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Abstract

A typical automated face recognition system is composed
of three main component tasks: face detection and align-
ment (FDA), face presentation attack detection (FPAD), and
face representation and matching (FRM). These tasks are
often treated as standalone problems and deep neural net-
work (DNN)-based solutions have been proposed to address
them individually. However, in resource-constrained sce-
narios it would be ideal to have a unified DNN model that
can perform all the three tasks together. As a first step
towards realizing this goal, this work attempts to perform
joint FRM and FPAD based on a single Vision Transformer
(ViT) backbone. Recent work demonstrating the ability
of ViT to extract a diverse set of feature representations
gives rise to the tantalising possibility of building an end-
to-end face recognition system using a single ViT model.
The standard approach for designing multi-task DNNs is
to implement different classification heads (e.g., for FRM
and FPAD) based on a common stem/base and learn these
heads either individually or jointly. A key contribution of
this work is to demonstrate that this naive multi-head ap-
proach results in sub-optimal performance for either FRM
or FPAD, because the features required by these tasks are
very different. While good FPAD performance depends on
accurately characterizing the micro textures, face match-
ing demands attention towards more global characteris-
tics. Hence, we propose a novel feature ensemble approach,
where an ensemble of local features extracted from the in-
termediate blocks of a ViT are utilized for FPAD, while face
matching is performed based on the ViT class token. Exper-
iments demonstrate that the proposed ViT feature ensemble
approach is able to achieve good performance for both face
matching and FPAD compared to the multi-head approach.

1. Introduction

Face recognition is one of the challenging applications
of computer vision and face recognition systems are widely

used for authentication and access control purposes in per-
sonal devices as well as border security and surveillance ap-
plications [20]. A face recognition system often consists of
multiple modules stacked together to accomplish an end-to-
end system. Typically, a face recognition system starts with
a face detector that is capable of detecting the existence of
faces in images or videos and identifying key points (land-
marks) in the detected faces [54]. These landmarks are used
to canonically align faces before they are matched. The face
matcher extracts features from the aligned faces and com-
putes a similarity metric that signifies whether two faces
belong to the same identity or not [47] [36]. Given the pre-
dominant use of face recognition for authentication and ac-
cess control tasks, there is a strong incentive for malicious
users to fool the face recognition system by presenting a
pre-captured photo/video or by wearing a mask/accessory.
Such physical attacks on the camera sensor are known as
presentation or spoof attacks [28]. To counter the vulnera-
bility of face recognition systems to presentation attacks, a
face presentation attack detector is usually applied before
feeding the faces to the face matching module [47].

All the three key tasks in a face recognition system,
namely, face detection and alignment (FDA), face represen-
tation and matching (FRM), and face presentation attack de-
tection (FPAD) are usually considered as standalone prob-
lems. Over the last five decades, methods for solving these
tasks have evolved from using traditional hand-crafted fea-
ture extraction approaches [5, 23] to the use of deep convo-
lutional neural networks (CNN) [38, 33]. The use of mul-
tiple deep neural network (DNN) models within the face
recognition pipeline creates an implementation challenge in
resource-constrained settings such as edge devices. Given
that all the three tasks are somewhat correlated, it is de-
sirable to have a unified model that jointly performs these
tasks. To the best our knowledge, the challenge of solving
all the three tasks simultaneously and designing an end-to-
end face recognition system using a single machine learning
model has never been addressed in the literature. Towards
achieving this goal, this work aims to design a unified DNN
model for joint FRM and FPAD. Similar attempts have been
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made in the biometrics literature, both in the case of face
[53] and fingerprint [35] modalities, where multi-task CNN
architectures have been proposed.

Transformer networks [43] use the concept of self-
attention to robustly learn global relationships between in-
dividual elements of the input space. Exploiting this idea,
Vision Transformer (ViT) [14] models have been success-
fully developed for various computer vision tasks including
image classification [14], segmentation [39] and object de-
tection [9]. Since ViTs have shown the ability to extract
diverse features from images and jointly address multiple
tasks [6, 31], we argue that ViT is an ideal choice to be the
core backbone of a face recognition system. A simple ap-
proach to design a multi-task ViT model is by implement-
ing individual classification heads for each task on top of
a shared ViT-based feature extraction backbone. However,
this approach is likely to fail when the tasks are not entirely
complementary. For example, the FRM task typically relies
on the extraction of global semantic features from the face
image for achieving good face matching accuracy. Such
features are usually extracted by the deeper layers/blocks
of a ViT model. On the other hand, the clues required for
FPAD often lie in the micro texture features, which are ex-
tracted by the initial ViT blocks. Thus, the main contribu-
tions of this work are two-fold: (i) Develop a multi-task ViT
model for joint FRM and FPAD, and (ii) Propose a novel
feature ensemble approach that uses local representations
extracted by the intermediate ViT blocks to perform FPAD
and the global features to perform face matching.

