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Abstract

Face recognition technology has advanced significantly
in recent years due largely to the availability of large
and increasingly complex training datasets for use in deep
learning models. These datasets, however, typically com-
prise images scraped from news sites or social media plat-
forms and, therefore, have limited utility in more advanced
security, forensics, and military applications. These appli-
cations require lower resolution, longer ranges, and ele-
vated viewpoints. To meet these critical needs, we collected
and curated the first and second subsets of a large multi-
modal biometric dataset designed for use in the research
and development (R&D) of biometric recognition technolo-
gies under extremely challenging conditions. Thus far, the
dataset includes more than 350,000 still images and over
1,300 hours of video footage of approximately 1,000 sub-
jects. To collect this data, we used Nikon DSLR cameras,
a variety of commercial surveillance cameras, specialized
long-rage R&D cameras, and Group 1 and Group 2 UAV
platforms. The goal is to support the development of algo-
rithms capable of accurately recognizing people at ranges
up to 1,000 m and from high angles of elevation. These ad-
vances will include improvements to the state of the art in
face recognition and will support new research in the area
of whole-body recognition using methods based on gait and
anthropometry. This paper describes methods used to col-
lect and curate the dataset, and the dataset’s characteristics
at the current stage.

1. Introduction

The Biometric Recognition and Identification at Altitude
and Range (BRIAR) program was conceived to advance
the current state of the art in the areas of face, gait and
whole-body (WB) biometric recognition under challeng-
ing, uncontrolled condition in full-motion video. This in-
cludes supporting capabilities such as person detection and
tracking, image enhancement, and atmospheric turbulence
mitigation. To achieve these goals, the BRIAR program
is building a one-of-a-kind dataset to foster the creation
of algorithms to address these challenging scenarios. The
BRIAR program will be implemented in several phases,
where each phase includes new data collections to add to
this dataset, as well as research phases that aim to produce
models trained on this new dataset with ever-increasing per-
formance goals. The individual data collections are specif-
ically planned to span varying terrain, weather, and atmo-
spheric conditions and to bolster the demographic diversity
of the subject pool. During the first phase of the program,
BRIAR Government Collections 1 (BGC1) and 2 (BGC2)
were designed to target these problems.

Real-world implementations of existing algorithms for
face and WB recognition commonly ingest video media
from commercial security cameras. Data captured by these
sensors is of varying quality, which can degrade algo-
rithm performance and represents a significant shortcom-
ing in biometric recognition[14]. To provide a truly eclectic
dataset in terms of imaging sources, the BRIAR dataset will
contain image and video data captured not only by commer-
cial surveillance cameras but also by specialized sensors ca-
pable of obtaining high-quality video footage of subjects at
ranges of up to 1,000 m and at a view angle of up to 50°.
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Many promising applications of biometric algorithms are
further limited by the absence of training data captured from
sensors mounted on unmanned aerial vehicle (UAV) plat-
forms. Such platforms are becoming increasingly present in
commercial, industrial, and defense applications. To push
the boundaries of newer algorithms, the BRIAR BGC1 and
BGC2 datasets will also include face and WB video footage
taken from altitudes of up to 400 m from four different plat-
forms, both stationary and changing position along three
axes over the course of a single recording.

1.1. Contributions

The BRIAR dataset makes makes two significant contri-
butions. First, it establishes a one-of-a-kind dataset com-
prising still images and videos of subjects from multiple
ranges and elevations across two sets of clothing. Second,
it enables researchers to expand the current state-of-the-art
algorithms by leveraging the uniqueness of the dataset and
the unexplored imaging challenges that it provides.

Several key features make this dataset truly novel.
Although many existing datasets provide images and/or
videos that are either exclusively constrained or exclusively
unconstrained[16][18], the BRIAR dataset contains high-
quality close-up images and variable-quality unconstrained
videos affected by atmospheric conditions (e.g., turbulence,
rain, shadow). Videos of each subject can range from 4K
quality at less than 10 m to high definition at distances up
to 1, 000 m and include representations of both cooperative
and noncooperative behavior.

