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Abstract

Automated face recognition technologies have been un-
der scrutiny in recent years due to noted variations in accu-
racy relative to race and gender. Much of this concern was
driven by media coverage of high error rates for women
and persons of color reported in an evaluation of commer-
cial gender classification (“gender from face”) tools. Many
decried the conflation of errors observed in the task of gen-
der classification with the task of face recognition. This
motivated the question of whether images that are misclas-
sified by a gender classification algorithm have increased
error rate with face recognition algorithms. In the first ex-
periment, we analyze the False Match Rate (FMR) of face
recognition for comparisons in which one or both of the im-
ages are gender-misclassified. In the second experiment,
we examine match scores of gender-misclassified images
when compared to images from their labeled versus clas-
sified gender. We find that, in general, gender misclassi-
fied images are not associated with an increased FMR. For
females, non-mated comparisons involving one misclassi-
fied image actually shift the resultant impostor distribution
to lower similarity scores, representing improved accuracy.
To our knowledge, this is the first work to analyze (1) the
FMR of one- and two-misclassification error pairs and (2)
non-mated match scores for misclassified images against
labeled- and classified-gender categories.

1. Introduction

Facial recognition algorithms are known to perform
worse on biological females than males. In 2018, Buo-
lamwini et al. [2] brought widespread attention to the gap
in gender classification accuracy by gender and skin tone.
In response, media outlets fueled public attention with
provocative headlines like “Facial Recognition Is Accurate,
if You’re a White Guy” [12] and “How is Face Recogni-
tion Surveillance Technology Racist?” [4]. However, these
stories generally failed to explain or even recognize a key
point: gender classification and face matching algorithms
operate differently.

Gender classification is a face analytics technique - a
method to provide non-unique user attributes (“soft biomet-

rics”) that may be used for a variety of purposes [5, 9].
However, soft biometrics alone cannot adequately distin-
guish between two individuals in an identity match scenario
[9]. The accuracy of face analytics tools, which can also es-
timate traits like hair color, height, weight, and other prop-
erties, has been shown to vary across demographic groups
[15, 2, 14].

The primary aim of this paper is to provide experiment-
backed clarity on the intersection of gender classification
and face recognition. Previous research [15, 2, 14] has op-
erated on the assumption that face images can be classified
into the binary categories of “male” or “female”, and a clas-
sifed label can be compared to the data’s annotated label
to determine classification accuracy. The following experi-
ments rely on the manually annotated gender labels in [18],
though we recognize that the binary scheme may fail to ac-
curately convey the gender identity or intended presentation
of each subject. The implication is interesting: if a per-
son intentionally chooses to present as a different gender, a
“misclassification” may actually be considered an accurate
assignment by the person involved.

2. Literature Review
2.1. Disparities in Gender Classification

Buolamwini and Gebru [2] evaluated three commercial
gender classifiers (Microsoft, Face++, and IBM) using the
Pilot Parliaments Benchmark (PPB) dataset, a small, self-
collected set of public images of African and European par-
liament members. All three classifiers were shown to be
more accurate for males than females. Additionally, af-
ter grouping images based on manually-assigned skin tone
ratings, they showed that the classification error rate was
higher for darker-skin-tone subjects. The maximum er-
ror rate for darker-skin-tone females was 34.7%, while the
maximum error rate for lighter-skin-tone males was only
0.8%.

In response to [2], the three companies released new
versions of their classifiers. Raji and Buolamwini [17]
re-evaluated the classifiers with updated performance met-
rics, and found that all three had reduced accuracy dispar-
ities with respect to gender and race. In particular, errors
on the darker-skin-tone female group were reduced up to
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30.4%. Performance of the improved classifiers was mea-
sured against that of two non-target classifiers (Amazon and
Kairos) on the PPB dataset. On the darker-skin-tone female
group, the non-targets minimally achieved a 22.50% error
rate. The best target error rate was 1.52%. The worst was
16.97%.

Muthukumar et. al [13] followed up on the work of Buo-
lamwini and Gebru [2] to test whether skin tone itself was
the driving factor in observed accuracy differences in gen-
der classification. They report results of color-theoretic ex-
periments with face images that “...raise the possibility that
broader differences in ethnicity, as opposed to the skin type
alone, are what contribute to unequal gender classification
accuracy in face images” [13].

