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Abstract

The problem of bias in facial affect recognition tools can
lead to severe consequences and issues. It has been posited
that causality is able to address the gaps induced by the as-
sociational nature of traditional machine learning, and one
such gap is that of fairness. However, given the nascency
of the field, there is still no clear mapping between tools in
causality and applications in fair machine learning for the
specific task of affect recognition. To address this gap, we
provide the first causal structure formalisation of the differ-
ent biases that can arise in affect recognition. We conducted
a proof of concept on utilising causal structure learning for
the post-hoc understanding and analysing bias.

1. Introduction
The problem of bias in machine learning tools is be-

coming a greater source of concern. This is also true for
the task of facial affect recognition as such tools are in-
creasingly deployed in a wide-range of tasks ranging from
from medicine [13] to driver drowsiness detection [28]. The
problem of bias is compounded by the fact that the machine
learning algorithms are often black-box in nature. This not
only hampers their wide-spread adoption but also makes it
harder to understand the reason or source of the biases and
to tackle them. Many works have discussed the challenge of
non-human interpretable nature of current machine learning
models and have sought ways to address them [32].

Causal reasoning tools are specifically designed to tease
out the underlying causal mechanisms and has been pro-
posed as a potential instrument to address such gaps [18,
22, 27]. First, it is important to highlight the distinction be-
tween conventional causal inference and causal inference as
applied to big data. The former can be understood as a suite
of methods comprising of statistical mechanisms coupled
with the usage of directed acyclic graphs (DAGs). Research
is predominantly centered upon causal inference (effect es-
timation) and structure learning (causal pattern discovery).
The latter is more frequently associated with methods that

combine other machine learning algorithms with causal rea-
soning tools to address the limitations of existing machine
learning (ML) methods. Therein lies the first challenge:
there is still a need to map from causal inference methods to
causal machine learning. In addition, though research in al-
gorithmic fairness is rapidly expanding, most of the existing
works are tailored towards and benchmarked against social
or tabular datasets [23]. No existing literature formalises the
different types of bias prevalent in facial affect recognition
setups in terms of causal graphs. A principled framework
for accounting for bias in affect recognition is still missing.

Our contributions can be summarised as follows. First,
we provide the first formalisation of the prevalent types of
bias in affect recognition using causal graphs. We posit that
it is only possible to causally-debias outputs in a princi-
pled manner only if we have accounted for the right causal
pathways that induce such biases in the first place. Second,
we provide a proof of concept of a post-hoc pattern search
method that can be used to understand bias. Third, we pro-
vide an analysis of our findings and highlight the existing
opportunities and challenges. Section 2 reviews the rele-
vant literature in the field. Section 3 provides some techni-
cal preliminaries necessary to understand structural causal
models and causal structure learning. Section 4 formalises
the different types of bias and their respective representation
in terms of causal graphs. Section 5 provides the research
methodology. We analyse the results in Section 6 and pro-
vide further discussions in Section 7.

2. Literature Review

2.1. Fairness in Facial Affect Recognition

Facial affect recognition involves methods that attempt
to analyse and predict facial affect [35]. There are differ-
ent ways to do so. One prevalent method is to describe ex-
pressions as discrete categories. Paul Ekman and his col-
leagues proposed that there are six basic emotion categories
of facial expressions (i.e. happiness, surprise, fear, disgust,
anger and sadness), that are claimed to be recognised uni-
versally [11]. Another way to analyse facial affect is by us-
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ing the Facial Action Coding System (FACS), a taxonomy
of human facial expressions in the form of Action Units
(AUs) [11]. Other facial affect description include repre-
senting affective states as bipolar entities which exists on a
continuum [34].

At present, the investigation of bias in facial affect recog-
nition is still very much an understudied problem [5,30,45].
There is only a smattering of studies which attempted to
analyse the bias and propose fairer solutions for facial affect
recognition [3, 8, 16, 28, 45]. In addition, most of the litera-
ture do not take causal relations into account [8, 16, 28, 45].
It is only in recent times that more studies have attempted
to leverage causality to address the problem of bias in facial
affect recognition [3, 6].

2.2. Causality for Facial Affect Recognition

Causal inference has proven to be highly effective at
tackling several computer vision based tasks such as image
captioning [47], semantic segmentation [49] and few-shot
learning [48]. A natural extension of the above would be to
attempt to leverage causal inference for another computer
vision task: facial expression recognition. Indeed, existing
attempts at doing so have been highly successful [2, 29].
However, existing works have only leveraged on sequen-
tial data input [29] or investigated the use of interventions,
back-door adjustments, and confounders [2,3]. None of the
existing works have explored the usage of structural causal
models to formalise bias. Oh et al. [29] introduced a mod-
ular causality extractor which is independent of the fea-
ture extractor. Though no specific causal mechanism was
utilised, the authors imposed a “causal relation” by virtue
of learning the relationship between past facial images to
current affect states. On the other hand, Chen et al. [2]
addressed the AU recognition subject variation problem by
removing the confounding effect caused by the confounder
‘Subject’. Chen et al. [3] addressed the dataset bias prob-
lem by proposing a network to induce backdoor adjustment
in order to deconfound the dataset-related context features
such as background scenes from the target emotion feature.