The unique features of this dataset will allow IARPA’s
R&D teams to advance the current state of the art in the
areas of face and WB detection and recognition and per-
son tracking and reidentification. At this time, BRIAR
datasets are available to US Government (USG) researchers
and their contractors upon request. Interested parties should
contact the authors, who will forward the request to the ap-
propriate USG representatives.

1.2. Paper Organization

The remainder of this paper is organized as follows: In
Section 2, we provide background information on the lim-
itations that the BRIAR dataset is intended to address and
discuss several key considerations in the dataset’s develop-
ment. Section 3 provides an examination of related work
and summarizes the unique goals challenges related to the
collection of this dataset. In Section 4, we discuss the
dataset collection protocols and methods, the nature of the
unconstrained imaging used in the collection, and details of
the collection sites. In Section 5, we describe data post-
processing methods, metadata, and means of annotation. In
Section 6, we discuss characteristics and limitations of the
dataset. Finally, Section 7 presents a road map for future
expansion of the BRIAR dataset.

2. Background
Biometric Identification at range or from extreme pitch

angles is an important area of continuing research, and has
many use cases to society at large. The USG is approved
to apply such capabilities as measures towards supporting
counter-terrorism, protection of critical infrastructure and
military forces, and border security. Although there is a
great need for such technology, current state of the art does
not adequately address these extreme imaging scenarios.

2.1. Challenges at Altitude and Range

Deep learning has pushed the state of the art in face
recognition such that real successes can be achieved even
when addressing unconstrained images of individuals. As
noted in [19], this success in so-called in-the-wild face
recognition (e.g., various poses, expressions, angles, and
lighting conditions) is due in part to both the advances of
convolutional neural network–based deep learning meth-
ods as well as the curation of very large training datasets.
Although recent deep learning techniques have strength-
ened unconstrained face recognition, this particular dataset
presents unique challenges that remain unsolved.

As the distance to the subject increases, the available
number of pixels across the face that can be used to form
a facial template decreases. When available, WB imagery
inherently contains more pixel data than facial imagery at
a given standoff distance. At greater distances where sta-
ble facial information becomes unattainable due to lack of
pixels, WB biometrics may still be provide viable signa-
tures from an individual. To address these WB imaging
considerations in the BRIAR BGC collections, we have se-
lected an extensive set of cameras with various resolutions
and optical characteristics, from low-end sensors to high-
end diffraction limited systems. . Likewise, the extreme
pitch angles achieved by both elevated ground systems and
UAV-mounted systems allow for the collection and evalu-
ation of face and WB videos at more severe angles than
typically common in other unconstrained datasets. To com-
pound the resolution and pitch angle issues for all such face
and WB videos and images, atmospheric distortions created
from weather conditions during the collection increase the
challenging nature of imagery within this dataset.

The BRIAR collection procedure ensures that most sub-
jects will have some ideal and high-quality media suitable
for current biometric algorithms. The focus of the program,
however, is to capture very challenging media, including
extreme ranges up to 1,000 m, very low resolutions, severe
elevation angles, and a variety of locations and weather con-
ditions. In particular, the collection process is designed to
capture the following challenges per each subject:

• Distances: 100 m–1,000 m
• Face width (Resolution): 10 pix–32 pix
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• Body height (Resolution): 50 pix–200 pix
• Yaw angles: Full 360°
• Multiple climates, locations, weather conditions (all

contribute to atmospheric distortions)

The BGC1 dataset was collected using visible-spectrum
cameras categorized broadly into three classes: (1) indoor
and close-range cameras, (2) mid-range cameras, and (3)
specialized cameras. The class of indoor and close-range
cameras comprises commercial security cameras that lever-
age wide fields of view. This class of cameras also includes
standard digital single-lens reflex (DSLR) cameras used for
passport-like still images. These systems are used at either
the indoor, controlled collection (detailed in Section 4.1)
or at close distances. Mid-range cameras have larger zoom
range, are capable of narrower fields of view, and are often
high-end commercial off-the-shelf (COTS) systems. These
camera systems are leveraged for facial imaging up to 300
m and WB imaging up to 600 m. Finally, the specialized
camera class comprises custom integrated imaging systems
using high-end optics and sensors specifically selected to
achieve optimal imaging at range. These systems can be
adjusted to achieve higher resolutions, variable frame rates,
or other imaging optimizations.

