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Figure 1: Results of restoration with the proposed DepthCue model.

Abstract

In this paper, we perform restoration of underwater
images by considering principles of the image formation
model in deep neural networks. Typically, underwater im-
ages suffer from blur, color loss and other degradations
due to the scattering and absorption of light in water as a
medium. Quality of restoration is sensitive to depth as scat-
tering and absorption of light increases with depth and in-
troduces a considerable amount of degradation. However,
from literature we infer, recent restoration frameworks do
not consider the influence of depth on restoration of under-
water images. Towards this, we propose to consider depth
as a clue for restoration considering relative distance of ob-
jects in the scene. We introduce depth with different scales
as a clue for learning restoration and term the proposed ar-
chitecture as DepthCue. We foresee to facilitate the restora-
tion by eliminating the effect of degradations like lost color,
blur and noise. We demonstrate our results on benchmark
datasets and compare with the state-of-the-art restoration
techniques using various quality metrics.

1. Introduction

Typically, underwater vision applications suffers from
blur, color distortions, and low contrast due to scattering
and absorption of light in water as a medium. Images cap-

tured in mist, fog, smog, smoke, and water are likely to
undergo degradations as light reaching the camera passing
through these mediums is either scattered or absorbed. The
process of restoration in underwater scenario is more sensi-
tive to absorption and scattering parameters such as depth,
reflectance, absorption spectrum, and spectral responses of
the objects in scene. From the literature, we infer quality of
restoration in underwater scenario is limited by unavailabil-
ity of depth information. In this paper, we propose to esti-
mate relative depth in underwater scene, and use the same
as a clue for restoration of underwater images. Few results
of restoration with DepthCue is shown in Figure 1. Appli-
cations like coral reef monitoring, tracking of aquatic flora
and fauna, recognition of species, and preservation of un-
derwater archeology demands restoration and enhancement
of underwater images.

Sensor artifacts initiate non linear distortions in the cap-
tured images limiting the performance of vision tasks like
tracking detection, and segmentation. Image enhancement
and restoration frameworks can alleviate the quality of the
underwater images. Enhancement of underwater images
[20] [31] has taken considerable leap as it is subjective pro-
cess and does not include complex image formation model.
Several techniques [11] have been proposed to improve the
quality of underwater images, right from simple light en-
hancement to deep learning methods.

State of the art restoration techniques address underwa-
ter images restoration from several perspectives based on

196



M
ax
Po
ol

M
ax

Po
ol

Bl
oc

k 

Up
Sa
m
p

C
on
v2
D

C
on
v2
D

Re
siz
e

Decoder Block 

C
on
v2
D

C
on
v2
D

Encoder Block 

𝛼 ∗ ℒ!"# + 1 − 𝛼 ∗ ℒ""$!
DepthCue

Estimated Depth

Learning-based 
Monocular Depth Estimation

Figure 2: Proposed framework (DepthCue) for restoration of underwater images.

In-situ measurements [1], stereo vision techniques [1], tra-
ditional [25], and revised image formation models [2] [10]
[8]. In-situ measurements are expensive and infeasible. In
stereo vision, finding pixel correspondence is challenging in
underwater scenario. The authors [25] consider traditional
image formation model for restoration of underwater im-
ages. Image formation process is sensitive to both inherent
and apparent optical properties. However traditional image
formation model considers limited no of inherent and ap-
parent optical properties towards restoration of underwater
images.

Typically, attenuation of light in underwater scenario
is influenced by direct scattering, forward scattering,
backscattering and is sensitive to the presence of submerged
particles. The total light reaching the camera from the ob-
ject is represented as sum of direct scattering, back scatter-
ing, and forward scattering [29] as shown in Equation 1:

  \label {tsca} I_{\lambda } = D_{\lambda }+ B_{\lambda } + F_{\lambda }       (1)

where Iλ is the total irradiance received by the camera, Dλ

is the direct light, Bλ is backscattered light, Fλ is forward
scattering component respectively. The subscript λ repre-
sents the wavelength of color channels R, G, and B for an

RGB image. However, authors in [34] show quantitatively
Fλ ≪ Dλ, and it does not contribute significantly to the
degradation of an underwater image. Therefore, Equation 1
is simplified as:

  \label {rtsca} I_{\lambda } = D_{\lambda }+ B_{\lambda }     (2)

Both Bλ and Dλ given in Equation 2 account for absorption
and scattering independently. The direct and back scatter-
ing components are represented using wide band attenua-
tion coefficients βB

c and βD
c respectively.