2. Related work
2.1. Face Representation and Matching

Face recognition systems have evolved over the years
from the use of holistic methods [5, 18], handcrafted fea-
tures [23, 2], and local descriptors [8] to the use of deep
learning-based models. While earlier methods suffered
from the inability to handle large intra-user variations,
CNN-based methods [41, 40, 33, 38] have proven to be
more successful in handling this problem. Apart from the
network architecture, the importance of loss functions used
to train the CNN models has also been investigated in detail
leading to formulations such as SphereFace [24], CosFace
[45], and ArcFace [12]. Finally, Zhong and Deng [55] have
employed Vision Transformer (ViT) models for face match-
ing and showed that it achieves state-of-the-art (SOTA) per-
formance on large-scale datasets.

2.2. Face Presentation Attack Detection

Several techniques have been proposed for FPAD over
the years and most of these methods exploit the fact that
presentation attack instruments (PAI) can cause image qual-
ity degradation during recapture, which can be leveraged

to distinguish attacks from bonafide samples [15]. Hand-
crafted texture-based features [29, 10, 22, 7, 42] have poor
generalizability across different PAIs, camera devices, and
illumination conditions. While dynamic features extracted
from videos have been proposed for FPAD [32, 3], this ap-
proach requires user cooperation and degrades the usability
and throughput of face recognition systems [1].

Deep learning (especially CNN-based) methods have
shown good detection performance on various FPAD
benchmarks [51, 4]. Liu et al. [26] used a CNN and recur-
rent neural network (RNN) combination model for FPAD,
which employs auxiliary supervision utilizing depth and
temporal features to help alleviate the problem of poor gen-
eralization. George et al. [15] introduced a frame-level
CNN-based framework trained with binary and pixel-wise
binary supervision instead of using synthesized depth val-
ues. Several multi-channel (e.g., color, depth, infrared, etc.)
approaches have been introduced as a solution for handling
different types of attacks [44, 17]. While the multi-channel
approach makes it possible to achieve good FPAD perfor-
mance, the increased hardware cost for the additional chan-
nels limits their adoption in real-world systems. One of the
main issues with deep learning-based FPAD methods is the
limited availability of training data, because it is expensive
to collect a diverse set of presentation attacks. To mitigate
this issue, Liu et al. [27] proposed a Deep Tree Network
architecture trained in an unsupervised manner to partition
the spoof samples into semantically meaningful subgroups.
George and Marcel [16] introduced a simple pre-trained
ViT-based FPAD framework and investigated its effective-
ness for the problem of zero-shot FPAD.

2.3. Multi-task Vision Transformers

ViTs have been employed for jointly performing multi-
ple tasks. The naive approach is to use ViT backbone as
a feature extractor and add individual heads/classifiers for
each task. The limitation of the naive approach is the need
for a large-scale dataset that can be used for jointly train-
ing the network for multiple tasks and achieve good per-
formance for all of them. In [6], a single end-to-end trans-
former framework was proposed to jointly learn multiple
vision tasks using a shared attention mechanism to model
dependencies between tasks. An alternative approach is to
learn multiple class tokens for different tasks. For instance,
Naseer et al. [31] introduced a shape token that learns to
focus on shape representations in images in addition to the
original class token that learns texture related features.

It is also well known that features extracted by differ-
ent blocks of a ViT encode complementary information
[49, 30]. Specifically, the deep ViT features mainly focus
on global information, while the local information gets en-
capsulated in the low-level or mid-level tokens generated by
the initial transformer blocks. This was leveraged in [46]
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Figure 1. Illustration of proposed ViT feature ensemble framework for joint face recognition (FRM) and presentation attack detection
(FPAD). Unlike the traditional approach of adding multiple heads after a shared feature extractor, the proposed method allows the ViT
class token to focus on the global face information required for FRM and utilizes the micro texture features encapsulated by the patch
tokens of intermediate ViT blocks for FPAD. The representative face image is from the SiW dataset [26].

to design a cross-layer relation-aware attention mechanism
that achieves good generalization performance on the FPAD
task using ViT. Despite these advancements, the problem
of designing a deep learning model (such as CNN or ViT)
that can jointly perform matching and PAD has been sel-
dom addressed in the biometrics literature. The only known
attempts are [53] for face and [35] for fingerprint, both of
which follow the naive approach of using a shared CNN
backbone for feature extraction and dual heads for match-
ing and PAD. In the absence of large-scale training sets, this
approach is unlikely to work well in practice.