The specialized class of cameras includes long-range and
military-grade cameras designed specifically for surveil-
lance from significant distances. These systems are either
speciality COTS systems or imaging systems actively used
in strategic operations. While BGC1 does not include me-
dia captured from long-range or military-grade cameras or
sensors stationed at ranges exceeding 500 m, the BGC2
collection did incorporate such systems to produce sam-
ples reflecting increasingly challenging imaging conditions.
Long-range and military-grade cameras were stationed be-
tween 600 m and 1 km from the collection area.

2.2. Societal Impact

Biometric identification systems provide vital intelli-
gence to advance the mission of national security. They sup-
port efforts to mitigate crime, reduce terrorism, combat hu-
man trafficking, improve public safety, and save lives. De-
spite these advantages, these systems are not without flaws,
and they are not invulnerable to misuse. Without adequate
controls, they can be used to violate privacy, infringe upon
the civil liberties of law-abiding citizens, and suppress po-
litical opposition. Certain guiding principles must remain
central to organizations and individuals developing and uti-
lizing biometric tools, and these include compliance with
all applicable laws, transparency and accountability, equity
and objectivity, resiliency, scientific rigor, and the ultimate
authority of human judgment [1].

Equality is an important goal of the program across all
individuals, demographic groups, and body types. Diver-

sity of the subject pool is a key goal of data collection ef-
forts and will be of high importance for algorithm evalua-
tions. To ensure proper use of the dataset, access requires
approval from IARPA and Institutional Review Board re-
view, and appropriate measures to protect the privacy of the
human subjects have been implemented to ensure data use is
ethical and serves US interests; follows applicable US laws,
regulations, and policies; and protects civil liberties.

3. Related Work
Multiple large-scale data collections have been pub-

lished that are focused on the identification task. BRIAR is
unique among them due to the sensor-to-subject distances
for both ground and aerial cameras. The most relevant
datasets are shown in Table 1, where a significant number
of subject identities were captured, cameras were placed at
long distances to the subjects, or aerial views with other rel-
evant details such as appearance changes were present. A
few datasets do not state their maximum range or subject-to-
sensor distance, so only an estimate is provided. Similarly,
the UAV altitudes are missing, but the authors typically use
consumer-type drones. Unless a Certificates of Waiver or
Authorization (COA) is granted for a given collection, the
maximum elevation of UAV datasets is estimated to be the
Federal Aviation Administration (FAA) limit of 400 ft [2].

The IJB-MDF (IARPA Janus Benchmark Multi-domain
Force) dataset captured 251 subjects in indoor and outdoor
settings at various ranges and with various camera types.
Mugshot-style photos with frontal and side views and at
pitch angles of ±15 degrees. The longest visible camera
was stationed 500 m from the subjects. The data collection
made use of multiple IR cameras, but they were stationed
only at close ranges [12].

Conversely, the UG2+ dataset and challenge [22] pro-
vides unconstrained video captured from UAVs, gliders,
and ground videos, however provides no direct focus on
biometric recognition or identification.

Clothing change can cause siginificant degredation in
WB recognition, and is an open area of research. The
vBOLO dataset [17] and the IJB-S (IARPA Janus Bench-
mark Surveillance Video Benchmark) dataset contains im-
ages and video of subjects with considerable appearance
change. The IJB-S dataset consists of 202 subjects taken
over two weekends. Forty of the participants participated in
both weekend collects, so it can be assumed that those sub-
jects had clothing changes.Both IJB-S and vBOLO Videos
were taken in a variety of scenes to resemble real-life oper-
ational environments including subway station, bus station,
embassy, and marketplace. Subjects were also recorded for
parts of their routes between the different scenes. Some sce-
narios featured multiple participants at a time. COTS cam-
eras were used, and an for IJB-S, a UAV was flown over the
collection area to record video [13].
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Figure 1: Controlled collection image example of a subject. The
top row contains the five neutral face still images. The bottom row
displays five of the eight collected angles for standing, WB still
images.