Traditional model as shown in Equation 3 and Equation
4 assume wide band attenuation coefficients is uniform for
both direct and back scattering. However, the parameters
such as depth d(x), reflectance ρ, and spectral response Sc

are ignored, limiting the true powers of restoration. Towards
this, we propose to use revised image formation as shown in
Equation 5 in two folds: restoration of degraded underwa-
ter images and synthetic data generation. Towards learning
restoration, we consider depth as a clue in DepthCue. To-
wards synthetic data generation, we generate degraded ob-
servations (synthetic data) with corresponding ground-truth
information [9] to facilitate learning-based restoration.
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  \label {tifm} I(x)= J(x)t(x)+A(1-t(x))      (3)

where J(x) is true scene radiance, t(x) is the transmis-
sion and A is the veiling light. The transmission map t(x)
through the water medium is given by [40],

  \label {trmap} {t}(x) = {e^{ - {\beta _\lambda }d(x)}}    (4)

  \label {rifm} I(x)= J(x){e^{-{\beta ^D_{c}}(v_D)d(x)}}+V^\infty _{c}(1-{e^{{\beta ^B_{c}}(v_B)d(x)}})  
   

 

  (5)

where vD = {d(x), ρ, E, Sc, β} and vB = {E, Sc, β, b}.
Here d(x) is the depth, ρ is the reflectance of each object
in the scene, Sc is the spectral response of the camera, E
is the spectral irradiance of the scene, b is the scattering
coefficient and β is beam attenuation coefficient.

Figure 3: Restoration with learning based methods on UIEB
[27] dataset. 1st row shows input images, 2nd row shows re-
sults from CWR method [18], 3rd row shows results from
UWCNN method [4], 4th row shows results from WaveNet
method [35], 5th row shows results from AquaGAN method
[8]. Last row shows results of DepthCue, restoration of
color and contrast information appears realistic and natural.

Figure 4: Restoration with non-learning based methods on
UIEB [27] dataset. 1st row shows input images, 2nd row
shows results from DCP method [19], 3rd row shows results
from MIP method [5], 4th row shows results from RoWS
method [6], 5th row shows results from UDCP method [13],
6th row shows results from ULAP method [36]. Last row
shows results of DepthCue, restoration of color and contrast
information appears realistic and natural.

Hou et al. [21] [22] measure the absorption and attenua-
tion coefficients, particle size distribution, and volume scat-
tering function using in-situ optical instruments, and are in-
feasible in real-time. Wang et al. [38] propose to estimate
attenuation coefficients with respect to high contrast region.
High contrast region is considered as a priori information to
determine other parameters of the model. Chaing et al. [7]
segment foreground and background to determine the pres-
ence of artificial source of light during the capture. Galdran
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et al. [15] estimate background light considering maximum
value in red channel. Drews et al. [12] and Simon et al. [14]
assume, the red channel attenuates faster, and is not suffi-
cient information to determine the background light. They
extend the work, to estimate minimum of green and blue
channels, and consider it as priori.

Liu et al. [28] estimate priors (atmospheric light and
transmission map) iteratively. Aupendu kar et al. [26] pro-
pose to use recurrent neural networks with iterative frame-
work to de-haze an underwater image. Zhang et al. [41]
propose to dehaze an image with transmission map using
GAN framework. They minimize the combination of per-
ceptual loss and Euclidean loss during training. However,
perceptual and euclidean loss fail to exploit the true col-
ors, contrast, and texture information in restoration process.
Towards this, we propose to combine MSE and SSIM for
restoring true colors, constrast and structural information
along with texture.

