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Abstract

This paper summarizes the results of the first Monoc-
ular Depth Estimation Challenge (MDEC) organized at
WACV2023. This challenge evaluated the progress of self-
supervised monocular depth estimation on the challenging
SYNS-Patches dataset. The challenge was organized on Co-
daLab and received submissions from 4 valid teams. Partic-
ipants were provided a devkit containing updated reference
implementations for 16 State-of-the-Art algorithms and 4
novel techniques. The threshold for acceptance for novel
techniques was to outperform every one of the 16 SotA base-
lines. All participants outperformed the baseline in tradi-
tional metrics such as MAE or AbsRel. However, pointcloud
reconstruction metrics were challenging to improve upon.
We found predictions were characterized by interpolation
artefacts at object boundaries and errors in relative object
positioning. We hope this challenge is a valuable contribu-
tion to the community and encourage authors to participate
in future editions.

1. Introduction

Depth estimation is a core computer vision task, allow-
ing us to recover the 3-D geometry of the world. Whilst tra-
ditional approaches to depth estimation relied on stereo [17,
53, 5] or multi-view [2, 48, 31] matching, monocular ap-
proaches [8, 9, 12, 46] requiring only a single image have
recently garnered much attention.

The task of Monocular Depth Estimation (MDE) is ill-
posed, as an infinite number of scene arrangements with
varying object sizes and depths could result in the same
2-D image projection. However, humans are capable of per-
forming this task by relying on cues and priors such as ab-
solute/relative object sizes, elevation within the scene, tex-

ture gradients, perspective distortions, stereo/motion paral-
lax and more. Networks performing MDE must also learn
these geometric cues, rather than just rely on correspon-
dence matching.

The rise in popularity of this field has resulted in a
plethora of contributions, including supervised [8, 46], self-
supervised [9, 11, 12, 15] and weakly-supervised [47, 55,
59] approaches. Comparing these approaches in a fair
and consistent manner is a highly challenging task, as it
is the responsibility of each author to ensure they are fol-
lowing the same procedures as preceding methods. The
need to provide this backward-compatibility can result in
long-standing errors in the benchmarking procedure, rang-
ing from incorrect metric computation and data preprocess-
ing to incorrect ground-truths.

This paper covers the recent Monocular Depth Estima-
tion Challenge (MDEC), organized as part of a workshop
at WACV2023. The objective of this challenge was to pro-
vide an updated and centralized benchmark to evaluate con-
tributions in a fair and consistent manner. This first edi-
tion focused on self-/weakly-supervised MDE, as they have
the possibility to scale to larger amounts of data and do
not require expensive LiDAR ground-truth. Despite this
flexibility, the majority of published approaches train and
evaluate only on automotive data. As part of this chal-
lenge, we tested the generalization of these approaches to
a wider range of scenarios, including natural, urban and in-
door scenes. This was made possible via the recently re-
leased SYNS-Patches dataset [1, 52]. In general, partici-
pants found it challenging to outperform the updated Garg
baseline [9, 52] in pointcloud-based reconstruction metrics
(F-Score), but generally improved upon traditional image-
based metrics (MAE, RMSE, AbsRel).
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Table 1: Dataset & Benchmark Comparison. We summarize recent datasets commonly used in self-supervised monocular depth estimation. CityScapes
represents a common pretraining dataset, while SYNS-Patches is testing-only. SYNS-Patches is the only dataset providing high-quality dense depth maps
in a wide variety of environments.

Accuracy Density (%) Num Points Urban Natural Indoor Train Val Test

CityScapes [6] ✗ ✗ ✗ ✓ ✗ ✗ 88,250 ✗ ✗

Kitti Eigen-Zhou [10, 66] ✗ ✗ ✗ ✓ ✗ ✗ 39,810 4,424 ✗

Kitti Eigen [10, 8] Mid 4.10 19k ✓ ✗ ✗ 45,200 1,776 697

Kitti Eigen-Benchmark [10, 56] High 15.28 71k ✓ ✗ ✗ 71,633 5,915 652

DDAD [15] High 1.02 24k ✓ ✗ ✗ 75,900 23,700 3,080

SYNS-Patches [1, 52] High 78.30 365k ✓ ✓ ✓ ✗ 400 775

2. Related Work

To avoid using costly Light Detection and Ranging
(LiDAR) annotations, self-supervised approaches to MDE
instead rely on the proxy task of image reconstruction via
view synthesis. The predicted depth is combined with a
known (or estimated) camera transform to establish cor-
respondences between adjacent images. This means that,
whilst the network can predict depth from a single input
image at test time, the training procedure requires multiple
support frames to perform the view synthesis.