IARPA’s MEVA (Multiview Extended Video with Activ-
ities) contains data from surveillance-type cameras set up
in areas such as a school building, bus stop, subway sta-
tion, and parking areas. The dataset also contains UAV data
from a pair of DJI drones and labeled activities. The sub-
jects also carried GPS trackers, which is a unique feature of
this dataset[5].

P-DESTRE, PRAI-1581, RPField, DukeMTMC, and
UCCS datasets were all collected on college campuses or
public spaces, so those contain a significant number of
unique identities. However, they are all lacking in terms of
long distances and high elevations [15, 10, 21, 26, 24]. The
UCCS dataset uniquely contains recordings from different
seasons, so there are significant environmental and cloth-
ing changes. The P-DESTRE dataset features only clothing
changes. PRAI-1581 and P-DESTRE solely consist of UAV
imagery, but the drones are flown at less than 60 m. PRAI-
1581 only publicly provides WB image crops instead of the
full video, so it is labeled as a nongroup dataset in Table 1.

The Long-Range Face Identification Dataset (LFRID)
(currently unpublished) was collected by the US Army
C5ISR (Command, Control, Communications, Comput-
ers, Cyber, Intelligence, Surveillance, and Reconnaissance)
Center for the purpose of studying face recognition at long
ranges up to 1,000 m with significant atmospheric and tur-
bulence effects. It is ideal for research of long-range iden-
tification but, compared to BRIAR, contains fewer subjects
(just 149) and locations (just one: hot and arid). In addi-
tion, 49 of the subjects are in a sequestered dataset for US
government evaluation only.

4. Data Collection Methods
The BRIAR dataset is composed of images and videos

captured in a controlled indoor setting and videos captured
in an semicontrolled field setting. While most subjects com-
pleted the full scope of activities, a subset completed only
the controlled portion and are included in BRIAR Test Set
1 and BRIAR Test Set 2 as distractors that help simulate
a larger gallery. Regardless of whether subjects were as-

signed to the full collection or to the distractor pool, in most
cases they performed all of their designated activities twice,
each time in different clothing. Evaluations will focus on
cross–clothing set matching to discourage reliance on tradi-
tional Re-ID methods as well as focus algorithms on actual
biometric identification. Because it was not always logis-
tically possible to provide private changing areas, partici-
pants were instructed to bring additional clothing that they
could put on over their first outfit. Those who brought a sec-
ond pair of shoes also changed footwear, which may pro-
vide an additional challenge for gait recognition methods.
We requested that subjects remove hats and sunglasses if
they were comfortable doing so but permitted them for out-
door activities if subjects were concerned about excessive
sun exposure.

For all subjects, hardware time was synchronized using
Network Time Protocol services or GPS devices. Study
team members recorded timestamps for when subjects
started and stopped activities using a desktop application
developed and maintained specifically for BRIAR data col-
lection. The timestamps were then used during data cura-
tion activities to cut videos into segments associated with
individual subjects and to associate the media with addi-
tional metadata such as weather measurements. Although
most equipment produces timestamps with precision of a
few hundredths of a second, some commercial surveillance
cameras can have 2–3 seconds of lag or drift, making pre-
cise time alignment challenging. For most metadata, this is
not a problem, but it does cause challenges when trying to
precisely label activities or some covariates related to sub-
ject movement such as yaw and pitch angle estimates.