Our work differs from existing work in several crucial
ways. First, no existing work have investigated the usage of
structural causal models (SCMs) and causal structure dis-
covery methods for the problem of bias and fairness in fa-
cial affect recognition. We provide the first formalisation
of bias in affect recognition using SCMs. Second, existing
methods have attempted to identify bias based on metric-
based evaluations. We attempt to identify bias using causal
pattern search algorithms. Third, most of the bias mitigation
strategies do not distinguish between the different source of
path-specific bias. For instance, with reference to Figure
1, there is no method that distinguishes between the bias
that originates from the sensitive attribute A or the bias that
originates from the context Z. Our method attempts to dis-

tinguish between the different source of bias. To date, there
is still no formal definitions of the structural causal path-
ways of the different types and sources of bias. First, we
attempt to address the research gap by defining the differ-
ent types of bias using SCMs. We subsequently illustrated
the usage of causal discovery methods to provide post-hoc
identification and analysis of the potential source of bias.

3. Causality: Technical Preliminaries
3.1. Structural Causal Models

In this paper, variables are denoted by capital letters. A
is used for the sensitive attribute (e.g. race, gender). Ŷ is
used as the predicted outcome. A Structural Causal Model
(SCM) [31] M is defined as a triplet (U, V, F ), with U , V
and F sets defined in the following manner:

1. U is a set of latent background or exogeneous vari-
ables which affect the model but yet are not repre-
sented within the model.

2. V = {V1, ..., Vn} is the set of observable or endoge-
neous variables within the model.

3. F is the set of functions {f1, ..., fn}, one for each
Vi ∈ V , such that Vi = fi(pai, Upai

), pai ⊆ V \{Vi},
Upai ⊆ U .

The notation “pai” refers to the “parents” of Vi and is mo-
tivated by the assumption that the model factorizes as a di-
rected graph, here assumed to be a directed acyclic graph
(DAG). The model is “completely specified” when both in-
stantiations U = u and F are given.

3.2. Causal Structure Learning

Causal structure learning aims to infer a causal model
from data. Causal models not only describe the observa-
tional joint distribution of variables but also formalize pre-
dictions under interventions and counterfactuals [31, 38].
Directed acyclic graphs (DAGs) are commonly used to rep-
resent causal structure: Nodes represent variables and di-
rected edges point from cause to effect representing the
causal relationships. This graphical representation rests on
assumptions which have been critically questioned, for ex-
ample by Dawid [9]. Inferring causal structure from obser-
vational data is non-trivial. Often, we can only identify the
DAG up to its Markov Equivalence Class (MEC) and find-
ing high-scoring DAGs is NP-hard [7]. The implication of
the above is that we can only discover causal patterns up to
MEC. The MEC limitation compounded with the indepen-
dence assumptions therefore determines the edges or arrows
that are present within a “discovered” causal graph. Table 2
provides a summary of this.

We can also understand DAGs as graphical models that
represent a set of hypotheses about the causal process that
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Figure 1. Black nodes and arrows correspond to the observed variables and observable functions. Grey nodes correspond to the unobserv-
able variables and functions. X := image, R := image representation learnt by the machine learning model, Y := ground-truth labels,
LY := class labels labelled by the annotator, A := ground truth sensitive attributes (e.g., race, gender, age), Z := contextual factors or
background noise and I := image features which should be directly relevant towards the true class label Y .

engendered the set of variables of interest. Edges embody
the hypothesised conditional dependencies. Conversely, un-
connected nodes represent variables that are conditionally
independent of one another. The arrow X → Y illustrates a
potentially direct causal effect of X on Y . This means that
Y is directly influenced by X . Hence, altering X via exter-
nal interventions would also affect Y . It is important to note
that an arrow X → Y only represents a causal effect which
is unmediated by any other variables within the graph. The
arrow is omitted if it is certain that X does not have a direct
causal effect on Y . There is a variety of Causal Structure
Discovery algorithms or methods covered in [44]. In our
experiments, we deployed a causal structure learning algo-
rithm called the Fast Causal Inference (FCI) [38]. We will
cover the implementation in further detail in Section 5.2.