2.2. Disparities in Face Recognition

Cook et al. [3] examined the performance of eleven com-
mercial matchers on demographically-divided data. They
demonstrated that face matching accuracy and efficiency (as
measured in transaction times) are affected by a combina-
tion of often co-occurring biological and behavioral demo-
graphic factors. These include gender, age, height, and skin
reflectance. The individual impact and effect of each factor
varies between systems, and all become less impactful as a
system’s overall accuracy increases. The study found that
average mated scores significantly decreased for three cat-
egories: subjects who were younger in age, self-identified
as female, or had lower skin reflectance. The decrease in-
dicates a lower False Non-Match Rate (FNMR) for these
groups, increasing the likelihood that a genuine match will
be rejected.

Krishnapriya et al. [10] analyzed FNMR and False
Match Rate (FMR) to evaluate face recognition accuracy by
race and gender. They discovered that, generally, both the
mated and non-mated distributions for the African Amer-
ican cohort were shifted toward higher similarity scores.
Thus, for a given decision threshold, the African American
cohort had a higher FMR and a lower FNMR than the Cau-
casian male, whose values traditionally provide the base-
line. Krishnapriya et al. showed that, despite the higher
African American FMR value, the d-prime value given by
some matchers showed that the ability to “cleanly” divide
mated and non-mated scores is about equal across cohorts.

Albiero et al. [1] investigated commonly speculated
causes of the “gender gap” in recognition accuracy. They
reported that females typically exhibited a greater range of
facial expressions. Males more often had neutral expres-
sions, resulting in higher similarity scores with other neutral
males. Females tended to have more facial occlusions, typ-
ically associated with hairstyle. Removing these occlusions
improved the female d-prime values, indicating enhanced
system ability to distinguish between image instances. Fe-
male mated and non-mated distributions remained less sep-

arable than male distributions - even with a matcher trained
on an explicitly gender-balanced dataset.

2.3. Combined Analysis

There is very little work related to the intersection of
gender classification and face recognition. In 2021, Qiu et
al. [16] first examined the issue, reporting that the rela-
tionship between the two tasks varied across demographics.
The study included three gender classifiers and two face-
matching algorithms. To evaluate the combined effect, they
recorded the mean scores and score distributions of pairs
containing zero, one, or two gender-misclassified images.
They reported that, on average, non-mated pairs with one
misclassified image had lower similarity scores. Pairs with
two misclassifications had higher similarity scores. From
this result, they postulated that one-error pairs should have
the lowest False Match Rate (FMR).

In this work, we analyze the same dataset and gender
classifiers as [16] to provide the FMR values associated
with each demographic and number of errors. In addi-
tion to the same open-source matcher, we include results
from the newest version of a top-performing commercial
matcher. Finally, we consider another angle, analyzing how
the match scores of gender-misclassified images vary when
compared to their labeled versus classified gender.

3. Experiment Design

3.1. The MORPH Dataset

The MORPH dataset [18] has been used extensively in
demographic-focused face recognition research. [10, 11, 1]
It contains mugshot images acquired with controlled light-
ing and an 18% gray background. They nominally feature
a front pose and a neutral expression. Subjects are divided
into four cohorts based on manually annotated demographic
labels. This study uses a subset of MORPHv3 curated
to remove duplicates, twins, and mislabeled images. The
curated version contains 24,857 images of 5,929 African
American females (AAF), 56,245 images of 8,839 African
American males (AAM), 10,941 images of 2,798 Caucasian
females (CF), and 35,276 images of 8,835 Caucasian males
(CM).

3.2. Gender Classification

We produce gender classification results with three al-
gorithms: two commercial (Amazon, “AM” and Microsoft,
“MS”) and one open-source (“OS”) based on ArcFace [7].

Sample misclassified images are given in Figure 1. The
top and bottom rows represent the African American and
Caucasian cohorts, respectively. The images in the left col-
umn were labeled as female in the dataset, but classified as
male. In the right column, the opposite case is shown.
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Figure 1: Sample gender-misclassified images for each demographic.