4.1. Controlled Collection

Operationally, biometrics involve the use of constrained
images like those used for government-issued IDs or
mugshots. To build a set of images and videos in a con-
trolled setting mimicking these conditions, we created three
indoor stations: two stations for still images and one station
for video-recorded activities. Our procedure is intended to
capture more yaw and elevation angles than would typically
be captured for a photo ID or mugshot. This is intended to
enable recognition from more angles (especially elevation)
as well as to support WB and gait recognition. We took still
photographs of subjects at two stations. Each station had
three Nikon DSLR cameras mounted at different elevation
angles that were configured to trigger simultaneously for
each pose. The first station (shown in Figure 2a-1) captured
passport-quality (i.e., neutral) face images from elevation
angles of 0°, 20°, and 30°and yaw angles of -90°, -45°, 0°,
45°, and 90°with respect to the camera. The second station
(Figure 2a-2 captured WB images from elevation angles of
0°, 20°, and 50°, and a full 360°rotation of yaw angles in
increments of 45°. Examples of these images can be seen in
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Dataset # Subjects Max. range Max. elevation Appearance change Groups

IJB-MDF 251 500 m Ground No Yes
IJB-S 202 Estimated <500 m FAA limit Yes (40) Yes
RPField 112 + ˜4,000 distractors 158 m Cameras on poles No Yes
PRAI-1581 1,581 60 m No No
MEVA 100 Estimated <500 m FAA limit No Yes
UG2+ N/A Estimated <500 m FAA limit No No
UCCS 1,732 150 m Ground Yes Yes
DukeMTMC 2,700 Estimated <100 m Estimated <10 m No Yes
P-DESTRE 269 6.7m Yes Yes
LFRID 100 (+ 49 sequestered) 1000m Ground No No
BGC1 (ours) 312 (+ 161 distractors) 500 m 400 m Yes No
BGC2 (ours) 302 (+ 280 distractors) 1,000 m 400 m Yes No

Table 1: Comparison to other identification-focused datasets that share similarities to BRIAR.
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(a) Top-down view of the BGC1 collection site layout. The physical left-to-
right distance spans nearly .5 mi. Labeled areas: (i) intake tent (not shown
in Fig. 2b), (ii) controlled collection tent(not shown in Fig. in 2b), (iii)
dome camera mast, (iv) outdoor collection tent, (v) 100 m range cameras,
(vi) 200 m range cameras, (vii) 300 m range cameras, (viii) 400 m range
cameras, (ix) 500 m range cameras, (x) weather capture, (xi) UAV control
center, (xii) UAV landing pad , (xiii) sensor research
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(b) Top-down view of the BGC2 collection site layout. Unlike in BGC1
Fig. 2a, BGC2 intake and control collection areas are located in a separate
area Labeled areas: (xiv) 800 m range cameras (added in BGC2), (xv) 1000
m range cameras (added in BGC2)

Figure 2: Collection setups for BGC1 and 2. Common
Numbered activity stations: (1) height and weight collec-
tion, (2) face passport image collection, (3) body passport
image collection, (4) controlled walking arena, and (5&6)
outdoor walking arena.

Figure 1. After completing both image stations, each sub-
ject then proceeded to a semicircular area with 10 indoor
close-range bullet-style security cameras arranged around
its arc to collect gait data:

• Structured walking – The subject completed two
back-and-forth passes along a straight line spanning
the diameter of the semicircle.

• Random walking – The subject walked a random path
within the semicircle for 20 seconds, holding their
phone during the second half of the 60 second period.

In the first collection event, the controlled portion took place
in a large tent to simulate an indoor setting. In subsequent
events, this portion took place indoors in a lab space and a
conference room.

4.2. Field Collection

All field collection activities took place inside a 10 m ×
10 m square area with cones marking the corners and mid-
points of each boundary, as seen in 3 and 2a 5&6. Colored
lines intersected in the middle of the area and extended to
the cones. Subjects performed the following three activities:

• Standing – The subject stood in the center and rotated
incrementally such that they faced along each marked
line for 10 seconds.

• Structured walking – The subject walked back and
forth along each colored line one time to get videos
from eight different directions.

• Random walking – The subject walked a random path
within the square for 60 seconds, pretending to send
text messages and make a phone call during the latter
half of the 60 second period.