Methods can be categorized based on the source of these
support frames. Stereo methods [9, 11, 47, 55] rely on
stereo rectified images pairs with a known and fixed camera
baseline. This allows the network to predict metric depth,
but can result in occlusions artefacts if not trained carefully.
On the other hand, monocular approaches [66, 23, 57] com-
monly use the previous and following frame from a monoc-
ular video. These approaches are more flexible, as no stereo
data is required. However, they are sensitive to the presence
of dynamic objects. Furthermore, depth is predicted only
up to an unknown scale factor and requires median scaling
during evaluation to align it with the ground-truth.

Garg [9] introduced the first approach to MDE via stereo
view synthesis, using AlexNet [26] and an L1 reconstruc-
tion loss. Monodepth [11] drastically improved the perfor-
mance through bilinear synthesis [18] and a weighted com-
bination of SSIM [58] and L1. It additionally incorporated
virtual stereo supervision and a smoothness regularization
weighted by the strength of the image edges. 3Net [45] ex-
tended this to a trinocular setting, while DVSO [47] and
MonoResMatch [55] incorporated an additional residual re-
finement network.

SfM-Learner [66] introduced the first fully monocu-
lar framework, replacing the fixed stereo baseline with a
Visual Odometry (VO) regression network. A predictive
mask was introduced to downweigh the photometric loss
at independently moving dynamic objects. Future meth-
ods refined this masking procedure via uncertainty estima-
tion [21, 23], object motion prediction [28, 22, 30] and au-

tomasking [11, 4]. Monodepth2 [12] additionally proposed
the minimum reprojection loss as a simple way of han-
dling varying occlusions in a sequence of frames. Instead
of averaging the reconstruction loss over the sequence, they
proposed to take only the minimum loss across each im-
age pixel, assuming this will select the frame with the non-
occluded correspondence.

Subsequent approaches focused on improving the ro-
bustness of the photometric loss by incorporating feature
descriptors [63, 51, 50], affine brightness changes [61],
scale consistency [37, 4] or adversarial losses [3, 44, 33].
Meanwhile, the architecture of the depth prediction network
was improved to target higher-resolution predictions by in-
corporating sub-pixel convolutions [49, 42], 3-D packing
blocks [15], improved skip connections [60, 65, 36], trans-
formers [64] and discrete disparity volumes [20, 13, 14].

Several methods incorporated additional supervision in
the form of (proxy) depth regression from LiDAR [27, 16],
synthetic [35], SLAM [23, 57, 47], hand-crafted stereo [55,
59, 33], the matted Laplacian [14] and self-distillation [43,
41]. One notable example is DepthHints [59], which com-
bined hand-crafted disparity [17] with the min reprojection
loss [12]. This provided a simple way of fusing multiple
disparity maps into a single robust estimate.

2.1. Datasets & Benchmarks

This section reviews some of the most commonly used
datasets and benchmarks used to evaluate MDE. Despite
being a fundamental and popular computer vision task,
there has not been a standard centralized challenge such as
ImageNet [7], VOT [25] or IMC [19]. This makes it chal-
lenging to ensure that all methods use a consistent evalua-
tion procedure. Furthermore, the lack of a withheld test set
encourages overfitting due to repeated evaluation. Table 1
provides an overview of these datasets.

Kitti [10] is perhaps the most common training and test-
ing dataset for MDE. It was popularized by the Kitti Eigen
(KE) split [8], containing 45k images for training and 697
for testing. However, this benchmark contains some long-
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Table 2: SYNS-Patches Category Distribution.

Agriculture Indoor Industry Misc Natural Recreation Residential Transport Woodland Total

Val 104 67 36 72 36 14 13 4 54 400

Test 211 81 71 0 147 48 110 17 90 775

Total 315 148 107 72 183 62 123 21 144 1,175

Figure 1: SYNS-Patches Challenge Dataset. We show some representative examples from the diverse set of testing categories. This includes complex
urban, natural and indoor scenes with high-quality dense LiDAR. Depth boundaries were computed as Canny edges in the log-depth maps.

standing errors that heavily impact the accuracy of the re-
sults. The ground-truth depth suffers from background
bleeding at object boundaries due to the different sensor
viewpoints, coupled with the motion artefacts produced by
the moving LiDAR. Furthermore, the data preprocessing
omitted the transformation to the camera reference frame.
These issues are further exacerbated by the sparsity of the
ground-truth depth maps, which contain measurements for
only 4.10% of the image pixels.

