Abstract

In this paper, we perform restoration of underwater images by considering principles of the image formation model in deep neural networks. Typically, underwater images suffer from blur, color loss and other degradations due to the scattering and absorption of light in water as a medium. Quality of restoration is sensitive to depth as scattering and absorption of light increases with depth and introduces a considerable amount of degradation. However, from literature we infer, recent restoration frameworks do not consider the influence of depth on restoration of underwater images. Towards this, we propose to consider depth as a clue for restoration considering relative distance of objects in the scene. We introduce depth with different scales as a clue for learning restoration and term the proposed architecture as DepthCue. We foresee to facilitate the restoration by eliminating the effect of degradations like lost color, blur and noise. We demonstrate our results on benchmark datasets and compare with the state-of-the-art restoration techniques using various quality metrics.

1. Introduction

Typically, underwater vision applications suffers from blur, color distortions, and low contrast due to scattering and absorption of light in water as a medium. Images captured in mist, fog, smog, smoke, and water are likely to undergo degradations as light reaching the camera passing through these mediums is either scattered or absorbed. The process of restoration in underwater scenario is more sensitive to absorption and scattering parameters such as depth, reflectance, absorption spectrum, and spectral responses of the objects in scene. From the literature, we infer quality of restoration in underwater scenario is limited by unavailability of depth information. In this paper, we propose to estimate relative depth in underwater scene, and use the same as a clue for restoration of underwater images. Few results of restoration with DepthCue is shown in Figure 1. Applications like coral reef monitoring, tracking of aquatic flora and fauna, recognition of species, and preservation of underwater archeology demands restoration and enhancement of underwater images.

Sensor artifacts initiate non linear distortions in the captured images limiting the performance of vision tasks like tracking detection, and segmentation. Image enhancement and restoration frameworks can alleviate the quality of the underwater images. Enhancement of underwater images [20][31] has taken considerable leap as it is subjective process and does not include complex image formation model. Several techniques [11] have been proposed to improve the quality of underwater images, right from simple light enhancement to deep learning methods.

State of the art restoration techniques address underwater images restoration from several perspectives based on...
In-situ measurements [1], stereo vision techniques [1], traditional [25], and revised image formation models [2] [10] [8]. In-situ measurements are expensive and infeasible. In stereo vision, finding pixel correspondence is challenging in underwater scenario. The authors [25] consider traditional image formation model for restoration of underwater images. Image formation process is sensitive to both inherent and apparent optical properties. However traditional image formation model considers limited no of inherent and apparent optical properties towards restoration of underwater images.

Typically, attenuation of light in underwater scenario is influenced by direct scattering, forward scattering, backscattering and is sensitive to the presence of submerged particles. The total light reaching the camera from the object is represented as sum of direct scattering, back scattering, and forward scattering [29] as shown in Equation 1:

\[I_\lambda = D_\lambda + B_\lambda + F_\lambda \]

where \(I_\lambda \) is the total irradiance received by the camera, \(D_\lambda \) is the direct light, \(B_\lambda \) is backscattered light, \(F_\lambda \) is forward scattering component respectively. The subscript \(\lambda \) represents the wavelength of color channels R, G, and B for an RGB image. However, authors in [34] show quantitatively \(F_\lambda \ll D_\lambda \), and it does not contribute significantly to the degradation of an underwater image. Therefore, Equation 1 is simplified as:

\[I_\lambda = D_\lambda + B_\lambda \]

Both \(B_\lambda \) and \(D_\lambda \) given in Equation 2 account for absorption and scattering independently. The direct and back scattering components are represented using wide band attenuation coefficients \(\beta_B \) and \(\beta_D \) respectively.