4. Formulating Bias in Affect Recognition
Causally

This section outlines our first contribution. As noted by
the numerous surveys on bias and fairness [5, 25], there are
many different types of bias. It is important to distinguish
between the different types of bias as different forms of
bias would necessitate different mitigation strategies. Note
that not all of the different biases reviewed in existing sur-
veys [25] map to bias in facial affect recognition [5]. For
instance, there is no equivalence for the problem of recidi-
vism for facial affect recognition. In order to address the
problem of bias for facial affect recognition from a causal
perspective, we first attempt to delineate between the differ-
ent biases present and its implication on the resulting causal
graph. The novelty here is that no existing work have for-

malised the different types of bias for affect recognition us-
ing causal graphs.

Let the random variables X and Y represent the images
and their respective labels, Given an input image X = x,
the goal of the image classification task is to predict its la-
bel, Y = y. Assuming a statistical probabilistic interpre-
tation, both X and Y are presumed to follow the following
conditional probability distribution:

P (X,Y ) = P (X|Y )P (Y ) = P (Y |X)P (X). (1)

A typical machine learning approach constructs a learner to
learn P (Y |X) given X and Y . During classification, it will
then pick a class that satisfies argmaxy P (Y = y|X = x).

Note that the above formulation is purely statistical. To
formulate the above from a causal perspective, we will
make use of the SCM as explained in Section 3. This SCM
is represented in both the left causal graph in Figure 1. The
black nodes are the observable variables whereas the grey
nodes are the unobservable variables. The solid arrows cor-
respond to observable causal relationships (i.e., with well-
defined parameterised functions) whilst the dashed arrows
correspond to non-observable causal relationships given the
data. As the annotation or labelling process (denoted by L)
is never fully observable or transparent, we have opted to
capture this using dashed arrows. Though it is possible to
estimate or recover the parameters of this function using ob-
served data, we can never be entirely certain of its ground
truth generative process. With reference to the example
on the right in Figure 1, the nodes represent the following
quantities: X represents the image, R represents the image
representation learnt by the machine learning model, Y rep-
resents the ground-truth labels , LY represents the class la-
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Figure 2. Dataset bias can largely be understood as the bias arising
from node X as highlighted in red. However, as the other variables
A, Z and I are unobserved, it is difficult to evaluate the precise
source of bias.

bels labelled by the annotator, A represents the ground truth
sensitive attributes (e.g., race, gender, age), Z represents the
contextual factors or background noise and I represents the
image features which should be directly relevant towards
the class label Y . Given the above, X , R, LY therefore
correspond to V , the set of observed variables, whereas A,
Z, I and Y correspond to U , the set of unobserved vari-
able encoding external sources of variation. Note that the
set of U listed is non-exhaustive. In addition, between ev-
ery variable, the arrows represent the set of mechanisms F
which defined the functional relation between the variables.
For instance, X ← fX(A,Z, I, U) and LY ← fLY

(X,U)
where U represents unobserved variables encoding other
sources of variations not captured in Figure 1.

4.1. Dataset Bias

In general, a dataset is deemed unbiased if the joint dis-
tribution Pmodel(X,Y ) (or Ptrain(X,Y )) matches that of
reality Preality(X,Y ) (or Ptest(X,Y )). The gap between
the two distributions may largely be deemed to be an do-
main shift problem. Most debiasing techniques for image
or facial affect recognition focus on the bias from the im-
age data X [20,42]. This can be understood as the bias that
arises from the images themselves P (X). This form of bias
is illustrated in Figure 2 as represented by the red node X .

Intuitively, this means that the distribution parameters
(i.e., the means, standard deviation, skews etc.) that charac-
terise the population differ across demographic subgroups.
We define subgroups as subsets of the population defined
across certain sensitive attributes (e.g., race, age and gen-
der). With reference to Figure 2, if we only have infor-
mation about the statistical distribution parameters, dataset
bias in the form of distribution mismatch does not tell us
much as we would not know whether the source of bias is
A, Z or I . Identifying the correct source of bias is cru-
cial towards picking the right mitigation methods. For in-
stance, without visual inspection, we are unable to ascertain
whether a mismatch between Ptrain and Ptest is due to I or
Z. If the source of mismatch is due to I , (i.e., there is an
imbalanced representation between the image features rel-
evant towards the prediction task) the way to address this
would be to make sure the dataset distribution of Ptrain and
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Figure 3. Labelling bias LY can largely be understood as the bias
due to the labeling process L. This is a source of bias that is dis-
tinct from other computer vision and tabular data settings.

Ptest matches. However, other mitigation methods would
be needed if the true source of bias is the context Z. In this
instance, domain generalisation methods would be a more
suitable mitigation method instead [8].

