, all 100 of the promi-
nent facial hair group were classified as facial hair, 97 of
100 with less prominent facial hair were classified as facial
hair, and 81 of 100 with no facial hair were classified as
clean-shaven. For African-American male, all 100 of the
prominent facial hair group were classified as facial hair,
99 of 100 with less prominent facial hair were classified
as facial hair, and only 32 of 100 with no facial hair were
classified as clean-shaven. These results point to two limita-
tions in our current ability to classify face images as clean-
shaven / facial hair. One is that more clean-shaven images
are incorrectly classified as facial hair, than facial hair im-
ages incorrectly classified as clean-shaven. The second is
that the accuracy of classifying clean-shaven is lower for
African-American than for Caucasian. Facial hair classifi-

(a) MORPH C (b) MORPH AA (c) MFAD C

Figure 5: Distributions of fraction of cropped face image
containing hair. Female images have, on average, a much
larger of the face occluded by hair.

cation with higher accuracy and balanced accuracy across
demographics is a topic for future research.

5.3. Fullness of Hairstyle

In general, an increasing fraction of the image contain-
ing hair means increasing occlusion of the face, as illus-
trated in Figure 4. The distribution of the fraction of the im-
age that is labeled as hair in the BiSeNet segmentation, the
“hair ratio”, is shown in Figure 5. Note that for MORPH,
both African-American and Caucasian males have a spike
at 0%, representing bald, and then another broader peak un-
der 20%, representing hairstyles with low face occlusion. In
contrast, Caucasian females have a broad peak in the 40%
to 50% range, implying substantially more occlusion of the
face by hair. And African-American females have a broad
plateau in the 10% to 50% range, indicating a varied range
of hairstyles that occlude different amounts of the face. For
MFAD, there is a peak for males at slightly above 20%,
whereas for women there is peak in the range 35% to 45%.
It is clear from the distributions in Figure 5 that females
have a broader range of hairstyles, and that on average a
female image has more of the face occluded by hair.

As an example of how different distributions of “hair
ratio” translate into occlusion that impacts accuracy, we
divide the MORPH Caucasian female distribution in Fig-
ure 3c into a lower tail (below 25% hair ratio) and an upper
tail (above 50% hair ratio). Figure 3c shows the impostor
and genuine distributions for image pairs in the lower tail
(less face occlusion by hair), the upper tail (more face oc-
clusion by hair), and across the lower and upper tail (differ-
ent patterns of occlusion). Image pairs from across the tails
result in an impostor distribution and a genuine distribution
centered at lower similarity than the distributions from im-
age pairs with similar face occlusion by hair.

There are three important points from the results in this
section. One, female and male face images, as groups, ex-
hibit major differences in how hairstyle occludes the face.
Two, each of the gendered hairstyle differences explored
can substantially affect recognition accuracy. Three, previ-
ous research that has observed a gender gap in recognition
accuracy has generally made no attempt to control for dif-
ferences in hairstyle. We take up this third point next.
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(a) MORPH Caucasian (b) MORPH African-American (c) MFAD Caucasian

Figure 6: Impostor and genuine distributions for image sets that are hairstyle-balanced across female / male. Top row results
are for ArcFace, bottom row results are for the gender-balanced matcher.

6. Hairstyle-Balanced Accuracy Comparison
How does recognition accuracy compare for females and

males when test data is “fair” in the sense of being balanced
on hairstyle? To approach this question, we first define what
it means to be “balanced on hairstyle”.

6.1. Hairstyle Balancing

Bald is more frequent for males, and mixed (bald/not-
bald) image pairs have different impostor and genuine dis-
tributions than (not-bald/not-bald) pairs. Therefore, to get a
hairstyle-balanced comparison across gender, we drop im-
ages with bald hairstyle. Based on Table 1, this obviously
reduces the number of male images far more than it does
the number of female images.

Facial hair is common for males and basically non-
existent for females, and mixed (facial-hair/clean-shaven)
image pairs have different impostor and genuine distribu-
tions than (clean-shaven/clean-shaven) pairs. Therefore, to
get a hairstyle-balanced comparison of across gender, we
also drop images with facial hair. This step also reduces the
number of male images.

Changes in the distribution of fraction of the image rep-
resenting hair impact the impostor and genuine distribution.
Therefore, we want to balance the female and male image
sets based on the portion of the 112x112 cropped face im-
age that represents hair. This is done by establishing a cor-
respondence between female and male images based on the
intersection-over-union (IoU) of the pixels in the hair re-
gions of the images. For each female image, select the male
image with the highest IoU of the hair regions, and if this

IoU is above a threshold of 0.8, the images are kept for the
hairstyle-balanced accuracy evaluation. Using IoU to bal-
ance hairstyle ensures that both images not only have equal
percentage of face visible but also have approximately the
same regions of the face visible.