OS AM MS
Cor Inc Cor Inc Cor Inc

AAF 20676 4181 23098 1759 23927 926
AAM 55090 1155 55192 1053 55805 405
CF 10022 919 10710 231 10829 111
CM 34993 283 35105 171 35203 41

Table 1: Number of correct/incorrect classifications across
demographics.

Table 1 gives the number of gender misclassification er-
rors for each classifier, where “Cor” indicates a correct gen-
der classification and “Inc” an incorrect classification. In
general, Microsoft is found to be the best-performing clas-
sifier, and the open-source classifier the worst. Correspond-
ing accuracy rates are provided in Table 2. For all three
classifiers, accuracy is highest for CM and lowest for AAF.

OS AM MS
GC Accuracy (%)

AAF 83.2 92.9 96.3
AAM 97.9 98.1 99.2
CF 91.6 97.9 99.0
CM 99.2 99.5 99.8

Table 2: Accuracy and error rates by gender classifier.

3.3. Face Recognition

For the face recognition task, we use two matchers:
one open-source (“OS”) and one commercial-off-the-shelf
(“COTS”). The OS matcher is based on ArcFace and
publicly-available weights trained on the MS1MV2 dataset,
an accessible and curated version of MS1M, a large-scale
recognition dataset [8]. The COTS matcher is one of the
highest-performing commercially available, and we use the
most recently updated version.

In order to perform face recognition, the target database
must contain two or more images per subject to complete
the matching process. Since MORPH is a longitudinal
database containing multiple images of each subject, it is
ideal for use in recognition experiments.

Gender classification analyzes one image to make a bi-
nary classification of that image, but face recognition ana-
lyzes a pair of images to compute a similarity (or dissimi-
larity) score. A mated (or genuine) pair of images is a com-
parison between two images of the same individual. A non-
mated (or impostor) pair is a comparison between images
of different individuals. Similarity scores resulting from
comparisons of a pair of images are evaluated against pre-
defined decision thresholds for each matcher. Non-mated
pairs that exceed the threshold are said to generate a “false
match” for the given matcher and threshold. The two im-
ages would be (falsely) identified as a match (i.e. containing
the same individual).

We use the 1-in-10,000 (1-in-10k) impostor threshold,
calculated with respect to the Caucasian male impostor dis-
tribution, to make identity decisions. Similar demographic-
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focused works [6, 10, 11] have used this threshold. It cor-
responds to the non-mated similarity score at which one er-
ror occurs for 10,000 non-mated pair comparisons. For the
OS matcher, which scales scores from -1 to 1, the 1-in-10k
CM threshold is 0.3483. The COTS matcher gives scores
from 0 to 1, and yields a threshold of 0.7550. The impos-
tor scores at and around the 1-in-10k threshold are in the
“high-likelihood false match region”, i.e. they are likely to
generate a false match. [10]

Relative frequency histograms of each demographic’s
non-mated (genuine) and mated (impostor) distributions are
given in Figures 2. The d-prime value measures the distance
between the distributions: a higher d-prime value indicates
greater separation of genuine and impostor distributions.

4. Experimental Results

4.1. Error Pair Analysis

For each demographic, we examine the FMR associated
with (1) all non-mated pairs, (2) non-mated pairs containing
one gender-misclassified image (“one-error pairs”), and (3)
non-mated pairs containing two gender-misclassified im-
ages (“two-error pairs”). Table 3 provides the percentage
of each demographic’s full score distribution comprised by
each error-pair type, based on the given gender classifier.

GC Dem 1-Error 2-Error
AAF 27.98% 2.83%
AAM 4.02% 0.04%

CF 15.39% 0.70%OS

CM 1.59% 0.01%
AAF 13.15% 0.50%
AAM 3.67% 0.03%

CF 4.13% 0.04%AM

CM 0.96% 0.002%
AAF 7.17% 0.14%
AAM 1.43% 0.01%

CF 2.01% 0.01%MS

CM 0.23% 0.00%

Table 3: Proportion of one- and two-error pairs versus all
image comparisons.