4.2. Labelling Bias

Debiasing P (X) is not the ultimate panacea. With refer-
ence to Equation 1, we see that P (X,Y ) will still be biased
if the annotated labels P (Y |X) are biased. Statistically, in
order for Equation 1 to hold, this would therefore require
the annotated labels Y |X to be unbiased. Labelling or an-
notation bias can be understood as the bias stemming from
the labelling process. Labelling bias is a form of bias more
prevalent or observed in affect recognition. This is due to
the subjective nature of facial affect expression and recogni-
tion. In a conventional computer vision setup, there is typi-
cally no or minimal discrepancy between LY and Y as they
are typically the same. For instance, assuming an object
detection task where the object in question is a car. Com-
pared to an affect recognition task, the discrepancy between
Y and LY will be lesser as in most cases, we can usually
collectively and objectively agree on whether the object is
in fact a car or not. However, this is more challenging for
affect recognition.

First, there is the discrepancy between self-reported,
third-party and machine or algorithm-labelled annotations
[4]. Existing research on affect recognition has indicated
that depending on the way affect is labelled (intended, self-
reported and observed), the outcome or accuracy of an al-
gorithm can differ widely [46]. In addition, there is another
layer of bias introduced by the individual labellers. Tak-
ing third-party annotation as an example, across gender, it
has been noted that third-party observers are likelier to per-
ceive females faces as happier than males [39]. Across race,
there is the problem of the Other Race Effect (ORE). ORE
corresponds to the phenomena where individuals are often
better at recognising people of their own-race than they are
of the other-race [26]. The hypothesised explanation is that
the ability to do so is a result of having more experience of
discriminating among people from a homogeneous group of
similar face (i.e., faces of an individual’s own race) [41]. We
see similar evidence for affect recognition as well [12, 14].
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Table 1. RAF-DB Emotion label distribution breakdown percentage across Gender, Race and Age. The values in bold represents the
emotion class percentage that differs the most from the overall percentage of the subgroup within the sample.

Gender Race Age

Emotion Male Female Cauc AA Asian 0− 3 4− 19 20− 39 40− 69 70+ Percent.

Surprise 46.5% 53.5% 87.5% 5.4% 7.1% 12.1% 13.1% 60.6% 12.1% 2.0% 10.3%
Fear 54.4% 45.6% 77.2% 6.3% 16.5% 3.8% 8.9% 63.3% 20.3% 3.8% 2.7%
Disgust 43.7% 56.3% 79.1% 3.8% 17.1% 1.9% 8.2% 67.1% 17.7% 5.1% 5.5%
Happy 37.6% 62.4% 74.9% 8.6% 16.5% 3.8% 18.9% 50.9% 23.1% 3.2% 39.7%
Sad 38.1% 61.9% 75.4% 7.8% 16.8% 13.2% 25.1% 42.5% 15.8% 3.4% 13.4%
Angry 72.6% 27.4% 87.8% 6.1% 6.1% 1.2% 9.8% 70.1% 17.1% 1.8% 5.7%
Neutral 47.9% 52.1% 75.1% 6.0% 18.9% 3.1% 12.7% 70.4% 10.4% 3.4% 22.6%
Percent. 43.7% 56.3% 77.4% 7.1% 15.5% 5.5% 16.4% 57.5% 17.4% 3.2%

However, existing machine-learning based bias mitiga-
tion methods have often treated this form of systematic bias
as a source of random noise which are unbiased on aver-
age [50] even though affect-based literature has cast doubt
on such assumptions [12, 14, 39]. It is only in recent years
that computer vision methodologies have acknowledged
and recognised this [4]. Recent works in computer vision
have proven labelling bias to be non-random. It is a sys-
tematic form of bias which can be mitigated if properly ac-
counted for [4]. However, the shortcoming is that metrics-
based solutions which typically attempts to quantify or il-
lustrate the presence of bias using score-based methods (e.g.
equality in accuracy) are still susceptible of leading towards
trivial prediction score adjustment rather than a fundamen-
tal bias reduction [36]. Intuitively, this form of bias is evi-
denced by the graph in Figure 3. There is bias if LY differs
substantially from Y . There is no or minimal bias if LY

aligns with Y . We can identify and mitigate this if we have
lab-collected data where the ground truth Y is provided by
the actual subjects. However, for images collected in-the-
wild, we typically only have access to LY but not Y .

4.3. Contextual Bias

Here, we use the term contextual bias as the overall back-
ground environment (e.g. image backdrop or contextual
scene) that an image is placed in. This is a pernicious cause
of disparity in algorithm performance and is widely inves-
tigated as an out-of-distribution generalisation problem in
computer vision [24]. For the specific computer vision
problem of facial affect recognition, the biggest dichotomy
is between that of a “lab-controlled” and an “in-the-wild”
dataset. Other sources of contextual bias include pose,
lighting, outdoor versus indoor, camera equipment etc. [40].
This is a non-trivial form of bias. For instance, research
have shown that the image quality explained some, but not
all, of the variation in algorithm performance across race
[43]. The findings indicated that when ICAO-compliant
(i.e., good quality) images where used, accuracy improved
across board.