3. Proposed Method
The overall objective of this work is to design a multi-

task ViT model that achieves high accuracy for both FRM
and FPAD. To achieve this goal, we start with a vanilla
ViT model [14] pre-trained on the ImageNet dataset [11]
as the backbone, and evaluate two different architectures:
(i) a dual head approach that learns different classification
heads for FPAD and FRM based on the shared ViT features,
and (ii) a feature ensemble approach that utilizes different
features within the ViT pipeline for FPAD and FRM.

3.1. Vanilla ViT Backbone

The vanilla ViT model is composed of L blocks, where
each block in turn consists of multi-head self attention
(MHSA) and multi-layer perceptron (MLP) layers together
with normalization layers and residual connections [48].
The vanilla ViT model partitions an input image x ∈
Rh×w×t (where h, w, and t represent the height, width, and
number of channels in the image, respectively) into n non-
overlapping patches, flattens each patch into a vector using
a linear projection layer, and adds an one dimensional posi-
tion embedding to each patch representation to maintain the
spatial information of the patches. A learnable [class] token
[13] is also concatenated to the sequence of patches to dis-

till the knowledge learned. Thus, the input to the first ViT
block can be denoted as Z0 = [z0,1, z0,2, · · · , z0,n, z0,c] ∈
R(n+1)×d, where the first n components represent the patch
tokens and the last component z0,c denotes the class token.

The sequence of tokens is processed through the self-
attention mechanism A to learn the relationship between
the patches. For an input Z ∈ R(n+1)×d, the MHSA layer
outputs a concatenation of k parallel self-attention heads,
i.e., MHSA(Z) = [A1(Z),A2(Z), . . . ,Ak(Z)], where
Aj(Z) = softmax(QjK

T
j /

√
d)V j , Qj/Kj/V j =

ZW j
Q/K/V , W j

Q/K/V ∈ Rd× d
k , and j = 1, 2, · · · , k. Let

Zℓ = [zℓ,1, zℓ,2, · · · , zℓ,n, zℓ,c] ∈ R(n+1)×d denote the
output of the ℓ-th ViT block, ℓ = 1, 2, · · · , L. Typically,
the class token output by the last block zL,c is considered
as the final embedding of the given input image. Thus, the
ViT backbone can be considered as an encoder (Eω) that
maps an input image x to its latent representation (class to-
ken) zL,c ∈ Rd, i.e., zL,c = Eω(x).

3.2. Dual Head Architecture for FRM and FPAD

In this approach, there are no changes to the ViT back-
bone, which acts as a shared feature extractor. On top of
this backbone, two task-specific classifier heads, denoted as
Hη and Gϕ, are added for the FPAD and FRM tasks, re-
spectively. The class token embedding zL,c obtained from
the last ViT block is passed on to FPAD classification head
Hη to predict whether the presented input image is bonafide
or attack, i.e., ŷpa = Hη(zL,c) ∈ {0, 1}. Here, the la-
bels 0 and 1 represent the attack and bonafide presenta-
tions, respectively. Given a set of Npa training samples
{xi, yipa}

Npa

i=1 , where yipa ∈ {0, 1} denotes the ground truth
attack label for the i-th training sample, the FPAD head
can be trained by minimizing the following binary cross-
entropy loss (LFPAD).
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LFPAD = − 1

Npa

Npa∑
i=1

(
yi
pa log(ŷ

i
pa) + (1− yi

pa) log(1− ŷi
pa)

)
.

(1)
Similarly, the class token is passed to the FRM head Gϕ,

which predicts the identity of the person ŷid = Gϕ(zL,c) ∈
{1, 2, · · · , C}. Here, C denotes the number of unique iden-
tities in the training dataset. Given a set of Nid training
samples {xi, yiid}

Nid
i=1, where yiid ∈ {1, 2, · · · , C} denotes

the ground truth identity label for the i-th training sample,
the following ArcFace [12] loss function is used for super-
vising the training of the FRM head.