Traditional model as shown in Equation 3 and Equation 4 assume wide band attenuation coefficients is uniform for both direct and back scattering. However, the parameters such as depth \(d(x) \), reflectance \(\rho \), and spectral response \(S_\lambda \) are ignored, limiting the true powers of restoration. Towards this, we propose to use revised image formation as shown in Equation 5 in two folds: restoration of degraded underwater images and synthetic data generation. Towards learning restoration, we consider depth as a clue in DepthCue. Towards synthetic data generation, we generate degraded observations (synthetic data) with corresponding ground-truth information [9] to facilitate learning-based restoration.
\[I(x) = J(x)t(x) + A(1 - t(x)) \] \hspace{2cm} (3)

where \(J(x) \) is true scene radiance, \(t(x) \) is the transmission, and \(A \) is the veiling light. The transmission map \(t(x) \) through the water medium is given by \([40]\),
\[t(x) = e^{-\beta d(x)} \] \hspace{2cm} (4)

\[I(x) = J(x)e^{-\beta_c d(x)} + V_\infty(1 - e^{\beta_c d(x)}) \] \hspace{2cm} (5)

where \(v_D = \{d(x), \rho, S_c, \beta\} \) and \(v_B = \{E, S_c, \beta, b\} \). Here \(d(x) \) is the depth, \(\rho \) is the reflectance of each object in the scene, \(S_c \) is the spectral response of the camera, \(E \) is the spectral irradiance of the scene, \(b \) is the scattering coefficient and \(\beta \) is the beam attenuation coefficient.

Hou et al. [21] [22] measure the absorption and attenuation coefficients, particle size distribution, and volume scattering function using in-situ optical instruments, and are infeasible in real-time. Wang et al. [38] propose to estimate attenuation coefficients with respect to high contrast region. High contrast region is considered as a priori information to determine other parameters of the model. Chaing et al. [7] segment foreground and background to determine the presence of artificial source of light during the capture. Galdran
et al. [15] estimate background light considering maximum value in red channel. Drews et al. [12] and Simon et al. [14] assume, the red channel attenuates faster, and is not sufficient information to determine the background light. They extend the work, to estimate minimum of green and blue channels, and consider it as priori.

Liu et al. [28] estimate priors (atmospheric light and transmission map) iteratively. Aupendu kar et al. [26] propose to use recurrent neural networks with iterative framework to de-haze an underwater image. Zhang et al. [41] propose to dehaze an image with transmission map using GAN framework. They minimize the combination of perceptual loss and Euclidean loss during training. However, perceptual and euclidean loss fail to exploit the true colors, contrast, and texture information in restoration process. Towards this, we propose to combine MSE and SSIM for restoring true colors, contrast and structural information along with texture.

We intend to perform restoration considering depth as a clue and our contributions are:

- We propose a learning-based framework towards restoration of degraded underwater images considering depth as a clue and term it as DepthCue.

- We propose to estimate the depth of underwater scene \(d(x)\) with learning based techniques, and use the same as a clue towards restoration.

- We propose a combinational loss function to restore the true colors, contrast and texture information of degraded underwater images.

- We demonstrate the results of restoration using synthetic and real datasets to show the generalisability of the proposed model. We compare the quality of restoration with state-of-the-art techniques both qualitatively and quantitatively.

- We extend the usability of the proposed framework on dehazing as an objective.

In Section 2, we discuss the proposed methodology (DepthCue) for restoration of underwater images. We discuss the results of the proposed methodology in Section 3 and compare the same with state-of-the-art techniques. We present conclusion remarks in Section 4.

2. DepthCue: Restoration of underwater images using monocular depth as a clue

The scenarios such as hazy, foggy and smoggy in above water and underwater limits the underlying details of the scene. However, underwater scenario comes with additional challenges with water medium being the primary hindrance.