With reference to Figure 4, the source of bias is captured
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𝑅

𝑋
𝑷𝒕𝒓𝒂𝒊𝒏(𝑿)
𝑷𝒕𝒆𝒔𝒕(𝑿)

Figure 4. Contextual bias represented by node Z is subsumed
within X and is thus very difficult to tease out. Statistically,
this translates into a mismatch in distribution between Ptrain and
Ptest as captured by the graph on the right. It is difficult to dis-
tinguish the true cause unless we have access to highly controlled
lab-settings.

by node Z. However, Z is generally unobservable as it is
subsumed within X . At first glance, this may seem as a
rather trivial observation but it does facilitate strong claims
about the generative process and dictates the efficacy of ex-
isting methods. With the causal diagram captured in Figure
4, we are claiming that contextual bias is a source of bias
that is part of P (X), which makes it harder to tease out
unless we are relying on highly-controlled lab settings or
simulated/ generated images. Note that just by analysing
the distribution, we will be unable to determine where the
mismatch in distribution is due to change in context or a
genuine dataset bias. While this may not be true in all ex-
perimental setups, we believe that this is true for many set-
tings especially when working with natural images. Get-
ting the causal effect for natural or in-the-wild images is ex-
tremely challenging. This is because there are innumerable
unobervable confounding factors within real-world data.

5. Research Methodology
With these preliminaries in place, we now empirically

and analytically explore the utility of causal structure-
learning for the problem of affect recognition. To illustrate
the themes detailed in Section 4, we study a simple setup
for facial affect classification. The study can be divided into
two main stages. First, we train a basic black-box predic-
tion model, a ResNet-18 on the raw images to predict the
emotion class of each image. Subsequently, we run the Fast
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Figure 6. Experimental setup and causal graph with exogeneous
variables removed. In this setup, there is no direct association be-
tween any of the variables.

Causal Inference (FCI) [38] algorithm to learn the causal
structure between the variables, predicted labels and ac-
tual labelled emotions. Figure 5 represents the ground truth
causal relationship between the variables. In order to facili-
tate assessment, we removed all the unobserved variables to
arrive at an ecosystem which reflects the environment that
we are running our causal structure learning algorithm over.
This is represented by Figure 6.

5.1. Dataset, Pre-processing and Model Training

We conducted our experiments on the RAF-DB dataset
[21]. It is a real-world dataset curated from the Internet. The
images are manually annotated with expression and sensi-
tive attribute labels. RAF-DB contains labels in terms of fa-
cial expressions of emotions (surprise, fear, disgust, happy,
sad, anger and neutral) and sensitive attribute labels along
gender, race and age. We excluded images labelled as “un-
sure” for gender. We utilised a subset of the dataset con-
sisting of 14,388 images. 11,512 samples were used for
training and 2,876 samples were used for testing. This train-
ing and testing split has been pre-defined according to the
instructions in the original dataset [21]. It is available for
non-commercial research purposes and researchers are able
to gain access to it by contacting the authors [21]. A break-
down of the dataset distribution is illustrated in Table 1.

All images are cropped to ensure faces appear in rela-
tively similar positions. The images are then normalized
to a size of 128×128 pixels and fed into the networks as

input. During the training stage, we apply the following
commonly used augmentation methods: Randomly crop-
ping the images to a slightly smaller size (i.e., 96×96); rotat-
ing them with a small angle (i.e., range from -15o to 15o);
and horizontally mirroring them in a randomized manner.
ResNet-18 [15] is used in our experiments. ResNet-18 and
the experimental setup was chosen to align with the exist-
ing research in this area [6,45]. In addition, ResNet-18 also
provides good performance-time trade-off. We used the Py-
Torch implementation of ResNet. We trained it from scratch
with the Adam optimizer [19], with a mini-batch size of 64,
and an initial learning rate of 0.001. The learning rate de-
cays linearly by a factor of 0.1 every 40 epochs. The maxi-
mum training epochs is 100, but early stopping is applied if
the accuracy does not increase after 30 epochs.

5.2. Causal Structure Learning: FCI

We have chosen to use the Fast Causal Inference (FCI)
algorithm [38] for our experiment. This is because the typi-
cal pattern search algorithm, such as the PC algorithm [38],
assumes causal sufficiency (i.e, that there are no unmea-
sured common causes) which is not pragmatic given our
settings. The FCI algorithm works similarly to the PC algo-
rithm but relaxes the assumption of causal sufficiency. The
result is therefore known as a partial ancestral graph (PAG).
The FCI predominantly consists of two phases:

1. An adjacency phase: The adjacency phase of the al-
gorithm starts with a complete undirected graph.

2. Orientation phase: FCI then enters an orientation
phase that uses the stored conditioning sets (that pre-
viously led to the removal of adjacencies) to orient as
many of the edges as possible.