We intend to perform restoration considering depth as a
clue and our contributions are:

• We propose a learning-based framework towards
restoration of degraded underwater images consider-
ing depth as a clue and term it as DepthCue.

• We propose to estimate the depth of underwater scene
d(x) with learning based techniques, and use the same
as a clue towards restoration.

• We propose a combinational loss function to restore
the true colors, contrast and texture information of de-
graded underwater images.

• We demonstrate the results of restoration using syn-
thetic and real datasets to show the generalisability
of the proposed model. We compare the quality of
restoration with state-of-the-art techniques both quali-
tatively and quantitatively.

• We extend the usability of the proposed framework on
dehazing as an objective.

In Section 2, we discuss the proposed methodology
(DepthCue) for restoration of underwater images. We dis-
cuss the results of the proposed methodology in Section 3
and compare the same with state-of-the-art techniques. We
present conclusion remarks in Section 4.

2. DepthCue: Restoration of underwater im-
ages using monocular depth as a clue

The scenarios such as hazy, foggy and smoggy in above
water and underwater limits the underlying details of the
scene. However, underwater scenario comes with additional
challenges with water medium being the primary hindrance.

Figure 5: Restoration with learning and non-learning based
methods on synthetic dataset, 1st row shows input images,
2nd and 3rd row shows results of non-learning based tech-
niques, 2nd row shows results from ULAP [36], 3rd row
shows results from UDCP [13], 4th to 7th row corresponds
to results from learning based methods, 4th row shows re-
sults from WaveNet [35], 5th row shows results from CWR
[18], 6th row shows results from AquaGAN [8], 7th row
shows results of the DepthCue (recovery of color and con-
trast is consistent throughout the scene), last row depicts the
corresponding ground-truth images.

Typically, human brain perceives depth based on stereo
vision. The position of eyes in human beings facilitates to
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perceive the width, height and depth of an object for de-
termining the relative distance of each object in the scene.
The information about relative distances of the object in the
scene supports us in finding object size, color, texture and
distance depending on the visibility of the scene. Experi-
ments conducted in [3] clearly shows amount of degrada-
tion in underwater images is sensitive to depth.

Towards this, we propose a variant of encoder decoder
architecture, DepthCue and introduce depth as a clue at dif-
ferent scales during restoration as shown in Figure 2. We
introduce encoder and decoder modules with asymmetric
skip connections in the proposed DepthCue.

At encoder we downsample the input by a factor of 2
in each step. We estimate depth by using a pre-trained
model as given by authors in [16], the estimated depth acts
as pseudo attention at each scale for the decoder. We intu-
itively use hierarchical depth as a pseudo attention for im-
proving quality of restoration. From literature [42] we infer,
receptive fields in the convolutional layers are learning lo-
cal features at different scales. Typically, the consistency in
visual appearance of the object across different scales is not
ensured. With this intuition we downscale depth at different
scales and interpret the scene in varying scales. Each scale
will facilitate decoder to seek additional information about
the scene through depth maps and facilitate restoration of
underwater images.

Reconstruction at the original resolution is challeng-
ing at the decoder. Towards this, we propose to include
corresponding upsampling blocks at the decoder part of
DepthCue. Depth is provided as a clue at every scale of
up-sampling block. Each up-sampling block includes a
bottle neck layer followed by a deconvolutional layer for
densifying the input. Features at corresponding scales are
concatenated in encoder- decoder and are passed through
convolutional block to restore the degraded underwater im-
ages. From literature [32] we infer, asymmetric nature of
encoder-decoder architecture increases the capacity of the
network. Unlike U-Net [33], we exploit asymmetric nature
in proposed DepthCue for improved restoration.

Most of the architectures for restoration of underwater
images include either MSE with L2 and L1 norm and SSIM
as loss functions. However, images captured in underwater
suffer from color loss, lower dynamic range and different
types of degradations. Towards this, we propose a combi-
national loss function with MSE and SSIM to exploit the
details of color, contrast and structure as shown in Section
2.1.