![Figure 5: Restoration with learning and non-learning based methods on synthetic dataset, 1st row shows input images, 2nd and 3rd row shows results of non-learning based techniques, 2nd row shows results from ULAP [36], 3rd row shows results from UDCP [13], 4th to 7th row corresponds to results from learning based methods, 4th row shows results from WaveNet [35], 5th row shows results from CWR [18], 6th row shows results from AquaGAN [8], 7th row shows results of the DepthCue (recovery of color and contrast is consistent throughout the scene), last row depicts the corresponding ground-truth images.](image)

Typically, human brain perceives depth based on stereo vision. The position of eyes in human beings facilitates to
perceive the width, height and depth of an object for determining the relative distance of each object in the scene. The information about relative distances of the object in the scene supports us in finding object size, color, texture and distance depending on the visibility of the scene. Experiments conducted in [3] clearly shows amount of degradation in underwater images is sensitive to depth.

Towards this, we propose a variant of encoder decoder architecture, DepthCue and introduce depth as a clue at different scales during restoration as shown in Figure 2. We introduce encoder and decoder modules with asymmetric skip connections in the proposed DepthCue.

At encoder we downsample the input by a factor of 2 in each step. We estimate depth by using a pre-trained model as given by authors in [16], the estimated depth acts as pseudo attention at each scale for the decoder. We intuitively use hierarchical depth as a pseudo attention for improving quality of restoration. From literature [42] we infer, receptive fields in the convolutional layers are learning local features at different scales. Typically, the consistency in visual appearance of the object across different scales is not ensured. With this intuition we downscale depth at different scales and interpret the scene in varying scales. Each scale will facilitate decoder to seek additional information about the scene through depth maps and facilitate restoration of underwater images.

Reconstruction at the original resolution is challenging at the decoder. Towards this, we propose to include corresponding upsampling blocks at the decoder part of DepthCue. Depth is provided as a clue at every scale of upsampling block. Each up-sampling block includes a bottle neck layer followed by a deconvolutional layer for densifying the input. Features at corresponding scales are concatenated in encoder-decoder and are passed through convolutional block to restore the degraded underwater images. From literature [32] we infer, asymmetric nature of encoder-decoder architecture increases the capacity of the network. Unlike U-Net [33], we exploit asymmetric nature in proposed DepthCue for improved restoration.

Most of the architectures for restoration of underwater images include either MSE with L_2 and L_1 norm and SSIM as loss functions. However, images captured in underwater suffer from color loss, lower dynamic range and different types of degradations. Towards this, we propose a combinational loss function with MSE and SSIM to exploit the details of color, contrast and structure as shown in Section 2.1.

2.1. Proposed Loss Function

In this section, we emphasise on the combinational loss function proposed towards restoration of degraded underwater images. Since our focus is to perform restoration we compute pixel wise difference between the groundtruth image (Z) and the restored image (\hat{Z}). We propose to combine the advantages of MSE and SSIM loss functions for restoration of underwater images. Mean Square Error (MSE) loss helps to preserve the sharpness whereas SSIM loss facilitates restoration of lost contrast, texture and luminance of the degraded image. We propose the combination of MSE and SSIM loss function as shown in Equation 6 for restoration of overall aesthetics of an image.

$$\text{Loss function} = \alpha \cdot \text{MSE} + (1 - \alpha) \cdot (1 - \text{SSIM}) \quad (6)$$

where α is scaling factor. We consider $\alpha = 0.5$ after experimenting with different combinations for the proposed loss function.

Figure 6: Shows additional results of proposed methodology (Blue, Red and Green dots indicate UCIQE, UIQM and CCF scores respectively) with quantitative scores on EUVP [24] and UFO-120 [23] datasets, 1rd and 2nd column shows the results on EUVP [24] dataset in comparison with the authors in [8], 3rd and 4th column shows the results on UFO-120 [23] dataset in comparison with authors in [8], 1st row shows input images, 2nd row shows results of the authors in [8], 3rd row shows the results of DepthCue.