LFRM = − 1

Nid

Nid∑
i=1

log
e
s cos θ̃

yi
id

e
s cos θ̃

yi
id +

∑C
j=1,j ̸=yiid

es cos θj
,

(2)
where θ̃r = (θr +m), r ∈ {1, 2, · · · , C}, s represents the
scale parameter, and m is the angular margin parameter in
the ArcFace loss. Furthermore, θr = arccos (∥W r∥∥v∥),
where ∥ · ∥ represents L2 norm, v ∈ Rd̃ is the face em-
bedding produced by the penultimate layer of the network
Gϕ, and W r denotes the r-th column of the weight matrix
W ∈ Rd̃×C corresponding to the softmax [25] layer. Dur-
ing face verification, the cosine similarity between a pair of
face embeddings (v) is used as the similarity score to deter-
mine whether the pair of images belong to the same identity.
Training Strategies: The dual head architecture can be
trained in a number of ways. Firstly, the weights of the
ImageNet pre-trained ViT backbone can be frozen (fixed ω)
and only the FPAD and FRM heads can be learned individu-
ally using equations 1 and 2 to obtain η and ϕ, respectively.
We refer to this scenario as “Zero Shot” approach. Sec-
ondly, the whole architecture can be trained for one of the
tasks (while the task-specific head is initialized randomly
and learned from scratch, the ViT backbone starts with the
pre-trained weights and gets finetuned), the backbone can
be frozen, and only the head for the other task can be learned
subsequently. In this case, the ViT backbone is optimized
for the first task and could be potentially sub-optimal for the
second task. This scenario is referred to as “Task Finetun-
ing”, which can be further categorized into “FRM Finetun-
ing” and “FPAD Finetuning” depending on whether FRM
or FPAD task is learned first. In the above training sce-
narios, the datasets used for learning the FRM and FPAD
tasks can be completely independent. When a sufficiently
large dataset containing both multiple bonafide samples for
each identity as well as attack samples for those identities is
available, it is possible to learn the FRM and FPAD heads in
parallel (referred to as “Joint Finetuning - Heads”) or add up
the LFPAD and LFRM losses to jointly finetune the whole
architecture (referred to as “Joint Finetuning - Whole”).

3.3. Feature Ensemble Architecture

Typically, ViTs rely only on the class token at the last
block zL,c for image classification, while ignoring the rest
of the learned features (intermediate class and patch to-
kens). Our hypothesis is that learning global face informa-
tion is critical for the FRM task, while micro-texture fea-
tures are important for the FPAD task. Attempting to distill
both these types of information into the same class token
is likely to lead to sub-optimal performance for one of the
tasks. A potential solution is to add another class token and
distill different types of information into the two class to-
kens [31]. However, this approach requires modifications to
the ViT backbone and training the modified backbone. In-
stead, we propose a simpler alternative based on the insight
that micro features required for the FPAD task are captured
by the patch tokens of initial ViT blocks. Hence, features
extracted from these patch tokens can be used for the FPAD
task, while the ViT class token focuses on the FRM task.

The proposed feature ensemble architecture appends a
classification branch (denoted as Fψ) to an intermediate
block of the ViT. This classifier takes the patch tokens gen-
erated by the block Z̃ℓ = [zℓ,1, zℓ,2, · · · , zℓ,n] ∈ Rn×d
(note that the intermediate class token zℓ,c is ignored) as
input and outputs a binary classification decision ŷpa ∈
{0, 1}. Two network architectures have been considered for
the classifier Fψ (see Figure 2). While the first architecture
is a multi-layer perceptron (MLP), the second one is styled
based on a CNN. The MLP version of Fψ involves three
fully connected (FC) layers, with ReLU activation function
after the first two layers for faster and reliable convergence,
and sigmoid activation at the third (output) layer. The CNN
version of Fψ is composed of two convolutional layers in-
terspersed with ReLU activation and max-pooling opera-
tions and two FC layers for final prediction. This classifier
reshapes the input Z̃ℓ into a (n1 × n2 × d) tensor where
(n1 × n2) = n, uses convolutional kernels of size (3 × 3)
with stride of 2, and performs max-pooling over windows
of size (2 × 2). The output of the second convolutional
layer is flattened before being passed through the FC lay-
ers. Both the MLP and CNN versions of Fψ are evaluated
in our experiments to determine the better design.

The classification branch in the feature ensemble method
is trained as follows. The ViT backbone Eω with the FRM
head Gϕ is first finetuned using only the LFRM loss (sim-
ilar to “FRM Finetuning” in the dual head scenario). Next,
the backbone is frozen, Z̃ℓ is extracted from an interme-
diate layer, and only the classifier Fψ is trained using the
LFPAD loss. Thus, independent datasets can be used for
learning the two tasks. Moreover, the FPAD classifier is a
byproduct of the FRM model and FPAD training has no im-
pact on the FRM performance. It is also possible to append
FPAD classifiers to more than one intermediate block in the
ViT and fuse their outputs to obtain the final prediction ŷpa.
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Figure 2. Two classifier designs, (a) CNN and (b) MLP, have been considered for the FPAD task in the feature ensemble approach, which
utilizes the patch tokens produced by the intermediate ViT blocks Z̃ℓ for FPAD.