The resulting hairstyle-balanced comparison of female
/ male impostor and genuine distributions is in Figure 6.
The changes in the d’ differences are tabulated in Table 2.
Please refer to Section 4 of the supplementary material for
the summarized steps for HairStyle Balancing.

6.2. Results and Discussions

The results in Figure 6b are for a balanced subset from
MORPH, with 2,127 images of African-American males
(1024 subjects) and 2,127 images of African-American fe-
males(1564 subjects). The impostor and genuine distri-
butions for the hairstyle-balanced image sets show a fun-
damental change from the original dataset. For ArcFace,
the original d’ between male and female impostor distribu-
tions is 0.509, reduced to 0.129 after hairstyle-balancing.
A similar pattern holds for the gender-balanced matcher;
the original d’ between male and female impostor distribu-
tions is 0.410, reduced to 0.085 after hairstyle-balancing.
Thus, hairstlye balancing reduces the impostor d’ between
African-American males and females by ≈75% and ≈79%
for ArcFace and gender-balanced matcher, respectively.

The genuine distribution for males in the balanced sub-
set is relatively unchanged but is slightly better for fe-
males in the balanced subset than the original dataset, re-
ducing the gap in genuine distribution and thus, reducing
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Impostor Genuine

Matcher Dataset Category d-prime
before

d-prime
after

delta
d-prime

d-prime
before

d-prime
after

delta
d-prime

ArcFace MORPH C M vs C F 0.246 0.185 -24% 0.208 0.004 -98%
AA M vs AA F 0.509 0.129 -75% 0.283 0.003 -99%

MFAD C M vs C F 0.224 0.061 -73% 0.228 0.000 -100%

Gender Balanced MORPH C M vs C F 0.287 0.113 -61% 0.260 0.028 -89%
AA M vs AA F 0.410 0.085 -79% 0.375 0.042 -89%

MFAD C M vs C F 0.204 0.023 -89% 0.261 0.091 -65%

Table 2: d-prime for female / male impostor and genuine distributions. “d-prime before” is for original test data, and “d-prime
after” is for hairstyle-balanced. Balancing on hairstyle decreases the gap between female and male impostor distributions
and between female and male genuine distributions. The text in red is to show that the results might not be very reliable due
to: (a) very few genuine pairs, and (b) shoulder in the high similarity tail of original genuine distribution.

Impostor Genuine

Matcher Dataset Category d-prime
balanced

Mean d-prime
random

Std.dev d-prime
random

d-prime
balanced

Mean d-prime
random

Std.dev d-prime
random

ArcFace MORPH C M vs C F 0.185 0.235 0.030 0.004 0.402 0.252
AA M vs AA F 0.129 0.503 0.019 0.003 0.305 0.147

MFAD C M vs C F 0.061 0.239 0.091 0.000 0.276 0.236

Gender Balanced MORPH C M vs C F 0.113 0.274 0.003 0.028 0.430 0.263
AA M vs AA F 0.085 0.410 0.018 0.042 0.390 0.151

MFAD C M vs C F 0.023 0.214 0.085 0.091 0.271 0.230

Table 3: Mean male-female impostor/genuine d-prime and std. dev. for 1000 random samples without replacement. “d-
prime balanced” is for hairstyle-balanced subset, “Mean d-prime random” and “Std.dev. d-prime random” are for 1000
random samples. The hairstyle-balanced d-primes are not within one std. dev. of randomly sampled mean. The text in red
shows that balanced d-prime doesn’t fall within one standard deviation. The likely cause is mentioned in caption of Table 2.

the differences in genuine d’ between males and females.
For ArcFace, the original d’ score between male and fe-
male genuine is 0.283, whereas it is 0.003 after balancing
hair dimensions. A similar pattern holds for the gender-
balanced matcher; the original d’ score between male and
female genuine is 0.375, whereas it is 0.042 after balanc-
ing hair dimensions. Thus, balancing hair dimensions re-
duces ≈99% and ≈89% in the genuine d’ gap gap be-
tween African-American males and females for ArcFace
and gender-balanced matcher respectively.

After filtering for the hair dimensions, we present the
results in Figure 6a for a balanced subset from MORPH
with 684 images of Caucasian males (522 Subjects) and
684 images of Caucasian females (481 Subjects). For Ar-
cFace, the original d’ score between male and female im-
postors is 0.246, whereas it is 0.187 after balancing hair di-
mensions. A similar pattern holds for the gender-balanced
matcher, with the original d’ between male and female im-
postors of 0.287 reduced to 0.113 by hairstyle balancing.
Thus, hairstyle balancing reduces the impostor d’ gap be-
tween Caucasian males and females by ≈24% and ≈61%
for ArcFace and gender-balanced matcher, respectively.