Range Stations. Cameras were grouped into stations
designated by distance in meters from the field collection
box. They were mounted on tripods on the ground, elevated
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on masts, or installed on the rooftops of buildings. Unlike
the controlled collection outlined in section 4.1, the field
collection layout differed between collection events due to
the terrain and layout of the sites. Stations were laid out in
a best-fit design to ensure the best use of range within the
hosting location and economy of power sources. Ranges
of up to 1000m are represented in the dataset, though the
specific ranges selected for each collection differed. In
addition, multiple cameras were deployed along the front
edge of the collection box. These included surveillance
cameras for high-resolution close-range imaging and Intel
RealSense depth cameras for tracking subjects’ movements
and positions across time. Several surveillance cameras at
close-range were mounted to a mast to capture the subject
box from 30°and 50°pitch angles. Details of the close-range
sensor layout can be seen in Figure 3.

Range cameras were categorized as follows:

• Commercial surveillance cameras – We selected
cameras that cost between $500 and $10k and rep-
resent a range of quality typical of standard security
systems. Some of the highest-quality cameras were
placed up to 500m from the subject box, which may
exceed their usable range for biometric identification.

• Military-grade cameras – These are typical of high-
end and long-range military or border control cameras
in a price range from $100k to $1.5M. These are built
for very-long-range surveillance but not necessarily in-
tended for biometric recognition. These were deployed
at distances of 500m to 1,000m.

• Specialized cameras – These cameras were custom-
built for this research. While the purchase price is typ-
ically less than military-grade cameras, they do contain
sensors and optics with similar characteristics. These
camera systems were designed with BRIAR program
goals in mind and are used to explore key research
topics. Sensors use global shutters, both color and
grayscale configurations, and shorter integration times
to help with turbulence and motion blur. Optics are
typically high-end and carefully selected to provide
high-quality images from 200m to 1,000m distances.
These cameras also record two video streams: a high-
quality compressed H264 stream and a lossless video
stream to better support image enhancement research.

The BGC1 collection was held at the same location at
two different times of year. Additional systems were de-
ployed for the second part of the collection. The first por-
tion of the BGC1 collection comprised four range stations at
100m, 200m, 400m, and 500m distances from the center of
the subject box. Two stations were deployed on either side
of the subject box, allowing for two different view angles.
The second portion of the BGC1 collection added a 300m
imaging station with the same view angle as the 400m and

Figure 3: Close-range station example from BGC1. The image
on the left is a single frame collected from an elevated surveillance
camera. The images on the right are frames from the standing and
walking portions of the subject collection viewed from ground-
level cameras.

500m stations. The top-down view of the BGC1 deploy-
ment can be seen in Fig. 2a.

The BGC2 collection event included more stations and
cameras, with the furthest distance from the subject mea-
suring 1,000m. The layout of the collection site also re-
quired that the range stations be oriented to the subject field
box from multiple view angles, some of which were placed
on rooftops. Seven range stations deployed in BGC2.
The 100m and 800m stations consisted entirely of cameras
mounted to ground-based tripods. The 600m station con-
sisted of both cameras mounted to ground-based tripods
as well as mast-mounted cameras. The 1,000m stations
consisted of a single mast-mounted system. The 270m,
370m, and 490m stations were deployed on rooftops. The
high variability in view angles and deployment methods ul-
timately led to a more diverse dataset in terms of image
quality and impacts by atmospheric perturbations. The top-
down view of the BGC2 deployment can be seen in Fig. 2b.

UAV Collection. We collected data using a variety of
UAV platforms ranging in size from small quadcoptors to
moderately sized Group 2 fixed-wing aircraft. The plat-
forms were selected to represent operationally relevant air-
craft similar to those used by the military or law enforce-
ment agencies. In some cases, civilian proxies were used
when there were difficulties obtaining some platforms. A
list of aircraft used in the collections is shown in Table 2.
On a typical collection day, the R80D, Puma, and Super-
Volo were flown to cover larger aircraft while smaller quad-
copters flew patterns at low altitude near the collection box.

The platforms represent a variety of sizes and designs
to simulate a number of scenarios. Up to four aircraft op-
erated simultaneously during the collection and were typ-
ically separated at a range of altitudes and distances from
the collection box. Flight time was an important considera-
tion for the platforms; whereas larger aircraft could operate
for hours at a time, the smaller quadcopters needed to be
swapped every few subjects to change batteries. Keeping all
aircraft operating proved to be very challenging due to fre-
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quent issues with battery swaps, maintenance, and weather.