3. Results and Discussions

In this section, we present the results of proposed methodology (DepthCue) both qualitatively and quantitatively. We demonstrate the results of restoration on real, and synthetic underwater images using UCIQE [39], UIQM [30] and CCF [37] as no-reference quantitative metrics. We consider real underwater images namely HICR [17] UIEB [27], EUVP [24] and UFO-120 [23] datasets and show proposed method outperforms for both learning and non-learning based restoration techniques. We demonstrate the results of proposed methodology on rendered synthetic
Table 1: Quantitative analysis using no-reference metrics for learning based restoration techniques on UIEB [27] and HICR [17] datasets (real underwater images). The 1st column shows metrics for UWCNN method [4], 2nd column shows metrics for CWR method [18], 3rd column shows the metrics for WaveNet method [35], 4th column shows the metrics for AquaGAN method [8], last column represents metrics for proposed methodology (DepthCue). Increase in performance of the proposed method (DepthCue) is shown in bold. ↑ indicates higher is better.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCIQE</td>
<td>UIQM</td>
<td>CCF</td>
<td>UCIQE</td>
<td>UIQM</td>
<td>CCF</td>
<td>UCIQE</td>
</tr>
<tr>
<td>HICRD1</td>
<td>23.9280</td>
<td>0.6711</td>
<td>16.8252</td>
<td>0.4709</td>
<td>0.7011</td>
<td>16.5931</td>
<td>0.5329</td>
</tr>
<tr>
<td>HICRD2</td>
<td>23.5913</td>
<td>0.6845</td>
<td>19.7497</td>
<td>0.5299</td>
<td>0.6854</td>
<td>20.3847</td>
<td>0.4831</td>
</tr>
<tr>
<td>HICRD9</td>
<td>0.5940</td>
<td>0.6037</td>
<td>0.6037</td>
<td>0.6297</td>
<td>0.5377</td>
<td>0.5870</td>
<td>0.5340</td>
</tr>
<tr>
<td>HICRD99</td>
<td>0.6106</td>
<td>0.6106</td>
<td>0.6106</td>
<td>0.6106</td>
<td>0.6106</td>
<td>0.6106</td>
<td>0.6106</td>
</tr>
<tr>
<td>HICRD136</td>
<td>0.578</td>
<td>0.578</td>
<td>0.578</td>
<td>0.578</td>
<td>0.578</td>
<td>0.578</td>
<td>0.578</td>
</tr>
<tr>
<td>HICRD197</td>
<td>0.4071</td>
<td>0.3940</td>
<td>17.3106</td>
<td>0.4906</td>
<td>0.5695</td>
<td>18.2019</td>
<td>0.5317</td>
</tr>
<tr>
<td>HICRD200</td>
<td>0.3360</td>
<td>0.5005</td>
<td>10.3052</td>
<td>0.4925</td>
<td>0.7017</td>
<td>19.2286</td>
<td>0.5344</td>
</tr>
<tr>
<td>UIEB 41</td>
<td>0.6912</td>
<td>0.6210</td>
<td>16.3441</td>
<td>0.5261</td>
<td>0.6057</td>
<td>21.1487</td>
<td>0.6449</td>
</tr>
<tr>
<td>UIEB 44</td>
<td>0.4759</td>
<td>0.5005</td>
<td>11.9857</td>
<td>0.3849</td>
<td>0.6528</td>
<td>21.3384</td>
<td>0.5017</td>
</tr>
<tr>
<td>UIEB 104</td>
<td>0.4105</td>
<td>0.2992</td>
<td>5.2000</td>
<td>0.4617</td>
<td>0.4398</td>
<td>14.4144</td>
<td>0.5305</td>
</tr>
<tr>
<td>UIEB 105</td>
<td>0.4129</td>
<td>0.3295</td>
<td>11.9631</td>
<td>0.5127</td>
<td>0.3588</td>
<td>13.8242</td>
<td>0.6291</td>
</tr>
<tr>
<td>UIEB 15632</td>
<td>0.4219</td>
<td>0.2180</td>
<td>5.4076</td>
<td>0.4999</td>
<td>0.4802</td>
<td>9.2000</td>
<td>0.5797</td>
</tr>
<tr>
<td>UIEB 15738</td>
<td>0.4995</td>
<td>0.2130</td>
<td>6.7800</td>
<td>0.5191</td>
<td>0.4249</td>
<td>10.2023</td>
<td>0.6052</td>
</tr>
</tbody>
</table>

Note: Similar to SOTA techniques, we demonstrate additional results on HICR Dataset [17], UIEB Dataset [27], EUVP [24] and UFO-120 [23] datasets to prove depth as a clue improves restoration as shown in Figure 6.