Uhrig et al. [56] aimed to correct these errors and
provide a more reliable benchmark, dubbed the Kitti
Eigen-Benchmark (KEB) split. The ground-truth density
was improved to 15.28% by accumulating LiDAR data from
±5 adjacent frames. This data was aggregated and refined
by adding consistency checks using a hand-crafted stereo
matching algorithm [17]. The main drawback is that this
refinement procedure removes points at object boundaries,
which are common sources of errors even in State-of-the-
Art (SotA) approaches. However, despite providing a clear
improvement over KE, adoption by the community has been
slow. We believe this to be due to the need to provide
consistent comparisons against previous methods that only

evaluate on KE, as this would require authors to re-run all
preexisting approaches on this new baseline.

The DDAD dataset [15] contains data from multiple
cities in USA and Japan and totalling to 76k training and 3k
testing images. It provides an density of 1.03%, an average
of 24k points per image and an increased depth range up to
250 meters. This dataset was the focus on the DDAD chal-
lenge organized at CVPR 2021, which featured additional
fine-grained performance metrics on each semantic class.
Similar to KEB, we believe that adoption of these improved
datasets is hindered by the need to re-train and re-evaluate
preexisting methods.

Spencer et al. [52] aimed to unify and update the training
and benchmarking procedure for MDE. This was done by
providing a public repository containing modernized SotA
implementations of 16 recent approaches with common ro-
bust design decisions. The proposed models were evalu-
ated on the improved KEB and SYNS-Patches, incorporat-
ing more informative pointclound- [39] and edge-based [24]
metrics. This modern benchmark procedure constitutes the
basis of the Monocular Depth Estimation Challenge.
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3. The Monocular Depth Estimation Challenge

The first edition of MDEC was organized as part of a
WACV2023 workshop. The challenge was organized on
CodaLab [40] due to its popularity and flexibility, allow-
ing for custom evaluation scripts and metrics. We plan
to arrange a permanent leaderboard on CodaLab that re-
mains open to allow authors to continue evaluating on
SYNS-Patches.

The first two weeks of the challenge constituted the de-
velopment phase, where participants could submit predic-
tions only on the validation split of SYNS-Patches. For the
remainder of the challenge, participants were free to submit
to either split. Participants only had access to the dataset im-
ages, while the ground-truth depth maps and depth bound-
aries were withheld to prevent overfitting.

3.1. Dataset

The evaluation for the challenge was carried out on the
recently introduced SYNS-Patches dataset [52], which is
a subset of SYNS [1]. The original SYNS is composed
of aligned image and LiDAR panoramas from 92 differ-
ent scenes belonging to a wide variety of environments,
such as Agriculture, Natural (e.g. forests and fields), Res-
idential, Industrial and Indoor. This is a departure from
the commonly used datasets in the field, such as Kitti [10],
CityScapes [6] or DDAD [15], which focus purely on urban
scenes collected by automotive vehicles. SYNS also pro-
vides dense LiDAR maps with 78.30% coverage and 365k
points per image, which are exceptionally rare in outdoor
environments. This allows us to compute metrics targeting
complex image regions, such as thin structures and depth
boundaries, which are common sources of error.

SYNS-Patches represents the subset of patches from
each scene extracted at eye level at 20 degree intervals of a
full horizontal rotation. This results in 18 images per scene
and a total dataset size of 1656. Since the data collection
procedure is highly sensitive to dynamic objects, additional
manual verification is required. The final dataset consists of
1175 images, further separated into validation and testing
splits of 400 and 775 images. We show some representative
testing images in Figure 1 and the distribution of images
categories per split in Table 2

3.2. Training procedure

The first edition of MDEC focused on evaluating the
State-of-the-Art in self-supervised monocular depth estima-
tion. This included methods complemented by hand-crafted
proxy depth maps or synthetic data. We expected most
methods to be trained on Kitti [10] due to its widespread
use. However, we placed no restrictions on the training
dataset (excluding SYNS/SYNS-Patches) and encouraged
participants to use additional training sources.

