Hand Guided High Resolution Feature Enhancement for Fine-Grained Atomic
Action Segmentation within Complex Human Assemblies
— Supplementary Material —

1. Hand Localisation
1.1. Model details

In order to detect the presence and location of an assem-
blers hand within an image we train a mobilentv2 [4] model
to output a fixed Sigmoid normalised vector of length 6 con-
taining the elements [Pl,azl,yl,Pg,a:Q 2] where P, and
P, are the probability of the left and right hand existing in
the image (1 if hand present O otherwise) and Z;, y; are
the normalised position of hand i in a given input image.
We train with a modified mean squared error loss, shown in
equation 1, that doesn’t penalise the model for incorrectly
predicting a hand position when no hand is present, where
P; is the (1,0) label of a present hand and x; and y; are the
ground truth normalised location of hand i within a given
image. A is an equalising constant set to 0.1 to get similar
learning rates across the loss function.

L=)\Z(Pi — P)? + Py[(z1 — 21)* + (y1 — 1)

+ Pof(z2 — 22)% + (y2 — 92)°] e
1.2. Implementation Details

Our hand localisation algorithms were trained with a
learning rate of 0.04 for 200 epochs with a learning rate
decrease at 100 and 150 epochs. With gradient clipping set
to 20, parameter weight decay set to 0.0005 and momentum
set to 0.9.

We train our hand model on 4531 randomly selected
frames within our training data and test on a further 1919
frames. Roughly 15% of selected frames contain either just
one or no hands. We labelled our hand data with a custom
GUI which we also plan to make publicly available !

1.3. Hand Localisation Performance

In order to evaluate the performance of of hand lo-
calisation model we implement the following metric:

'Removed for blind review

T, | F1QTy
005 | 745
0.1 83.0
0.2 92.5
03 96.8

Table 1. Hand localisation performance on our novel assembly
dataset.

F1@QT;,>X. Under our model output we get a prediction
per hand in the form (P Z,14) where P is the probability
of a hand being present within the frame, and Z, ¢ are the
normalised position of the hand within the frame. We al-
locate our predictions a true positive label if P is grater
than 0.5 (i.e. there is more than 50% probability the hand
is present) and the there is a ground truth hand present,
and the spatial prediction of the hand location is within
a certain threshold of the ground truth location, given by
V(@ —2)2+ (9 —y)?2 < T, where T, is a changeable
threshold and x and y are the ground truth hand position.
If a hand is predicted to exist but has the wrong location or
there is no hand present then the prediction will be assigned
false positive. A prediction is false negative when a hand
not predicted but a hand is present within the image. We
report the hand performance for various location thresholds
Ty, in table 1.

2. Hand Feature Spatial Alignment

Assuming an input image of size (W,H) and a down sam-
ple operation to size S for input into the back bone model,
the relative resolution between the two inputs is (H/S). In
order to achieve this spatial alignment between hand cutouts
of size (we,h..), and the backbone cutout of size Cy, we cal-
culate the normalised size (Whand, Phand) Via equation 2
and offsets (ZThand, Unang) Vid €quation 3 with respect to
the input image to the backbone stream. The variables in
these equations are defined in Fig. 1 which shows the down
scaling of the image from the shortest side from H to S and
random crop of size C; at offset (z.,y.) (for regularisation
during training) of the input frame.

Raw input frame:

B I Input to
= hand model:

Input to
backbone:

downsized to
size S (typically
H>720 to S=256)

Txi
Spatially n
— s —
Figure 1. The location and size of the extracted hand image
with respect to the input image to the backbone model after pre-
processing.

— Yhand — Ye
] =—- 0
hand Cs

3. Model Implementation Details

All models were implemented within the Pytorch deep
learning framework with a Resnet50 model used for the
backbone architecture and a ResNetl8 used for the hand
model. All models utilised Kinetics-400[2] pretraining,
with batch normalisation statistics frozen from pretrained
weights to reduce overfitting. The initial learning rate was
set to 0.002 for parameters within the backbone model and
0.0002 for parameters within the hand feature extraction
model, with gradient clipping set to 20. Parameter weight
decay was set to 0.0005 and momentum set to 0.9 for all
parameters. All models were trained for 150 epochs with
a batch size of 64 (except for the 16 frame model which
utilised a batch size of 32), with learning rate decreased by
a factor of 10 at 100 and 125 epochs. A dropout of 0.8 was
implemented in the final fully connected layer of all model
to reduce overfitting.

Models were trained on the a GPU node of the Hartree
Centre Jade-2 HPC 2, utilising a single Tesla V-100 GPU
with a wall clock training time of ~ 6 hours per model.

100 100
90
80 T
T 8 o
a @ -
s 5
S 70 ~ G 60 \
2 € ~
] 3]
£ 60 E
] & 40
50
40| W Without TSM 20
— With TSM
12 4 6 10 12 4 8 16
Temporal Stride, T Number of Frames, T
(@) (b)
n 80 T " 80
g =)
1 i
3 3
° 2
® 60 9 60
it £ -
a a
© o
S 40 S a0 |
g $ / \
g g
5 El ~
320 520 ~_
] 9
o a
[[
1 2 4 6 8 10 12 8 16
Temporal Stride, T Number of Frames, T
(©) (d)

Figure 2. Importance of temporal reasoning in the backbone
model. All graphs show the F1 class distributions for a tempo-
ral segment network [5] with and without inserted temporal shift
modules[3] varying either the temporal stride, 7, with fixed T=8
(a and c), or varying number of input frames, T, with fixed 7=8 (b
and d) on either a segment (a and b) or on an extended sequence
(c and d) level after temporally aware label cleaning.