4. Experimental Results
4.1. Datasets

For most experiments, we use the CASIA-WebFace [52]
dataset for learning the FRM task, the LFW [19] dataset for
benchmarking the FRM accuracy, and the training and test
partitions of SiW [26] dataset for learning the FPAD task
and evaluating the FPAD performance. Only in the case of
joint training of FRM and FPAD tasks, the training partition
of SiW dataset is used for both FRM and FPAD learning.

CASIA-WebFace [52] consists of 10,575 real identities,
with each subject having around 46 images of size 256 ×
256. Since it is collected from the Internet, it covers a wide
range of pose, illumination, and expression. The data is pre-
processed by detecting faces using MTCNN [54], cropping
the face region, and resizing the images to 224× 224.

LFW Labeled Faces in the Wild [19] is a database that
consists of 13,233 face images corresponding to 5,794 dif-
ferent identities collected from the Internet. It is a widely
used public benchmark for face verification. Following
the LFW standard evaluation protocol [12], 6,000 image
pairs are randomly generated from the dataset and used
for reporting face recognition testing accuracy. Data pre-
processing on LFW is similar to that of the CASIA dataset.

SiW Spoof in the Wild dataset [26] consists of bonafide
and presentation attack videos collected from 165 subjects.
There are 4,478 videos in total, with each subject having
8 live (bonafide) videos and up to 20 spoof (presentation
attack) videos. The live videos are captured with different
variations of pose, expression, illumination, and distance.
The spoof videos include presentation attack instruments
such as replay and printed paper. The videos in this dataset
have a 1080p HD resolution. These videos were processed

using the face bounding box files that come with the dataset,
which contain the face coordinates for each corresponding
video. These coordinates were used to crop faces from se-
lected frames and the cropped faces are resized to a reso-
lution of 224 × 224 to be compatible with the input size
accepted by the ViT model.

Three specific evaluation protocols have been defined for
the SiW dataset to benchmark the FPAD generalization per-
formance under different scenarios. In line with these de-
fined evaluation protocols, the subjects are partitioned into
train and test sets, with 90 and 75 participants, respectively.
However, the focus of this work is not to evaluate the gen-
eralization of FPAD methods, but to study the interplay
between FPAD performance and face matching accuracy
when the two tasks are carried out using a unified model.
Since this dataset is also used for joint training of FRM and
FPAD tasks, the frame selection process needs to be com-
patible with both FRM and FPAD requirements. Hence, we
do not follow any of the three prescribed protocols for frame
selection. Instead, a collection of 10 frames per video are
chosen randomly to form the training and test sets. Since no
validation set was provided with the SiW dataset, the train
set was split identity-wise into train and validation sets us-
ing an 80%-20% ratio. Thus, the train set has 72 identities
and the validation set has 18 subjects with no overlap of
identities between the two sets.

4.2. Experimental Setup

ViT Backbone We use the base variation of ViT from the
open-source implementation provided in [50], which has
L = 12 blocks. Since the patch size is 16× 16, the number
of patch tokens is n = 196 = (14× 14) and dimensionality
of each patch is d = 768. The ViT backbone is initialized
with ImageNet 21k classes pre-trained weights. For FRM
finetuning using the CASIA-WebFace dataset, the whole
model is finetuned with the ArcFace [12] loss (s = 32 and
m = 0.5) and updated using the stochastic gradient descent
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(SGD) [37] algorithm with a fixed learning rate of 10−3. We
use a batch size of 256 and train the network for 40 epochs.
Then, the best model is selected based on the best LFW test-
ing accuracy obtained after each training epoch. On the the
other hand, for FPAD finetuning using the SiW dataset, the
whole model is trained using the binary cross-entropy loss
and updated using the Adam [21] optimizer with a learning
rate of 10−4. The model is trained for 20 epochs using 16
samples per batch and data augmentation (random horizon-
tal flipping with probability 0.5) is employed. The models
are implemented using PyTorch [34] and all experiments
are carried out on a single Nvidia RTX A6000 GPU with 40
GB memory.