2.1. Proposed Loss Function

In this section, we emphasise on the combinational loss
function proposed towards restoration of degraded under-
water images. Since our focus is to perform restoration we
compute pixel wise difference between the groundtruth im-

age (Z) and the restored image (Ẑ). We propose to combine
the advantages of MSE and SSIM loss functions for restora-
tion of underwater images. Mean Square Error (MSE) loss
helps to preserve the sharpness whereas SSIM loss facili-
tates restoration of lost contrast, texture and luminance of
the degraded image. We propose the combination of MSE
and SSIM loss function as shown in Equation 6 for restora-
tion of overall aesthetics of an image.

  \label {LossF} Loss function = \alpha * MSE + (1-\alpha ) * (1-SSIM )     (6)

where α is scaling factor. We consider α = 0.5 after ex-
perimentating with different combinations for the proposed
loss function.

• 0.587 • 0.707 • 31.772 • 0.606 • 0.670 • 41.710 • 0.570 • 0.693• 26.270 • 0.558 • 0.655 • 41.080

• 0.650 • 0.789 • 47.938 • 0.642 • 0.742 • 53.425 • 0.667• 0.844• 55.512 • 0.595 • 0.689 • 48.255

Figure 6: Shows additional results of proposed methodol-
ogy (Blue, Red and Green dots indicate UCIQE, UIQM and
CCF scores respectively) with quantitative scores on EUVP
[24] and UFO-120 [23] datasets, 1st and 2nd column shows
the results on EUVP [24] dataset in comparison with the au-
thors in [8], 3rd and 4th column shows the results on UF0-
120 [23] dataset in comparison with authors in [8], 1st row
shows input images, 2nd row shows results of the authors in
[8], 3rd row shows the results of DepthCue.

3. Results and Discussions
In this section, we present the results of proposed

methodology (DepthCue) both qualitatively and quantita-
tively. We demonstrate the results of restoration on real,
and synthetic underwater images using UCIQE [39], UIQM
[30] and CCF [37] as no-reference quantitative metrics.
We consider real underwater images namely HICR [17]
UIEB [27], EUVP [24] and UFO-120 [23] datasets and
show proposed method outperforms for both learning and
non-learning based restoration techniques. We demonstrate
the results of proposed methodology on rendered synthetic
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Table 1: Quantitative analysis using no-reference metrics for learning based restoration techniques on UIEB [27] and HICR
[17] datasets (real underwater images). The 1st column shows metrics for UWCNN method [4], 2nd column shows metrics
for CWR method [18], 3rd column shows the metrics for WaveNet method [35], 4th column shows the metrics for AquaGAN
method [8], last column represents metrics for proposed methodology (DepthCue), Increase in performance of the proposed
method (DepthCue) is shown in bold, ↑ indicates higher is better.

Method → UWCNN [4] CWR [18] WaveNet [35] AquaGAN [8] Ours
Metric →
Dataset ↓ UCIQE ↑ UIQM ↑ CCF ↑ UCIQE ↑ UIQM ↑ CCF ↑ UCIQE ↑ UIQM ↑ CCF ↑ UCIQE ↑ UIQM ↑ CCF ↑ UCIQE ↑ UIQM ↑ CCF ↑