The specific steps or pseudo code can be found in [38]. In
order for the FCI algorithm to account for latent common
causes of variables, the PAG adds a circle symbol that can
be placed at either end of an edge in the same way an ar-
rowhead can be. As a result, the different edges should be
interpreted differently. Table 2 provides a summary of this.

Prior or background knowledge is a pre-imposed set of
conditions where certain variables cannot or must cause oth-
ers. The constraints can also be different variables that are
in different time orders, and thus cannot be the cause of
one another. Forbidden graphs specify the causal relation-
ships that are not allowed in the eventual causal model. In
our setup, the forbidden relationships include the following.
First, we prohibit any relation from emotion labels to other
variables such as age, race and gender. Second, we also pre-
vent causal links between standalone sensitive attributes by
the common sense that they are independent of one another.
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Table 2. Different types of edges and their causal interpretations.
Edge Types Potentially Present Causal Relationships Absent Relationships
A → B A is a cause of B. However, the causation may either be direct or indi-

rect (i.e. there exists other variables along the pathway). In addition,
there is potentially an unmeasured confounder between A an B.

B is not a cause of A.

A ↔ B There exists an unmeasured confounder U between A and B. In other
words, there may be variables along the causal pathways from U to
A or from U to B.

A is not a cause of B.
B is not a cause of A.

A o→ B Either A is a cause of B (i.e.: A → B) or there is an unmeasured
confounder between A and B (i.e.: A ↔ B) or both.

B is not a cause of A.

A o–o B Exactly one of the following holds:

1. A is a cause of B

2. B is a cause of A

3. There is an unmeasured confounder of A and B.

4. Both 1. and 3.

5. Both 2. and 3.

-

Bold or thick-
ened edges

There is no latent confounder. Otherwise, latent confounders might
be present.

Green edges If an edge is green, the relationship is certainly direct. Otherwise, it
is only possibly direct.

6. Experiments and Results
We conducted two sets of experiments. The FCI algo-

rithm will attempt to discover the potential causal relations
between the variables available (LY , LA and R). With ref-
erence to Figure 6, we see that with the given variables,
the experiments will only be able to help us gain insights
over the labelling process L which relates to the labelling
bias discussed in Section 4.2. The first set corresponds to
an environment or setup where R is not included, i.e., the
setup mainly involves the sensitive attributes and ground
truth emotion label. The second set corresponds to the envi-
ronment or setup where R is included, i.e., the setup in-
cludes the sensitive attribute, ground truth emotion label
and emotion class predicted by the black-box learner. For
each analysis, we compare the causal structure learnt when
background or prior knowledge is supplanted vs not.

6.1. Causal Structure Learning with no Predictions

First, we analyse the causal structure learnt when we do
not include the black-box predictions within the ecosystem.
With reference to Figure 7, we see that the causal structure
learnt is not very informative. With reference to Table 2,
we know that, with an edge with two circles X o-o Y , we
cannot even guarantee an adjacency, i.e., there is no set that
d-separates X and Y . Hence, the graph on the left in Figure
7 indicates that we have not managed to learn any causal re-
lation without supplanting prior knowledge. The graph on
the right is slightly more informative. Given A o→ B, the

Age

Gender

Race

Emotion 
Label

Age

Gender

Race

Emotion 
Label

Figure 7. Causal structure learnt without providing black-box
predictions: (a) The graph on the left is the causal structure learnt
without supplanting prior knowledge as discussed under Section
5.2. (b) The graph on the right is the causal structure learnt after
supplanting prior knowledge.

only conclusion is B is not an ancestor of A. Hence, we
know that Emotion Label is not an ancestor of Age, Race
and Gender. Though the causal structure learnt after sup-
planting prior knowledge (where we have imposed certain
prohibitions as explained in Section 5.2) may seem slightly
more informative, note that the oriented edges are mainly a
result of us supplying prior information.

6.2. Causal Structure Learning with Predictions

Next, we analyse the causal structure learnt when we
do include the black-box predictions within the ecosystem.
With reference to Figure 8, we see that this produced more
informative results than before. Analysing the graph on the
left, we see that there is an unmeasured confounder between
the variables Age and Gender and between the variables
Gender and Emotion Label. Interestingly, we see a green
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arrow from Age to Emotion Label and from Emotion Label
to Emotion Predictions. If an edge is green, the relationship
is most likely direct. The interpretation here is that Age is
certainly a direct cause of Emotion Label and Emotion La-
bel is certainly a direct cause of Emotion Predictions.

Analysing the graph on the right after supplanting prior
knowledge, we see that Race is independent other variables.
This is noteworthy as the omission of an arrow is a stronger
claim than the inclusion of an arrow. This is because the
presence of an arrow depicts merely the “causal null hy-
pothesis” that X might have an effect on Y . Though the two
o→ arrows between Age and Emotion Label and Gender
and Emotion Label may seem more informative, as before,
this is merely a result of us supplanting prior information
before performing the FCI analysis. A reassuring aspect is
that the green arrow from Emotion Label to Emotion Pre-
dictions still stands.