Unlike other SOTA techniques, in Figure 3 and 4, we observe the restoration of color and contrast information appears realistic and natural with the proposed methodology. It is apparent from Figure 8, by providing depth parameter as additional information improves the restoration. We see in Figure 8, removal of tint, recovery of color and contrast is consistent throughout the scene with the proposed methodology (DepthCue), however in SOTA techniques the quality of restoration is not consistent. To validate the performance of proposed methodology, we exhibit results of restoration on synthetically rendered underwater images considering indoor scenes and color charts. In Figure 5, we observe the lost colors, contrast and other information in the scene is very close to ground-truth images with DepthCue.

3.1. Applications

We extend the study on dehazing methods to show the generalisability of the model. Dehazing methods are one of the modules in underwater image restoration. We demonstrate the results of restoration on hazy images as shown in Figure 9. From the Figure 9 it is evident that, encompassing the image formation model in deep learning frameworks

Table 2: Quantitative analysis for non-learning based restoration techniques using no-reference metrics. The 1st column shows metrics obtained using HICRD dataset, 2nd column shows metrics obtained using UIEB dataset, rows depicts non-learning based methods, last row corresponds to results of the proposed methodology (DepthCue).

<table>
<thead>
<tr>
<th>Methods</th>
<th>Metric</th>
<th>Datasets</th>
<th>HICRD Dataset [17]</th>
<th>UIEB Dataset [27]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCIQE</td>
<td>UIQM</td>
<td>CCF</td>
<td>UCIQE</td>
</tr>
<tr>
<td>MIP</td>
<td>0.45044</td>
<td>0.71254</td>
<td>13.72548</td>
<td>0.66227</td>
</tr>
<tr>
<td>ULAP</td>
<td>0.49238</td>
<td>0.70801</td>
<td>24.5511</td>
<td>0.54984</td>
</tr>
<tr>
<td>RDWS</td>
<td>0.47764</td>
<td>0.73254</td>
<td>26.56227</td>
<td>0.59951</td>
</tr>
<tr>
<td>Ours</td>
<td>0.52654</td>
<td>0.70153</td>
<td>29.7008</td>
<td>0.61429</td>
</tr>
</tbody>
</table>
will provide solutions to other sub problems like Dehazing, Denoising and Deblurring.

4. Conclusions

In this work, we have restored the underwater images by incorporating principles of the image formation model in deep neural networks. We have considered the degraded underwater image and its corresponding depth as clue for training the proposed architecture (DepthCue). We have proposed a variant of encoder-decoder architecture (DepthCue) and introduced depth information as a clue at every scale at the decoder during restoration. We have shown, the proposed method outperforms in comparison with state-of-the-art techniques on benchmark datasets both qualitatively and quantitatively. We have demonstrated the generalizability of the model on dehazing as an application.
Figure 8: Restoration with learning based methods on HICRD [17] dataset. 1st row shows input images, 2nd row shows results from CWR method [18], 3rd row shows results from UWCNN method [4], 4th row shows results from WaveNet method [35], 5th row shows results from AquaGAN method [8], last row shows results of the DepthCue (recovery of color and contrast is consistent throughout the scene).

Figure 9: Restoration on hazy images. 1st row shows the input images, 2nd row depicts the results of dehazed images using DepthCue.

5. Acknowledgement

This project is partly carried out under Department of Science and Technology (DST) through ICPS programme - Indian Heritage in Digital Space for the project “Digital Poompuhar” (DST/ ICPS/ Digital Poompuhar/ 2017 (General)).

References

ence on Computer Vision and Pattern Recognition (CVPR), June 2018.