HICRD1 0.4464 0.6152 16.8232 0.4790 0.7011 18.5331 0.5209 0.6971 26.6790 0.4626 0.6513 23.9280 0.5538 0.7125 31.0825
HICRD2 0.4375 0.5899 15.5564 0.4696 0.6848 6.8810 0.5207 0.7019 23.5913 0.4231 0.6189 18.9437 0.5344 0.6886 27.7158
HICRD98 0.4793 0.6340 19.1321 0.4964 0.7110 19.7497 0.5259 0.6834 26.3643 0.4790 0.6530 25.8190 0.5576 0.7088 31.5047
HICRD99 0.4679 0.6263 18.3105 0.4936 0.7123 19.2059 0.5107 0.6781 25.2536 0.4784 0.6504 25.6575 0.5574 0.7073 31.7491
HICRD196 0.4578 0.6034 17.1228 0.4856 0.6903 18.2019 0.5317 0.6908 26.0363 0.5112 0.6855 26.2358 0.5682 0.7095 30.9263
HICRD197 0.4503 0.5940 17.0316 0.4872 0.6858 18.9455 0.5328 0.6826 27.2065 0.5112 0.6809 26.0945 0.5629 0.7043 30.3089
HICRD200 0.4587 0.6099 18.0332 0.4975 0.7017 19.8286 0.5442 0.7174 29.0405 0.5036 0.6692 26.5976 0.5585 0.7129 30.5241
UIEB 41 0.4912 0.6230 16.3341 0.5261 0.6037 21.1487 0.6449 0.7596 56.6566 0.5698 0.7097 32.6952 0.6527 0.7623 48.8777
UIEB 44 0.4750 0.6075 13.9857 0.5402 0.6528 21.1381 0.6617 0.8739 32.9983 0.6430 0.8241 38.3628 0.6714 0.8803 40.3149
UIEB 104 0.4105 0.2992 5.72060 0.4617 0.4598 14.4744 0.5805 0.5068 16.8709 0.5116 0.4955 10.9048 0.5870 0.4776 20.9319
UIEB 105 0.4329 0.3298 11.7471 0.5377 0.5788 14.8242 0.6293 0.6522 31.1855 0.5540 0.5832 26.5939 0.6316 0.6041 31.5213
UIEB 15603 0.4219 0.2180 5.4076 0.4889 0.4802 9.2080 0.5707 0.4058 11.3796 0.5019 0.3631 44.0622 0.5463 0.4727 15.9781
UIEB 15738 0.4595 0.2130 6.1780 0.5101 0.4249 10.2503 0.6052 0.4329 17.1607 0.4947 0.2766 11.0858 0.5983 0.5199 19.5094

underwater images using PSNR and SSIM as reference
based quantitative metrics and show the proposed method
(DepthCue) outperforms for both learning and non-learning
based restoration methods. We further show the generalis-
ability of the DepthCue considering dehazing as one of the
usecases.

We train the proposed architecture on Nvidia DGX Tesla
V100 for 500 epochs using Adam optimiser with lr =
0.0002, beta1 = 0.5 and beta2 = 0.99. We develop the
proposed algorithm on Python (v3.8) and PyTorch frame-
work. We use the proposed combinational loss function,
more specifically MSE and SSIM for restoration of lost col-
ors, contrast and structure using L2 norm. We consider ren-
dered synthetic underwater images as given by authors in
[10] to train the proposed architecture (DepthCue). We con-
sider a total of 4160 rendered images for training and 1040
images for testing.

In particular, we demonstrate the results of proposed
methodology (DepthCue) in comparison with learning and
non-learning based restoration methods on HICRD [17],
UIEB [27], EUVP [24] and UFO-120 [23] datasets. We
show the results of learning based restoration methods vi-
sually in Figure 8, Figure 3, and Figure 6. The correspond-
ing no-reference quantitative scores are shown in Table 1.
We show the results of non-learning based restoration meth-
ods visually in Figure 7 and Figure 4. The corresponding
no-reference quantitative scores is shown in Table 2. We
validate the results of proposed methodology on synthetic
underwater images across different tints and show the same
visually in Figure 5. The corresponding quantitative scores
for the same are shown in Table 3. We demonstrate addi-
tional results on EUVP [24] and UFO-120 [23] datasets to
prove depth as a clue improves restoration as shown in Fig-
ure 6.

Unlike other SOTA techniques, in Figure 3 and 4, we

Table 2: Quantitative analysis for non-learning based
restoration techniques using no-reference metrics. The 1st

column shows metrics obtained using HICRD dataset, 2nd

column shows metrics obtained using UIEB dataset, rows
depicts non-learning based methods, last row corresponds
to results of the proposed methodology (DepthCue).