To aid participants and give a strong entry point, we pro-
vided a public starting kit on GitHub1. This repository con-
tained the training and evaluating code for 16 recent SotA
contributions to MDE. The baseline submission was the top
F-Score performer out of all SotA approaches in this start-
ing kit [9, 52]. This consisted of a ConvNeXt [34] back-
bone and DispNet [38] decoder. The model was trained
on the Kitti Eigen-Zhou split with an image resolution of
192×640 using only stereo view synthesis, the vanilla pho-
tometric loss and edge-aware smoothness regularization.

3.3. Evaluation procedure

Participants provided their unscaled disparity predictions
at the training image resolution. Our evaluation script bilin-
early upsampled the predictions to the full image resolu-
tion and applied median scaling to align the predicted and
ground-truth depths. Finally, the prediction and ground-
truth were clamped to a maximum depth of 100m. We omit
test-time stereo blending [11] and border cropping [8].

3.4. Performance metrics

The predictions were evaluated using a wide variety of
image/pointcloud/edge-based metrics. Submissions were
ranked based on the F-Score performance [39], as this tar-
gets the structural quality of the reconstructed pointcloud.
We provide the units of each metric, as well as an indica-
tion if lower (↓) or higher (↑) is better.

3.4.1 Image-based

MAE. Absolute error (m↓) as∑
|ŷ−y| , (1)

where y represents the ground-truth depth at a single image
pixel p and ŷ is the predicted depth at that pixel.
RMSE. Absolute error (m↓) with higher outlier weight as√∑

(ŷ−y)2. (2)

AbsRel. Range-invariant relative error (%↓) as∑ |ŷ−y|
y

. (3)

3.4.2 Pointcloud-based

F-Score. Reconstruction accuracy (%↑) given by the har-
monic mean of Precision and Recall as

2 · P ·R
P +R

, (4)

1https://github.com/jspenmar/monodepth_
benchmark
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Figure 2: SYNS-Patches Depth Visualization. Models perform significantly better in urban environments that resemble the training automotive data. Thin
structures, such as the railings and branches, are highly challenging to predict accurately and are commonly merged together.

Precision. Percentage (%↑) of predicted 3-D points q̂ within
a threshold δ of a ground-truth point q as

∑
q̂∈Q̂

s
min
q∈Q

∥q − q̂∥ < δ

{
, (5)

where J·K represents the Iverson brackets.
Recall. Percentage (%↑) of ground-truth 3-D points within
a threshold of a predicted point as

∑
q∈Q

s
min
q̂∈Q̂

∥q − q̂∥ < δ

{
. (6)

Following Örnek et al. [39], the threshold for a correctly
reconstructed point is set to 10 cm i.e. δ = 0.1. Note that
Precision and Recall are only used to compute the F-Score
and are not reported in the challenge leaderboard.

3.4.3 Edge-based

F-Score.
Pointcloud reconstruction accuracy (%↑) computed only

at ground-truth M and predicted M̂ depth boundaries, rep-
resented by binary masks.
Accuracy. Distance (px↓) from each predicted depth bound-
ary to the closest ground-truth boundary as∑

EDT
(

M̂ (p)
)

M (p) , (7)

where EDT represents the Euclidean Distance Transform.
Completeness. Distance (px↓) from each ground-truth depth
boundary to the closest predicted boundary as∑

EDT (M (p)) M̂ (p) . (8)

These metrics were proposed as part of the IBims-1 [24]
benchmark, which features dense indoor depth maps.

4. Challenge Submissions
Baseline

J. Spencer1 j.spencermartin@surrey.ac.uk
C. Russell3 cmruss@amazon.de
S. Hadfield1 s.hadfield@surrey.ac.uk
R. Bowden1 r.bowden@surrey.ac.uk

Challenge organizers submission. Re-implementation of
Garg [9] from the updated monocular depth benchmark[52].
Trained with stereo photometric supervision with edge-
aware smoothness regularization. Network is composed of
a ConvNeXt-B backbone [34] with a DispNet [38] decoder.
Trained for 30 epochs on Kitti Eigen-Zhou with an image
resolution of 192× 640.