FRM and FPAD Classifiers The FPAD classification
head Hη has one FC (linear) layer with sigmoid activation.
The FRM classification head Gϕ has one hidden FC layer
that converts the d-dimensional class token into a d̃ = 512
dimensional face embedding before the ArcFace loss is
computed. These two task-specific classification heads are
updated using the Adam optimizer with a learning rate of
10−3. The FPAD classification branch Fψ in the feature en-
semble architecture has two possible designs as discussed
in Section 3.3. We append a separate FPAD classification
branch after each ViT block, resulting in L = 12 separate
classifiers. All these classifiers are trained with the same
hyperparameter settings to allow for easy comparison. Ir-
respective of whether CNNs or MLPs are used, the FPAD
classifiers are supervised with binary cross-entropy loss and
their parameters are updated using Adam optimizer with
a learning rate of 10−5. These networks are trained with
batch size of 32 for 30 epochs and data augmentation (ran-
dom horizontal flip with probability 0.5) is used.

Evaluation Metrics The FPAD task is evaluated using
the accuracy metric as well as standard ISO/IEC 30107-
3 metrics such as Attack Presentation Classification Er-
ror Rate (APCER), Bonafide Presentation Classification Er-
ror Rate (BPCER), and Average Classification Error Rate
(ACER). A score threshold is calculated based on the vali-
dation set and used for reporting results on the test set. The
FRM task is evaluated based on the face matching accu-
racy, which is computed by performing face verification on
the LFW image pairs.

5. Results and Discussion
Single-task ViTs The first set of experiments is used to
evaluate the ability of ViT model to perform FPAD and
FRM tasks individually. Table 1 compares the face match-
ing accuracy of the ViT model for the zero shot FRM sce-
nario (with ImageNet pre-trained ViT as feature extractor)
and for the case when the whole model is finetuned using

the large-scale CASIA dataset. Finetuning the ViT on a
large-scale face dataset is clearly beneficial, leading to more
than 10% improvement in the matching accuracy compared
to the zero shot case. Furthermore, the better performance
of the finetuned ViT compared to the Face Transformer
model proposed in [55] shows that starting with the Ima-
geNet initialized weights and finetuning the model is a more
prudent strategy than training the ViT from scratch as done
in [55]. The FPAD performance of ViT is also enhanced by
finetuning on the FPAD task. For example, when trained
on the SiW dataset, the finetuned ViT model achieves an
order of magnitude lower ACER compared to the zero-shot
scenario as shown in Table 2.

Table 1. Face matching accuracy on the LFW [19] benchmark
dataset for various ViT models (with vanilla architecture) trained
for the FRM task using the CASIA-WebFace dataset [52].

Training Scenario Accuracy (%)
Zero Shot 88.70

FRM Finetuning 98.96
Face Transformer [55] 97.42

Dual Head ViTs The second set of experiments is fo-
cused on benchmarking the multi-task ViT models with
dual head architecture trained using the various training
strategies outlined in Section 3.2. It can be observed from
Table 3 that none of the dual head models achieve good ac-
curacy on both the tasks. While FRM finetuning results in
an optimal model for the FRM task, it degrades the FPAD
accuracy by more than 4%. In contrast, FPAD finetuning
severely degrades the face matching accuracy (by more than
30%), while achieving the best FPAD accuracy. This shows
that while the FRM and FPAD tasks are related, the fea-
tures required for these tasks are very different. The repre-
sentations learned for the FRM task are not discriminative
enough for FPAD and vice versa. This confirms our hypoth-
esis that FRM relies on global features and FPAD depends
on local texture features.

Both the joint finetuning methods also fail to achieve
good accuracy for both the tasks. While joint finetuning
of the whole ViT model results only in a marginal drop
in FPAD accuracy, the large drop in face matching accu-

Table 2. FPAD performance on the SiW [26] test set for various
ViT models (with vanilla architecture) trained for the FPAD task
using the SiW training set.

Training Scenario Accuracy (%) ACER (%)
Zero Shot 97.65 2.39

FPAD Finetuning 99.79 0.22
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racy is unacceptable. This is primarily due to small size of
the dataset used for joint finetuning. The SiW training set
used for joint finetuning contains only 72 identities, which
is more than two orders of magnitude fewer than the CA-
SIA WebFace dataset. Collecting a large-scale dataset con-
taining both identity and attack labels is prohibitively ex-
pensive. Therefore, joint training of dual head architectures
to achieve good performance on both tasks becomes practi-
cally infeasible.

Table 3. Performance of multi-task ViT models when trained
using different strategies. Here, Acc denotes accuracy expressed
in %.