Figure 3 gives the FMR (%) for each pair type: all non-
mated pairs (column 2) and non-mated pairs containing ei-
ther one or two gender-misclassified images. For each de-
mographic and matcher, the FMR for all non-mated pairs
is taken as the baseline. The “OS Error” and “COTS Error”
rows indicate whether FMR increased or decreased from the
baseline for the one- and two-error pairs. Insufficient data
is reflected as “N/A” in the respective sub-tables.

4.1.1 One-Error Pairs

In Figure 3, the OS- and COTS-matcher FMR results are
consistent for each demographic and all three classifiers.
For the two female groups, FMR decreases from the base-
line when only one misclassified image is involved in a
comparison. For the male groups, FMR either increases or
does not change versus the baseline.

4.1.2 Two-Error Pairs

In Figure 3, two-error pairs generally yield an increased
FMR, with the exception of the open-source classifier and
matcher combination for African American females. The
two-error FMR increase is very slight for the female groups,
while African American males show a more significant in-
crease (from a baseline of about 0.04% to 0.54% maxi-
mally). The Caucasian groups generally do not have enough
data to report on a meaningful FMR change (other than
the female open-source classifier case, which shows an on-
trend increase).

4.2. Cross-Gender Comparison

We proceed with the most accurate gender classifier (Mi-
crosoft) and face matcher (COTS) from the first experiment.
The Microsoft classifier gives 41 errors for CM, 111 for CF,
405 for AAM, and 926 for AAF. For each misclassified im-
age, we consider its labeled gender (provided by the dataset)
and its classified gender (output by the Microsoft classifier).

For each misclassified image, the highest non-mated
match scores associated with (1) a labeled-gender image
and (2) a classified-gender image are recorded. Misclas-
sified male images are compared to all other male images
and all female images, and vice versa. The resulting match
scores are visualized as boxplots and relative frequency his-
tograms in Figures 4 (Caucasian) and 5 (African American).
In each plot, the COTS decision threshold of 0.755 is indi-
cated with the dashed black line.

The CM histogram shows the greatest separation be-
tween the labeled-gender distribution (green) and its
classified-gender counterpart (red). In fact, all of the
classified-gender scores fall below the threshold, and would
correctly be classified as impostors. For CF, however, there
is significant overlap between the two score sets - with the
classified-gender scores shifted towards higher values. The
classified-gender scores also feature a slightly higher FMR
than the labeled-gender.

For AAM, labeled-gender and classified-gender scores
show significant overlap. AAF scores overlap slightly less.
For both males and females, the majority of scores in both
gender groups cross the decision threshold.

The average, highest, and lowest non-mated scores for
each comparison type are given in Table 4. In the average
column, a red-highlighted value indicates that the average
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Figure 2: Distribution of genuine and impostor scores generated by the open-source (left) and commercial (right) matchers.

Figure 3: False match rate (FMR) for each demographic and error-pair type, divided by gender classifier and recognition
system. Each system’s baseline error is given by the FMR associated with all image pairs (match scores).

classified gender comparison score is higher than that of the
labeled gender for the given demographic. A green value
indicates the opposite.

CF is the only group for which comparisons against the
classified gender give higher average match scores than
against the labeled gender. For the other three demographic
groups, the labeled-gender averages are higher. In all cases,
the discrepancy between averages is minimal.

5. Conclusions and Discussion

The primary goal of this work is to provide clarity on
whether errors in the gender classification task lead to er-
rors in the separate task of face recognition. First, we seek
to understand the relationship between gender-misclassified
face images and face recognition accuracy, as measured by
False Match Rate (FMR). Our primary findings regarding
one- and two-error pairs are summarized as follows:
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(a) Scores of misclassified CM images vs. images from the labeled
(CM, left) and classified gender (CF, right).

(b) Score distribution for misclassified CM images vs. images
from the labeled (CM, green) and classified gender (CF, red).

(c) Scores of misclassified CF images vs. images from the labeled
(CF, left) and classified gender (CM, right).

(d) Score distribution for misclassified CF images vs. images from
the labeled (CF, green) and classified gender (CM, red).

Figure 4: Highest non-mated match scores of gender-misclassified Caucasian images versus other images in their labeled and
classified gender categories. The 1-in-10k CM threshold (0.755) is shown as a dashed black line.