4.1. Team 1 - OPDAI
H. Wang6 hwscut@126.com
Y. Zhang6 yusheng.z1995@gmail.com
H. Cong6 congheng@outlook.com

Based on a ConvNext-B [34] with an HRDepth [36] de-
coder. Trained with monocular and stereo data, along with
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Table 3: SYNS-Patches Results. Each sections reports results over a different set of scene categories. The updated SotA models from [52] provide a
strong baseline for the challenge, outperforming all submissions in pointcloud reconstruction F-Score. However, all submissions significantly improved
upon traditional image-based metrics by up to 6.47% in MAE and 7.42% in AbsRel. All approaches adapt better to unseen outdoor urban environments that
the challenging natural and agricultural scenes.

F-Score↑ F-Score (Edges)↑ MAE↓ RMSE↓ AbsRel↓ EdgeAcc↓ EdgeComp↓

Overall

Baseline 13.72 7.76 5.56 9.72 32.04 3.97 21.63

OPDAI 13.53 7.41 5.20 8.98 29.66 3.67 27.31

z.suri 13.08 7.46 5.39 9.27 29.96 3.81 32.70

Anonymous 12.85 7.30 5.32 9.04 30.22 3.83 43.77

MonoViT 12.66 7.51 5.22 8.96 29.70 3.36 35.47

Outdoor-Urban

Baseline 14.09 6.48 4.77 8.43 29.10 3.89 22.75

OPDAI 13.17 5.99 4.53 7.93 27.12 3.47 27.71

z.suri 12.72 5.97 4.77 8.25 27.99 3.64 34.31

Anonymous 12.83 5.56 4.60 7.95 28.04 3.66 41.04

MonoViT 12.00 5.87 4.54 7.85 27.91 3.12 35.24

Outdoor-Natural

Baseline 12.11 5.32 7.46 12.86 36.89 3.84 18.35

OPDAI 11.61 5.26 6.82 11.52 33.53 3.52 24.11

z.suri 11.40 5.25 7.14 12.07 34.43 3.61 30.96

Anonymous 11.83 5.31 7.11 11.76 34.16 3.59 38.96

MonoViT 11.84 5.72 6.92 11.72 33.33 3.30 31.33

Outdoor-Agriculture

Baseline 12.26 4.77 6.10 10.84 33.58 4.00 18.73

OPDAI 12.26 4.47 5.78 10.20 31.53 3.69 27.38

z.suri 12.75 4.40 5.85 10.33 30.52 3.77 29.03

Anonymous 11.53 4.20 5.78 10.12 30.76 3.87 41.89

MonoViT 11.34 4.57 5.72 10.03 30.99 3.40 33.53

Indoor

Baseline 21.11 28.96 1.04 1.51 22.77 4.60 37.09

OPDAI 23.56 27.95 1.00 1.54 21.12 4.82 36.28

z.suri 19.95 28.84 0.98 1.42 21.44 5.20 43.93

Anonymous 19.32 28.82 1.07 1.55 23.94 5.10 74.43

MonoViT 20.45 27.65 1.01 1.49 21.16 4.28 55.52

proxy depth hints [59]. This submission uses a large com-
bination of losses, including the photometric loss with an
explainability mask [66], autoencoder feature-based recon-
struction [50], virtual stereo [11], proxy depth regression,
edge-aware disparity smoothness [11], feature smooth-
ness [50], occlusion regularization [47] and explainability
mask regularization [66]. The models were trained on Kitti
Eigen-Zhou (KEZ) without depth hints and KEB with depth
hints for 5 epochs and an image resolution of 192× 640.

4.2. Team 2 - z.suri

Z. K. Suri8 z.suri@eu.denso.com
The depth and pose estimation networks used ConvNeXt-
B [34] as the encoder, with the depth network comple-
mented by a DiffNet [65] decoder. Trained with both stereo
and monocular inputs, using edge-aware regularization [11]
and the min reconstruction photometric loss with automask-
ing [12]. A strong pose network is essential for accurate
monocular depth estimation. This submission introduced a

stereo pose regression loss. The pose estimation network
was additionally given a stereo image pair and supervised
w.r.t. the know ground-truth camera baseline between them.
The networks were trained on Kitti Eigen-Zhou with an im-
age resolution of 192× 640.

4.3. Team 3 - Anonymous

The author of this submission did not provide any details.