Training Scenario FRM Acc FPAD Acc
Zero Shot 88.70 98.74

FRM Finetuning 98.96 95.60
FPAD Finetuning 66.18 99.79

Joint Fine-tuning (Heads) 79.72 96.19
Joint Fine-tuning (Whole) 78.78 98.89

Feature Ensemble 98.96 99.12

Best Intermediate Features for FPAD Experiments on
the dual head architecture clearly show that it is difficult to
distill both the global and local features into a single ViT
class token to achieve good performance on both FRM and
FPAD task. This justifies the proposed feature ensemble
architecture, which attempts to exploit intermediate patch
tokens for the FPAD task without impacting the class token
used for the FRM task. However, a key question is the op-
timal location (within the ViT backbone) for appending the
FPAD classification branch. To answer this question, we in-
sert a FPAD classifier after each ViT block and measure the
FPAD performance. These results are summarized in Table
4. From this table, we observe that the FPAD performance
of the initial and mid-ViT blocks are better in comparison to
the FPAD head (which is based on class token embedding).
This demonstrates that the micro texture features required
for the FPAD task are well-represented in the initial and
mid-ViT blocks (between 3 and 6). In particular, blocks 4
and 5 provide the best accuracy irrespective of the classifier
type and training strategy. The FPAD accuracy of the sub-
sequent ViT blocks suffers a slow degradation trend, which
could be potentially due to the nature of the deeper blocks
to focus more on global features instead of local features.

We can also observe that the zero shot scenario (with
ImageNet pre-trained weights) is capable of producing
more discriminative representations to detect presentation
attacks, resulting in higher performance compared to the
FRM finetuning scenario. This also confirms that FRM fine-
tuning biases the ViT to focus more on global features re-

Table 4. FPAD accuracy (%) and ACER (%) results for the 12
FPAD classification branches and the FPAD classification head on
SiW dataset for both zero shot and FRM finetuning scenarios.

Zero Shot FRM Finetuning
MLP CNN MLP CNN

Block ACC ACER ACC ACER ACC ACER ACC ACER
1 97.96 2.21 98.49 1.66 96.70 3.59 97.74 2.43
2 99.06 0.99 99.03 1.03 98.22 1.88 98.26 1.84
3 99.27 0.82 99.52 0.51 98.67 1.35 98.71 1.34
4 99.54 0.49 99.82 0.18 98.82 1.20 98.99 1.06
5 99.67 0.36 99.77 0.25 99.19 0.88 98.96 1.10
6 99.36 0.73 99.75 0.27 98.67 1.48 98.90 1.15
7 99.31 0.76 99.50 0.55 98.07 1.95 98.42 1.69
8 99.42 0.61 99.42 0.60 98.00 1.98 98.35 1.68
9 99.05 0.99 99.45 0.57 97.98 1.99 97.72 2.35

10 98.92 1.11 99.33 0.72 96.92 3.24 97.33 2.69
11 98.78 1.25 98.98 1.09 96.58 3.62 96.91 3.12
12 97.81 2.21 98.64 1.43 95.94 4.24 95.71 4.46

class 98.74 1.31 98.74 1.31 95.13 5.32 95.13 5.32

quired for the FRM task, which leads to some loss of infor-
mation for the FPAD task. Nevertheless, the representations
extracted from the mid-ViT blocks are still good enough for
FPAD. Moreover, in terms of network architecture choice,
there is little to choose between the MLP and CNN designs.
While the CNN architecture is marginally better in the zero
shot scenario, the MLP architecture marginally outperforms
the CNN in the FRM finetuning scenario. Since our goal
is to maximize performance on both tasks, we choose the
MLP architecture for the FPAD classification branch. Fi-
nally, block 5 gives the best performance for the MLP case
and block 4 performs marginally better in the case of CNN,
but these differences are negligible.

Table 5. FPAD accuracy (%) and ACER (%) results on SiW dataset
for the ensemble of FPAD classification branches appended to ViT
blocks 4 and 5 under both zero shot and FRM finetuning scenarios.

Network MLP CNN

Zero Shot
ACC 99.64 99.80

ACER 0.40 0.21

FRM Finetuning
ACC 99.12 98.93

ACER 0.91 1.16

Feature Ensemble ViT Based on the insights from Table
4, we average the outputs produced by the 4-th and 5-th ViT
blocks to build an ensemble classifier for the FPAD task.
Table 5 summarizes the performance of this feature ensem-
ble ViT, which achieves a high FPAD accuracy of 99.12%
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Table 6. FPAD performance (ACER (%)) comparison on the HQWMCA dataset between the proposed method and ViTranZFAS [16].