Datasets → HICR Dataset [17] UIEB Dataset [27]
Metric →
Methods ↓ UCIQE ↑ UIQM ↑ CCF ↑ UCIQE ↑ UIQM ↑ CCF ↑

MIP 0.45044 0.71749 13.72548 0.62227 0.75021 60.78405
UDCP 0.49238 0.78010 24.5511 0.54984 0.65634 39.69742
ULAP 0.45764 0.73254 26.36227 0.59953 0.61758 44.93024
RoWS 0.45525 0.65258 14.0895 0.55997 0.54743 38.78192
Ours 0.52654 0.70153 29.7700 0.61297 0.61954 29.04847

observe the restoration of color and contrast information ap-
pears realistic and natural with the proposed methodology.
It is apparent from Figure 8, by providing depth parameter
as additional information improves the restoration. We see
in Figure 8, removal of tint, recovery of color and contrast is
consistent throughout the scene with the proposed method-
ology (DepthCue), however in SOTA techniques the quality
of restoration is not consistent. To validate the performance
of proposed methodology, we exhibit results of restoration
on synthetically rendered underwater images considering
indoor scenes and color charts. In Figure 5, we observe
the lost colors, contrast and other information in the scene
is very close to ground-truth images with DepthCue.

3.1. Applications

We extend the study on dehazing methods to show the
generalisability of the model. Dehazing methods are one of
the modules in underwater image restoration. We demon-
strate the results of restoration on hazy images as shown in
Figure 9. From the Figure 9 it is evident that, encompass-
ing the image formation model in deep learning frameworks
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Figure 7: Restoration with non-learning based methods on HICRD dataset [17]. 1st row shows input images, 2nd row shows
results from DCP method [19], 3rd row shows results from MIP method [5], 4th row shows results from RoWS method [6],
5th row shows results from UDCP method [13], 6th row shows results from ULAP method [36], last row shows results of
the DepthCue (recovery of color and contrast is consistent throughout the scene).

Table 3: Quantitative analysis for learning and non-learning based techniques with reference based metrics on synthetic
dataset. Columns(left to right) depicts methods. Last column shows the results of proposed methodology. We show the mean
of PSNR and SSIM scores for the synthetic test dataset in last column.

Methods →
Metrics ↓ Input DCP [19] MIP [5] UDCP [13] ULAP [36] RoWS [6] UWCNN [4] CWR [18] WaveNet [35] AquaGAN [8] Ours (DepthCue)

PSNR 9.3370 8.9075 9.3871 7.8232 10.3902 9.1841 12.4719 13.80176 13.5374 13.6382 34.1051
SSIM 0.42019 8.9075 0.2252 0.2252 0.4931 0.3970 0.6224 0.59704 0.6521 0.6374 0.9594

will provide solutions to other sub problems like Dehazing,
Denoisiong and Deblurring.

4. Conclusions

In this work, we have restored the underwater images
by incorporating principles of the image formation model
in deep neural networks. We have considered the de-
graded underwater image and its corresponding depth as

clue for training the proposed architecture (DepthCue). We
have proposed a variant of encoder-decoder architecture
(DepthCue) and introduced depth information as a clue at
every scale at the decoder during restoration. We have
shown, the proposed method outperforms in comparison
with state-of-the-art techniques on benchmark datasets both
qualitatively and quantitatively. We have demonstrated the
generalizability of the model on dehazing as an application.
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Figure 8: Restoration with learning based methods on HICRD [17] dataset. 1st row shows input images, 2nd row shows
results from CWR method [18], 3rd row shows results from UWCNN method [4], 4th row shows results from WaveNet
method [35], 5th row shows results from AquaGAN method [8], last row shows results of the DepthCue (recovery of color
and contrast is consistent throughout the scene).

Figure 9: Restoration on hazy images. 1st row shows the input images, 2nd row depicts the results of dehazed images using
DepthCue.
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