4.4. Team 4 - MonoViT
C. Zhao9 y20180082@mail.ecust.edu.cn
M. Poggi7 m.poggi@unibo.it
F. Tosi7 fabio.tosi5@unibo.it
Y. Zhang7 youmin.zhang2@unibo.it
Y. Tang9 yangtang@ecust.edu.cn
S. Mattoccia7 stefano.mattoccia@unibo.it

Trained on KE with an image resolution of 320 × 1024.
The depth network used the MonoViT [64] architecture,
combining convolutional and MPViT [29] encoder blocks.
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Figure 3: SYNS-Patches Pointcloud Visualization. Converting the depth
maps into poinclouds allows us to evaluate the quality of the reconstructed
scene. All approaches can reliably estimate the road surface ground plane.
However, object boundaries exhibit smooth interpolation artefacts connect-
ing them to background structures. Adapting to previously unseen indoor
environments is still highly challenging.

The network was trained using stereo and monocular sup-
port frames, based on the minimum photometric loss [12],
edge-aware smoothness [11] and L1 proxy depth regres-
sion. Proxy depth labels were obtained by training a
self-supervised stereo network [32, 54] on the Multiscopic
dataset [62]. This dataset provides three horizontally
aligned images, allowing the network to compensate for
occlusions. The pretrained stereo network was trained us-
ing Center and Right pairs, but used the full triplet when
computing the per-pixel minimum photometric loss. It was
trained for 1000 epochs using 256× 480 crops.

5. Results

Table 3 show the performance of the participants’ sub-
missions on the SYNS-Patches test set. As seen, most sub-
missions outperformed the baseline in traditional image-
based metrics (MAE, RMSE, AbsRel) across all scene
types. However, the baseline still achieved the best perfor-
mance in both pointcloud reconstruction metrics (F-Score
(Edges)). We believe this is due to the fact that most ex-
isting benchmarks report only image-based metrics. As
such, novel contributions typically focus on improving per-
formance on only these metrics. However, we believe
pointcloud-based reconstruction metrics [39] are crucial to
report, as they reflect the true objective of monocular depth
estimation.

As expected, all approaches transfer best to other Out-
door Urban environments, while the previously unseen
Natural and Agriculture category provided a more diffi-
cult challenge. In most outdoor environments the baseline
provides the best F-Score performance, while OPDAI &
MonoViT improve on image-based metrics (> 0.5 meter
improvement in Outdoor Natural MAE). It is also interest-
ing to note that all approaches improve the accuracy of the
detected edges by roughly 15%. Meanwhile, edge com-
pleteness is drastically reduced, implying that participant
submissions are more accurate at extracting strong edges,
but oversmooth predictions in highly textured regions. Fi-
nally, it is worth noting that the increased metric perfor-
mance in indoor environments is likely due to the signifi-
cantly decreased depth range.

We show qualitative visualizations for the predicted
depth maps and pointclouds in Figures 2 & 3, respectively.
The target images were selected prior to evaluation to re-
flect the wide variety of available environments. Gener-
ally, we find that most predictions are oversmoothed and
lack high-frequency detail. For instance, many models fill
in gaps between thin objects, such as railings (second im-
age) or branches (third image). As is expected, all submis-
sions tend to perform better in urban settings, as they are
more similar to the training distribution. The submission
by MonoViT generally produces the highest-quality visu-
alizations, with more detailed thin structures and sharper
boundaries. This is reflected by the improved image-based
metrics. However, as seen in the pointcloud visualizations
in Figure 3, these predictions still suffer from boundary in-
terpolation artefacts that are not obvious in the depth map
visualizations. This reinforces the need for more detailed
metrics in these complex image regions.

6. Conclusions & Future Work

This paper has presented the results for the first edition
of Monocular Depth Estimation Challenge. It was interest-
ing to note that, while most submissions outperformed the
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baseline in traditional image-based metrics (MAE, RMSE,
AbsRel), they did not improved pointcloud F-Score recon-
struction. As expected, SYNS-Patches represents a chal-
lenging dataset for current monocular depth estimation sys-
tems. We believe this to be due to the over-reliance on au-
tomotive training data. Despite its availability and ease of
collection, it does not contain varied enough scenarios to
generalize to more complex natural scenes. As such, it is
likely that additional sources of training data are required to
develop truly generic perception systems.