5. Dataset Curation and Organization
Once collected, data is separated into the BRIAR Re-

search Set and the BRIAR Test Set. A stratified partitioning
was performed across race, age, gender, body mass index,
and height. Both partitions were provided to the Performer
teams with the understanding that no subjects from the test
set were to be used in training datasets. Raw recordings
were cut into segments where each final video included one
subject, one clothing set, an one activity.

5.1. Metadata

Metadata for each piece of BRIAR media is documented
in an accompanying file in a standardized biometrics XML
format [7]. Though the availability and relevance of cer-
tain metadata varies across individual sensors and sensor
types, all media XML files contain details about the piece
of media itself such as resolution, frame rate and duration,
demographic and media-specific information about the sub-
ject, and sensor details. Metadata for field videos includes
environmental information such as venue descriptions and
metrics describing atmospheric conditions.

5.2. Annotation

Metadata for videos also includes annotations, which
were generated using a combination of automated methods
and manual efforts. Using RealSense cameras and elevated
views, it is possible to track the subject’s position within
the field collection box. This provides an estimate for the
video sequence and identifies the different segments of the
standing and structured walking activities. Directions dur-
ing these segments are known and can be used to label with
accuracy the expected yaw angle relative to each camera po-
sition. The assumption is that the subject’s yaw angle pose
stays stable throughout that segment. This activity timing
metadata is made available within the dataset.

Automatic Annotation. A high-level description of the
initial automated annotation method is presented here. An-
notations consist of non-rotated bounding boxes localizing
the face and whole body of subjects in each video as well as
yaw and pitch angles of the detected face. The face bound-
ing box attempts to follow the annotations within the IJB-C
(IARPA Janus Benchmark C), where the bounding box en-
capsulates the entire head if a significant part of the face is
visible [20]. The WB bounding boxes intuitively capture the
entire extent of a person such as their limbs even when ex-
tended. Yaw and pitch angles of the head denote a side–side
and up–down movement, respectively. An exactly frontal
image of a head would have a 0°yaw and pitch. The cur-
rent methodology for detections involved using YOLOv5
and the InsightFace package [11, 9]. Both are popular high-
performing detection models trained on large datasets, so

they were deemed suitable for the wide variety of envi-
ronments to be encountered in the BRIAR data collection
events. Face and WB detection was performed at 0.1 sec-
ond intervals to achieve higher throughput due to the dataset
size. Initially, annotation was performed utilizing software
frameworks such as FaRO [6, 3] and the BRIAR specific
API [4] to quickly deploy automatic annotation pipelines.
However, as annotations became more fine-grained and spe-
cific, use of these general frameworks were replaced by nar-
rower, more powerful workflows, detailed below.

Ideally, the subject should be the only person visible;
however, other study team members were observed in mul-
tiple videos. It is very challenging to keep extra people out
of view, especially in the UAV videos, given the constant
motion of the vehicle and the wide field of view. Therefore,
DG-Net++ was utilized to compute a similarity score for
each WB detection against the most appropriate controlled
image available [27]. In the final datasets, these extra peo-
ple were removed by placing boxes over their image.

Yaw angles were computed based on 2D joints extracted
from either the constituent video or from a close-range
video that was recorded simultaneously [23]. These yaw
angles were used to find the most similar controlled image
for comparison with DG-Net++. Tracklets were generated
for each initial bounding box using BYTE and filtered by
the similarity score statistics [25].

Most face detection models produce close crops of the
face, which does not follow the style used in the IJB-C
dataset. Therefore, 3D facial landmarks were generated
with the ”3d68” model from the InsightFace project. A set
of heuristics based on the landmark points was used to out-
put a bounding box encapsulating the entire head when a
face is detected. Yaw and pitch angles were also derived
from the same landmark points. Only overlapping face and
WB bounding boxes were kept based on the WB detection
processing mentioned previously in Section 5.2.