Comparison Average Highest Lowest
CF vs. CF 0.765 0.824 0.719
CF vs. CM 0.772 0.824 0.735
CM vs. CM 0.767 0.837 0.732
CM vs. CF 0.686 0.746 0.632
AAM vs. AAM 0.798 0.906 0.735
AAM vs. AAF 0.795 0.805 0.705
AAF vs. AAF 0.799 0.907 0.741
AAF vs. AAM 0.782 0.857 0.718

Table 4: Average, highest, and lowest non-mated
match scores for each demographic’s labeled-gender and
classified-gender comparisons.

For females, non-mated comparisons involving only one
misclassified image have a slightly lower FMR. Fig-
ure 3 shows that one-error pairs consistently give a lower
FMR than the all-pair baseline for Caucasian and African
American female groups. This finding aligns with that of
[16]: that an image generating a gender-classification error
is slightly less likely to participate in a false match-inducing
image pair. Interestingly, this does not seem to be the case
for males. The African American male FMR increases for
one-error pairs across all three classifiers and both matchers.
The Caucasian male FMR follows the same trend, though
there was insufficient data to characterize the effect well.
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(a) Scores of misclassified AAM images vs. images from the la-
beled (AAM, left) and classified gender (AAF, right).

(b) Score distribution for misclassified AAM images vs. images
from the labeled (AAM, green) and classified gender (AAF, red).

(c) Scores of misclassified AAF images vs. images from the la-
beled (AAF, left) and classified gender (AAM, right).

(d) Score distribution for misclassified AAF images vs. images
from the labeled (AAF, green) and classified gender (AAM, red).

Figure 5: Highest non-mated match scores of gender-misclassified African American images versus other images in their
labeled and classified gender categories. The 1-in-10k CM threshold (0.755) is shown as a dashed black line.

For African American males, non-mated comparisons
containing at least one gender-misclassified image have
a slightly higher FMR. Each combination of pair-type,
matcher, and classifier in Figure 3 yields an increased FMR
versus the baseline for African American males. While one-
error pairs give only a slight increase in FMR (from about
0.04% to 0.05%), two-error pairs increase it up to 0.54%.

Our second question involves the relationship between
a gender-misclassified image and its labeled versus classi-
fied gender. Using the best classifier and matcher from the
previous experiment, we report the following observations:

Misclassified Caucasian female images produce slightly
but insignificantly higher similarity scores with Cau-
casian male images. In Table 4, the “CF vs. CM” com-
parison gives the average highest non-mated match score
for misclassified Caucasian female images versus all male
images. This average is higher than that of the labeled-
gender “CF vs. CF” comparison, though the score disparity
is insignificant.

Misclassified males and African American females
produce slightly but insignificantly higher similarity
scores with their labeled-gender images. For each
of these groups, the average score of the labeled gender
comparison is higher than that of the classified gender
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(Table 4). Again, however, the score disparity is minimal
enough to be insignificant.

The second experiment only considered the highest
non-mated score associated with each misclassified image
“probe”. In future work, we will augment the analysis to
include each demographic’s full impostor distribution with
its labeled versus classified gender.

The lack of Caucasian male data complicates the task of
accurately evaluating the relationship between gender clas-
sification and recognition accuracy. The small count of mis-
classified images does not seem related to representation in
the data. With 56k images, CM is the second-largest cohort,
and essentially ties with African American males for most
unique subjects (8,835). For the algorithms and data used in
this experiment, Caucasian males are simply found to be the
most gender-classifiable. Even with the worst-performing
classifier, only 1.59% of non-mated pairs contain a mis-
classified image - especially low considering the African
American female group’s corresponding 27.98%. As a re-
sult of this discrepancy, there were not enough Caucasian
male classification errors to draw any substantive conclu-
sions.

Though media reports on recent research have often con-
flated the two, our results suggest that errors in gender
classification do not cause errors in recognition. In fact,
pairs involving one misclassified image actually improve
the FMR for two demographics. For the other two groups,
FMR increase is minimal. In the two-error case, FMR in-
crease is relatively consistent but also minimal. Given the
very small portion of scores two-error comparisons repre-
sent, it is unlikely that this case would cause significant im-
pact in a real-world recognition scenario.
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