Future editions of MDEC may expand to additionally
evaluate supervised MDE approaches. This would help
compare the SotA in both branches of research and help to
determine the reliability of supervised networks. We hope
this provides a valuable contribution to the community and
strongly encourage authors in this field to participate in fu-
ture editions of the challenge.
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nel, Xavier Baró, Hugo Escalante, Sergio Escalera, Tyler
Thomas, and Zhen Xu. Codalab competitions: An open
source platform to organize scientific challenges. Technical
report, 2022.

[41] Andra Petrovai and Sergiu Nedevschi. Exploiting pseudo
labels in a self-supervised learning framework for im-
proved monocular depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1578–1588, June 2022.
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[46] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 2020.

[47] Rui, Stückler Jörg, Cremers Daniel Yang Nan, and Wang.
Deep Virtual Stereo Odometry: Leveraging Deep Depth Pre-
diction for Monocular Direct Sparse Odometry. In European
Conference on Computer Vision, pages 835–852, 2018.

[48] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-Motion Revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[49] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network.
Conference on Computer Vision and Pattern Recognition,
2016-Decem:1874–1883, 2016.

[50] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-Metric Loss for Self-supervised Learning of Depth
and Egomotion. In European Conference on Computer Vi-
sion, pages 572–588, 2020.

[51] Jaime Spencer, Richard Bowden, and Simon Hadfield.
DeFeat-Net: General monocular depth via simultaneous un-
supervised representation learning. In Conference on Com-
puter Vision and Pattern Recognition, pages 14390–14401,
2020.

[52] Jaime Spencer, Chris Russell, Simon Hadfield, and Richard
Bowden. Deconstructing self-supervised monocular recon-
struction: The design decisions that matter. arXiv preprint
arXiv:2208.01489, 2022.

[53] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo
matching using belief propagation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(7):787–800,
2003.

[54] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020.

[55] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mat-
toccia. Learning monocular depth estimation infusing tra-
ditional stereo knowledge. Conference on Computer Vision
and Pattern Recognition, 2019-June:9791–9801, 2019.

[56] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity Invariant CNNs.
International Conference on 3D Vision, pages 11–20, 2018.

[57] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning Depth from Monocular Videos Us-
ing Direct Methods. Conference on Computer Vision and
Pattern Recognition, pages 2022–2030, 2018.

[58] Zhou Wang, A C Bovik, H R Sheikh, and E P Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[59] Jamie Watson, Michael Firman, Gabriel Brostow, and Dani-
yar Turmukhambetov. Self-supervised monocular depth
hints. International Conference on Computer Vision, 2019-
Octob:2162–2171, 2019.

[60] Jiaxing Yan, Hong Zhao, Penghui Bu, and YuSheng Jin.
Channel-Wise Attention-Based Network for Self-Supervised
Monocular Depth Estimation. In International Conference
on 3D Vision, pages 464–473, 2021.

[61] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3VO: Deep Depth, Deep Pose and Deep Uncertainty
for Monocular Visual Odometry. In Conference on Computer
Vision and Pattern Recognition, pages 1278–1289, 2020.

[62] Weihao Yuan, Yazhan Zhang, Bingkun Wu, Siyu Zhu, Ping
Tan, Michael Yu Wang, and Qifeng Chen. Stereo matching
by self-supervision of multiscopic vision. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5702–5709. IEEE, 2021.

[63] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,
Kejie Li, Harsh Agarwal, and Ian M. Reid. Unsupervised
Learning of Monocular Depth Estimation and Visual Odom-
etry with Deep Feature Reconstruction. Conference on Com-
puter Vision and Pattern Recognition, pages 340–349, 2018.

[64] Chaoqiang Zhao, Youmin Zhang, Matteo Poggi, Fabio Tosi,
Xianda Guo, Zheng Zhu, Guan Huang, Yang Tang, and Ste-
fano Mattoccia. Monovit: Self-supervised monocular depth
estimation with a vision transformer. International Confer-
ence on 3D Vision, 2022.

[65] Hang Zhou, David Greenwood, and Sarah Taylor. Self-
Supervised Monocular Depth Estimation with Internal Fea-
ture Fusion. In British Machine Vision Conference, 2021.

[66] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.
Lowe. Unsupervised Learning of Depth and Ego-Motion
from Video. Conference on Computer Vision and Pattern
Recognition, pages 6612–6619, 2017.

632