4. Importance of Temporal learning

In order to investigate the importance of temporal rea-
soning we train a set of identical Temporal Segment Net-
works (TSN) with and without inserted TSM with varying
numbers of input frames and temporal stride between input
frames, with results shown in Fig. 2.

We first fix T to the commonly used 8 frames [1, 3]
and vary the temporal stride 7€{1,2,4,6,8,10} with results
shown in Fig. 2 (a and c on a segment and sequence
level respectively). It is clear that temporally aware TSM
models outperform standard TSN models across all tempo-
ral strides, and maintain a high F1 score beyond 7 = 2,
while the performance of a regular TSN model, incapable of
temporal learning, drops as 7 increases, suggesting sparser
frames can introduce more useful long term information for
classification, but only when temporal learning is possible.
This drop in performance is more significant on a sequence
level with the performance of some classes dropping to an
F1 score of 0 at 7 = 10, suggesting sparser frames when
temporal learning is not applicable leads to significant con-
fusion when operating in a sliding window fashion.

Secondly, we vary the number of input frames

Zhttps://www.jade.ac.uk/

Te{1,2,4,8,16} while keeping 7 = 8. Fig. 2 (b and d on
a segment and sequence level respectively) show that for
both a TSN and TSM model increasing the number of input
frames helps the models initially, however, beyond 7' = 4
the TSN model performance drops significantly, while the
TSM model continues to perform well, suggesting again
that providing more temporal information by using multiple
frames at input is only useful if a temporally aware back-
bone model is used.

5. Single vs. 8 Frame - Segment Level

Figure 3 shows the class F1 improvements comparing a
single frame and a temporally aware 8 frame model on a
temporally cropped segment level. In keeping with anal-
ysis on a sequence level, temporally salient classes see the
largest improvement, with place metal bar seeing the largest
improvement from an F1 score of 17 to 79. It is noted that
the improvements in class performance on a segment level
is smaller than that on a sequence level as mentioned in sec-
tion 1.4.4, suggesting temporal modelling is more imper-
ative when operating on a sequence level, with no action
seeing a much smaller improvement, suggesting when seg-
ments are neatly temporally cropped they are easier to dis-
tinguish on a spatial level.

Segment F1

unbox component

Action Class

Figure 3. Improvement in F'1 score across classes on a segment
level when comparing a single frame to an 8 frame temporally
aware TSM model.

6. High Resolution Hand model - Sequence
Level

For completeness we also include the difference in class
performance between a baseline TSM model and our high
resolution hand model on sequence level. Figure 4 shows
that there is virtually no change in no action performance
on a sequence level, again suggesting high resolution hand
features are improving the models ability to distinguish be-
tween classes rather than distinguish between an action and

no action.

=05
—
—
-

Sequence Class F1@loU
—
—

remove washer af

k-

place washer
tights

Action Class
Figure 4. Improvement in F'1@JoU > 0.5 score across classes
on a sequence level when comparing an 8 frame temporally aware
TSM model to an equivalent model with our high resolution hand
enhanced features.

7. Model Prediction Visualisations

In the following section we produce two model predic-
tion visualisations extracted from two extended unseen as-
sembly sequences using an 8 frame TSM model with high
resolution hand feature enhancement. Figure 5 and 6 show
class colour coded predictions against ground truth predic-
tions in grey, with black predictions representing incorrectly
predicted frames.

As can be seen, despite the model operating in a sliding
window fashion it is capable of accurately classify nearly
all actions, predicting the start and end of actions success-
fully despite not being explicitly trained to do so. One
notable challenging scenario encountered by the model is
rapid changes from one action to another which are often
separated by a few frames of “no action”. This problem is
highlighted in Figure 6 when the operator repeatedly places
a screw on the product and then tightens the screw with their
hand. In this situation the model is liable to miss many short
no action segments - combining them into one of the rapidly
changing actions, however can still accurately segment the
respective actions with very good precision.

References

[1] Chun-Fu Chen, Rameswar Panda, Kandan Ramakrishnan,
Rogerio Feris, John Cohn, Aude Oliva, and Quanfu Fan. Deep
analysis of cnn-based spatio-temporal representations for ac-
tion recognition, 2021.

[2] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and
Andrew Zisserman. The kinetics human action video dataset,
2017.

*90uanbas 09PIA POpUAIXS Ue Uo suondIPaId [opoIA *S IS

mwely

oz 0001 osL oo 0 il
— I
I I
- L
] - -
|
[]
-
-
-
-
-
-
| —
_— -
1
—
N — e
I .
I —
I
I E— L_} - | - I I
H H N E— -— - L] N B I

-00uanbas 09pIA PapulXa ue uo suondIpaid [9poIA ‘9 AInSL]

ey
0o 000g (Ui} oot oo o
L __§ |
LN |
I - - _— — N - - —
— - [} - | [} |
-
[
-
-
-
-
)
-
- n [} [} [] (] -n
- - -_— - - - -
—_— -
| [R B | L] 1 | 1 1 1 I
— _— -_— — _— — _— - —
(N —
I N
I
I
— [| N B B H I D |
— NN B EEEE LB - L] L e | - - L & B §] -

(3]

(4]

(3]

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In Proceedings of
the IEEF International Conference on Computer Vision, 2019.
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. 2018.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Van Gool. Temporal segment networks:
Towards good practices for deep action recognition. In Bas-
tian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision — ECCV 2016, pages 20-36, Cham, 2016.
Springer International Publishing.