Method ViTranZFAS
Zero Shot FRM Finetuning

MLP CNN MLP CNN
Flexiblemask 2.60 0.93 0.54 2.27 7.57

Glasses 15.90 47.39 25.93 49.70 31.67
Makeup 25.80 29.18 28.94 38.42 38.27

Mannequin 2.70 0.28 0.26 4.03 3.08
Papermask 2.30 0.15 0.27 0.75 2.85
Rigidmask 9.50 3.64 1.19 18.16 11.20

Tattoo 2.40 0.53 0.49 0.82 2.60
Replay 12.40 12.02 9.45 24.81 9.76

Mean ±Std 9.20 ±7.99 11.76 ±16.38 8.38 ±11.39 17.37 ±17.67 13.37 ±12.93

and ACER of 0.91% based on the MLP architecture and
FRM finetuning strategy. Note that while these results are
marginally lower than best performing block (i.e., block 5
for the MLP case), the differences are small and the ensem-
bling produces more stable predictions. Hence, we recom-
mend using the feature ensemble ViT architecture based on
blocks 4 and 5, if overall network size is not a constraint.
The performance of this architecture is also shown in the
last row of Table 3, which directly compares this approach
against the dual head methods. It is obvious that the pro-
posed feature ensemble ViT achieves the same face match-
ing accuracy as the individual ViT finetuned for the FRM
task, while its performance on the FPAD is only marginally
lower than that of the individual ViT finetuned for the FPAD
task. In summary, we have demonstrated that ViTs can be
utilized effectively for multiple tasks (FPAD and FRM) in a
face recognition system, while achieving high performance
for both the tasks using the feature ensemble approach.

5.1. HQWMCA Evaluation

We also evaluate the FPAD performance of the fea-
ture ensemble ViT under the unseen attack setting in the
HQWMCA dataset. This dataset consists of eight differ-
ent attacks evaluated using the leave-one-out protocol for
each attack. The performance results summarized in Ta-
ble 6 show that the proposed approach with FRM finetun-
ing outperforms the SOTA results in [16] for some attacks
(e.g., flexible mask, paper mask and tattoo), while it fails on
other attacks such as glasses and makeup. While we are still
investigating the reasons for this failure, our preliminary
analysis points towards potential overfitting issues caused
due to smaller sample sizes. However, it must be empha-
sized that our proposed method is finetuned for the FRM
task, whereas the work in [16] focuses only on the FPAD
task. Without the FRM finetuning, the proposed approach
achieves better results for most attacks except glasses.

6. Conclusion and Future Work

In this paper, we propose using a feature ensemble ap-
proach to jointly learn the face presentation attack detec-
tion and face matching tasks. We exploit the architecture
of Vision Transformer (ViT) models to make use of the lo-
cal features extracted from the intermediate ViT blocks to
perform FPAD, while using the global features learned by
the class token to perform face matching. Experiments con-
ducted in various settings prove that the ViT feature ensem-
ble method can achieve good performance for both FPAD
and face matching tasks in comparison to a basic multi-head
approach. Vision transformers are powerful deep learning
models that can be utilized effectively for multi-task prob-
lems, but this effort is stymied by the lack of large datasets
containing both identity and attack labels. Going forward,
we aim to achieve a single ViT model that can implement a
complete face recognition pipeline.

References

[1] Faseela Abdullakutty, Eyad Elyan, and Pamela Johnston. A
review of state-of-the-art in face presentation attack detec-
tion: From early development to advanced deep learning and
multi-modal fusion methods. Information fusion, 75:55–69,
2021.

[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face
description with local binary patterns: Application to face
recognition. IEEE transactions on pattern analysis and ma-
chine intelligence, 28(12):2037–2041, 2006.

[3] Ajat Arora and Manminder Singh. A novel face liveness de-
tection algorithm with multiple liveness indicators. Wireless
Personal Communications, 2018, 06 2018.

[4] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming
Liu. Face anti-spoofing using patch and depth-based cnns.
In 2017 IEEE International Joint Conference on Biometrics
(IJCB), pages 319–328, 2017.

[5] Peter N. Belhumeur, Joao P Hespanha, and David J. Krieg-
man. Eigenfaces vs. fisherfaces: Recognition using class

669



specific linear projection. IEEE Transactions on pattern
analysis and machine intelligence, 19(7):711–720, 1997.

[6] Deblina Bhattacharjee, Tong Zhang, Sabine Süsstrunk, and
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