In addition, the genuine distribution seems to improve
for both males and females after hairstyle balancing. This,
in turn, causes the genuine d’ gap for the hairstyle-balanced
subset to be significantly lower than the original dataset.
For Arcface, the original d’ score between male and fe-

male impostors is 0.208, whereas it is 0.004 after balanc-
ing hair dimensions. Similar pattern holds for the gender-
balanced matcher. The original d’ score between male and
female genuine is 0.260, whereas it is 0.028 after balanc-
ing hair dimensions. Thus, balancing hair dimensions re-
duces ≈98% and ≈89% in the genuine d’ gap gap be-
tween African-American males and females for ArcFace
and gender-balanced matcher respectively.

Results for MFAD are in Figure 6c. The balanced sub-
set is 344 images of Caucasian males (178 Subjects), and
344 images of Caucasian females (149 Subjects). A sim-
ilar pattern of shifts in impostor and genuine distribution
is evident for MFAD. For ArcFace, the original d’ be-
tween male and female impostors is 0.224, whereas it is
0.061 after hairstyle-balancing. A similar pattern holds for
the gender-balanced matcher; the original d’ between male
and female impostors is 0.204, whereas it is 0.023 after
hairstyle-balancing. Thus, hairstyle-balancing accounts for
≈73% and ≈89% of the impostor d’ gap between males and
females for ArcFace and gender-balanced matcher respec-
tively.

The genuine distribution for males in the balanced sub-
set seems to be relatively unchanged but is slightly better
for females in the balanced subset than the original dataset,
reducing the gap in genuine distribution. In other words,
the difference in genuine d’ gap between males and females
significantly reduces after balancing for hair dimensions.

309



For ArcFace, the original d’ score between male and fe-
male genuine is 0.228, whereas it is 0.000 after hairstyle-
balancing. A similar pattern holds for the gender-balanced
matcher, with the original d’ between male and female gen-
uine of 0.261 reduced to 0.091 after hairstyle-balancing.
Thus, hairstyle-balancing closes ≈65% of the genuine d’
gap between African-American males and females.

7. Bootstrap Confidence Analysis
The number of images in our hairstyle-balanced ac-

curacy comparison is greatly reduced from the original
dataset. To analyze whether the results could be due to a
random sampling of that amount of data from the original
dataset, we randomly selected 1000 times from the origi-
nal dataset the same number of subjects and images as in
the final hairstyle-balanced subset. For both matchers, the
d’ for male-female impostors and genuine of hair dimen-
sions balanced subset is not within one standard deviation
of the mean of the randomly-sampled subsets, suggesting
that our hairstyle-balancing results are highly unlikely to be
by chance. All the results are shown in Table 3.

8. Conclusions
Cause of observed gender gap in accuracy. One main
contribution of this work is to document and explain a
cause-and-effect understanding of the gender gap in face
recognition accuracy. The gender gap in accuracy that is
initially observed with both ArcFace and with a gender-
balanced matcher (as shown in Figure 2) largely disappears
when the test image set is hairstyle-balanced so that female
and male have about the same amount of the image that rep-
resents the face (as shown in Figure 6).

Quality of test data, not quantity of training data.
One initial reaction to the observed gender gap in face
recognition accuracy is that it must be caused by imbal-
ance in the quantity of training data [11]. Table 2 com-
pares d’ differences between ArcFace trained on the imbal-
anced MS1MV2 dataset, and a matcher trained on explic-
itly balanced training data. For the original test data, the
gender-balanced matcher had a smaller d’ only for African-
American impostor distributions. For the hair-balanced test
data, the gender-balanced matcher had smaller d’ for the
impostor distributions, but larger d’ for the genuine distri-
butions. Thus, while composition of training data is in gen-
eral an important consideration, balancing training data on
number of identities and images showed no consistent im-
provement toward more gender-balanced accuracy on the
test data.

Cause identified, possible solutions. Unequal accuracy
caused by gendered hairstyle patterns is harder to solve than

if unequal accuracy was caused by training data imbalance.
In certain controlled image acquisition scenarios, a partial
solution might be to ask persons to pull their hair back when
the image is taken. But a broader, algorithm-level solution
is likely to involve more explicit recognition of and account-
ing for hairstyle differences between face images. This is a
relatively under-studied element of face image analysis, at
least compared to issues of pose, illumination, expression
and aging.

Other datasets, other possible causes: In-the-wild,
celebrity images. Our analysis is done using datasets
with relatively controlled image acquisition, as is also the
case in [33, 28, 32, 10]. Web-scraped, in-the-wild images
have greater variation in pose, illumination, expression and
occlusion, not to mention unknown image compression and
“photoshopping” effects. Also, celebrity images will likely
bring greater use of makeup and other enhancements. Thus
for some other types of datasets, gender-based hairstyle dif-
ference may or may not have the same level of relative im-
portance.

Accuracy of face attributes. Classification of face at-
tributes such as presence of beard or mustache is an ac-
tive research area [38, 41]. Our experience suggests there
is still substantial room to improve the accuracy of such al-
gorithms, especially for detecting elements of facial hair.
Related to demographics studies, it will be important to fur-
ther explore whether the accuracy of such algorithms varies
across demographic groups, as our initial experience sug-
gests that it does.
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