Manual Annotation for this dataset was used to ver-
ify the automatic annotations and fill critical gaps such as
frames with challenging poses, partially occluded faces and
bodies, and poor illumination conditions. Data was care-
fully selected for manual annotation to maximize impact
and mitigate quality assurance issues due to resolution, ex-
treme angles, ranges, and weather conditions. WB refer-
ence images captured in a controlled environment at a pitch
angle of 0° were provided with videos of interest to verify
subject and clothing set. In some cases, annotators were di-
rected to perform additional screening for extraneous peo-
ple in the background of videos to ensure that they were
excluded from all released data. These cases were deter-
mined by finding WB tracklets that had temporal overlap
in a video. The manual annotators are sent the minimum
number of frame numbers to determine which of the WB
detections correspond to the desired subject.
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Manufacturer Name Payload Type Typical altitude Flight time

Skydio X2 – Quadcopter 50 ft 0.5 hr
Autel Evo II Dual – Quadcopter 50 ft 0.6 hr
Parrot Anafi – Quadcopter 50 ft 0.75 hr
Parrot Anafi USA – Quadcopter 50 ft 0.75 hr
FLIR R80D Zoom 30 or EO/IR MK-II Quadcopter 200 ft Tethered
Aerovironment Puma MANTIS i45 Fixed Wing 600 ft 2.5 hr
The Hybrid Project SuperVolo Trillium HD45 Fixed Wing 1,200 ft 8.0 hr

Table 2: A list of aircraft used in BRIAR collections

6. Dataset Characteristics

We faced significant challenges to recruiting an ideal dis-
tribution of demographics across the subject pool. These
challenges can be attributed to the regional demographics of
eastern Tennessee, the collection location, and scheduling
limitations. The collection site was not accessible by pub-
lic transportation, and available appointments fell within
standard business hours. BGC1 skews female, white, non-
Hispanic, and older than age 50. We were able to improve
the demographic imbalances somewhat in BGC2 by offer-
ing weekend participation and collecting in central Georgia,
where the regional population is more diverse. Diverse rep-
resentation across race, ethnicity, and gender is essential to
combating performance differentials known to affect even
the most accurate face recognition algorithms [8]. Given
that a fundamental aim of the BRIAR program is to con-
tribute a high-quality body of data that is inclusive of nu-
merous covariates, eliminating disparities of this type is a
top priority. We anticipate that by conducting subsequent
collection events in different regions throughout the United
States and recruiting participants with diversity in mind, we
can build a demographically balanced dataset.

Additionally, data collection endeavors as complex and
ambitious as these are vulnerable to numerous points of fail-
ure. To date, some of these have included equipment fail-
ure, network inconsistency, inclement weather, and human
error. Equipment failures encompass sensor malfunction,
software instability, and mechanical defects or damage. In-
clement weather can preclude UAV platforms from flying or
cause them to crash, as well as introduce severe imaging re-
strictions. In particularly severe weather, it would be unsafe
for researchers and subjects to proceed, although it slows
down collection activities. Human error can adversely im-
pact all aspects of data collection including proctor record-
ing, equipment setup and usage, and inconsistent adherence
to protocols over time. BGC1 and BGC2 contain, however
sparsely, reflections of these impacts. The primary exam-
ple of this is missing media files from certain sensors for
certain subjects. Iterative imporvements are being made in
subsequent phases to mitigate these issues, but none of these
things is assuredly avoidable at all times.

7. Conclusions and Future Work

This dataset will be a groundbreaking addition to the
field of biometrics and will enable advances in face and WB
recognition previously hampered by the absence of clean
data targeting extreme range and pitch.

Over the next three years, we will hold six more large
collection events that will feature increasing complexity and
naturalism. To the extent possible, each collection phase
will take place in a different US region with unique environ-
mental factors and a new set of subjects. Capturing data that
represents varied terrain, climate and weather conditions,
and considerable demographic representation is vital to the
thorough development and rigorous evaluation of recogni-
tion algorithms intended for high-stakes use case scenarios.
Ultimately, the goal for the completed dataset is participa-
tion by over 3,000 subjects.

The final product will be a rich dataset that can be used
for a variety of experiments involving detection, enhance-
ment, face and WB recognition, and reidentification.
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