In addition, the results suggest that there might be some
form of labelling bias across the sensitive attributes Gen-
der and Age. Since we have the o→ arrow between Age
and Emotion Label as well as Gender and Emotion Label,
this means that across both Age and Gender, they might ei-
ther be a cause of Emotion Label or that there is an un-
measured confounder between them. Indeed, looking at Ta-
ble 1, across Gender, we see a wider disparity between the
emotion class breakdown and that of the subgroup break-
down. For instance, there is approximately 43.7% males
and 56.3% females. An emotion class that is generally
faithful to this breakdown is the category “Surprise” where
we have 46.5% males and 53.5% females. However, the
same is not true across “Happy” and “Angry”. As we can
see, there is disproportionately more females categorised as
“Happy” and disproportionately more males categorised as
“Angry”. This trend is not observed across Race but we do
see a similar trend across Age. There can be two reasons for
this. First, it may be a class imbalance problem where there
is more male samples for the emotion “Angry”. As such, the
images X in Figure 6 would be the confounding factor. The
second plausibility is that the labelling process, denoted by
L in Figure 6 is a confounding factor for both the labelled
sensitive attributes LA and labelled emotion class LY . De-
spite the inherent limitations of causal structure learning as
discussed in Section 3, we are still able to gain some post-
hoc understanding of the bias present.

7. Conclusion
According to the proof-of-concept conducted and pre-

liminary assessment of the results, it is reassuring that the
annotated Emotion Label LY from the dataset seems to be
the only variable that has a direct cause on the Emotion Pre-
dictions outputted by the black-box (ResNet) classifier. Our
results hints that there may potentially be labelling bias as
discussed in Section 4.2.

Age

Gender

Race

Emotion 
Label

Emotion 
Predictions

Age

Gender

Race

Emotion 
Label

Emotion 
Predictions

Figure 8. Causal structure learnt after providing black-box
predictions: (a) The graph on the left is the causal structure learnt
without supplanting prior knowledge. (b) The graph on the right
is the causal structure learnt after supplanting prior knowledge.

An opportunity is to deploy causal structure learning
for algorithm auditing in affect modelling or any other
biometrics-related technology. Causal learning will equip
the community with the tools needed to account for the var-
ious theoretical and conceptual aspects of affect recogni-
tion. For instance, studies indicate that different genders ex-
press (and perhaps experience) emotion differently [1, 10].
Similarly, emotion recognition accuracy differs across cul-
tures [17,33,37]. However, a limitation is that causal struc-
ture learning on its own may not be sufficient. This is be-
cause once a pattern or a PAG has been produced from data,
any single DAG that we select from the equivalence class
will be equivalent in its causal structure. The causal struc-
ture itself has little use if not combined with statistical pa-
rameters and prior knowledge about the data generation pro-
cess. Another limitation is that there is insufficient evidence
to scientifically explain each source of bias. Part of this is
due to the lack of balanced datasets for this problem set-
ting. There is currently no affect-based dataset (e.g. CK+,
AffectNet) that is balanced across classes. We hope this
work will encourage other researchers to explore the usage
of SCMs and causal pattern search to build fairer and more
robust models.

Acknowledgements

Open access statement: For the purpose of open access, the au-
thors have applied a Creative Commons Attribution (CC BY) li-
cence to any Author Accepted Manuscript version arising.
Data access statement: This study involved secondary analyses
of pre-existing datasets. All datasets are described in the text and
cited accordingly. Licensing restrictions prevent sharing of the
datasets. The authors thank Shan Li, Prof Weihong Deng and Jun-
Ping Du from the Beijing University of Posts and Telecommuni-
cations (China) for providing access to RAF-DB.
Acknowledgement: J. Cheong is supported by the Alan Turing
Institute doctoral studentship and the Cambridge Commonwealth
Trust. H. Gunes’ work is supported by the EPSRC under grant ref.
EP/R030782/1.

347



References
[1] Tara M Chaplin. Gender and emotion expression: A develop-

mental contextual perspective. Emotion Review, 7(1):14–21,
2015.

[2] Yingjie Chen, Diqi Chen, Tao Wang, Yizhou Wang, and Yun
Liang. Causal intervention for subject-deconfounded facial
action unit recognition. Proceedings of the AAAI Conference
on Artificial Intelligence, 2022.

[3] Yuedong Chen, Xu Yang, Tat-Jen Cham, and Jianfei Cai. To-
wards unbiased visual emotion recognition via causal inter-
vention. In Proceedings of the 30th ACM International Con-
ference on Multimedia, pages 60–69, 2022.

[4] Yunliang Chen and Jungseock Joo. Understanding and mit-
igating annotation bias in facial expression recognition. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14980–14991, 2021.

[5] Jiaee Cheong, Sinan Kalkan, and Hatice Gunes. The hitch-
hiker’s guide to bias and fairness in facial affective signal
processing: Overview and techniques. IEEE Signal Process-
ing Magazine, 38(6):39–49, 2021.

[6] Jiaee Cheong, Sinan Kalkan, and Hatice Gunes. Counterfac-
tual fairness for facial expression recognition. 2022 ECCV
Workshop on Challenge on People Analysis (WCPA), 2022.

[7] Max Chickering, David Heckerman, and Chris Meek. Large-
sample learning of bayesian networks is np-hard. Journal of
Machine Learning Research, 5:1287–1330, 2004.

[8] Nikhil Churamani, Ozgur Kara, and Hatice Gunes. Domain-
incremental continual learning for mitigating bias in facial
expression and action unit recognition. IEEE Transactions
on Affective Computing, 2022.

[9] A Philip Dawid. Causal inference without counterfac-
tuals. Journal of the American statistical Association,
95(450):407–424, 2000.

[10] Yaling Deng, Lei Chang, Meng Yang, Meng Huo, and Ren-
lai Zhou. Gender differences in emotional response: In-
consistency between experience and expressivity. PloS one,
11(6):e0158666, 2016.

[11] Rosenberg Ekman. What the face reveals: Basic and ap-
plied studies of spontaneous expression using the Facial Ac-
tion Coding System (FACS). Oxford University Press, USA,
1997.

[12] Hillary Anger Elfenbein and Nalini Ambady. Is there an
in-group advantage in emotion recognition? American Psy-
chological Association, 2002.

[13] Y. Gurovich, Y. Hanani, O. Bar, G. Nadav, N. Fleischer,
D. Gelbman, L. Basel-Salmon, P. Krawitz, S. Kamphausen,
M. Zenker, L. Bird, and K Gripp. Identifying Facial Phe-
notypes Of Genetic Disorders Using Deep Learning. Nature
Medicine, 2020.

[14] Jennifer N Gutsell and Michael Inzlicht. Empathy con-
strained: Prejudice predicts reduced mental simulation of
actions during observation of outgroups. Journal of exper-
imental social psychology, 46(5):841–845, 2010.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[16] Ayanna Howard, Cha Zhang, and Eric Horvitz. Addressing
bias in machine learning algorithms: A pilot study on emo-
tion recognition for intelligent systems. In 2017 IEEE Work-
shop on Advanced Robotics and its Social Impacts (ARSO),
pages 1–7. IEEE, 2017.

[17] Shunhang Huang, Junjie Qiu, Peiduo Liu, Qingqing Li, and
Xiting Huang. The effects of same-and other-race facial ex-
pressions of pain on temporal perception. Frontiers in Psy-
chology, 9:2366, 2018.

[18] Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Paras-
candolo, Moritz Hardt, Dominik Janzing, and Bernhard
Schölkopf. Avoiding discrimination through causal reason-
ing. In NIPS, pages 656–666, 2017.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015.

[20] Shan Li and Weihong Deng. A deeper look at facial expres-
sion dataset bias. IEEE Transactions on Affective Comput-
ing, 2020.

[21] Shan Li, Weihong Deng, and JunPing Du. Reliable crowd-
sourcing and deep locality-preserving learning for expres-
sion recognition in the wild. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2584–2593. IEEE, 2017.

[22] Joshua R Loftus, Chris Russell, Matt J Kusner, and Ricardo
Silva. Causal reasoning for algorithmic fairness. arXiv
preprint arXiv:1805.05859, 2018.

[23] Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi.
Survey on causal-based machine learning fairness notions.
arXiv preprint arXiv:2010.09553, 2022.

[24] Chengzhi Mao, Kevin Xia, James Wang, Hao Wang, Jun-
feng Yang, Elias Bareinboim, and Carl Vondrick. Causal
transportability for visual recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7521–7531, 2022.

[25] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. A survey on bias and fair-
ness in machine learning. ACM Computing Surveys (CSUR),
54(6):1–35, 2019.

[26] Christian A Meissner and John C Brigham. Thirty years of
investigating the own-race bias in memory for faces: A meta-
analytic review. Psychology, Public Policy, and Law, 7(1):3,
2001.

[27] Razieh Nabi and Ilya Shpitser. Fair inference on outcomes.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

[28] M. Ngxande, J. Tapamo, and M. Burke. Bias remediation in
driver drowsiness detection systems using generative adver-
sarial networks. IEEE Access, 8:55592–55601, 2020.

348



[29] Geesung Oh, Euiseok Jeong, and Sejoon Lim. Causal af-
fect prediction model using a past facial image sequence. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3550–3556, 2021.

[30] Jaspar Pahl, Ines Rieger, Anna Möller, Thomas Wittenberg,
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