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Abstract

Neural network semantic image segmentation has devel-
oped into a powerful tool for autonomous navigational envi-
ronmental comprehension in complex environments. While
semantic segmentation networks have seen ample applica-
tions in the ground domain, implementations in the surface
water domain, especially fluvial (rivers and streams) de-
ployments, have lagged behind due to training data and
literature sparsity issues. To tackle this problem the pub-
licly available River Obstacle Segmentation En-Route By
USV Dataset (ROSEBUD) was recently published. The
dataset provides unique rural fluvial training data for the
water binary segmentation task to aid in fluvial scene au-
tonomous navigation. Despite new dataset sources, there is
still a need for studies on networks that excel at both under-
standing marine and fluvial scenes and efficiently operating
on the computationally limited embedded systems that are
common on autonomous marine platforms like ASVs. To
provide insight into state-of-the-art network capabilities on
embedded systems a survey of twelve networks encompass-
ing 8 different architectures has been developed. Networks
were trained and tested on a combination of three existing
datasets, including the ROSEBUD dataset, and then imple-
mented on an NVIDIA Jetson Nano to evaluate performance
on real-world hardware. The survey’s results lay out recom-
mendations for networks to use in autonomous applications
in complex and fast-moving environments relative to net-
work performance and inference speed.

1. Introduction

Autonomous Surface Vehicles (ASV) have shown to be
exceptionally versatile and have rapidly advanced the scien-
tific communities’ understanding of natural and man-made
phenomena in the world’s oceans and lakes. With the abil-
ity to affordably, rapidly and efficiently collect data, scien-
tists have been able to complete more in depth research in
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Figure 1: An example image and subsequent annotations
pulled from the ROSEBUD dataset showing a) the original
RGB image, b) the hand annotation of the binary classi-
fication between water and non-water classes, c) the hand
annotation of fluvial classes, d) a colored overlay of the an-
notated fluvial classes onto the original image.

oceanography [1, 2], bathymetry [3], magnetic surveys [4],
and environmental phenomena [5].

Recent advances in neural networks have further ad-
vanced the capabilities of ASVs by providing new methods
of data driven model predictive controllers that allow pre-
cise vehicle control [6, 7], vehicle dynamics identification
[8,9], environmental perception for navigation [10–12], and
identification of obstacles for avoidance [13, 14]. The abili-
ties of complex scene understanding lent to ASVs equipped
with neural networks have advanced their deployment op-
portunities for tasks in environments previously thought of
as beyond the scope of ASVs.

ASVs have seen limited use in fluvial environments
(rivers, streams, and creeks) and estuaries due to naviga-
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tion and control complexities arising from the complex en-
vironment (Fig. 1) and dynamic time-varying disturbances
present in flowing water. While ASVs such as the Jetyak
[15, 16] and ROAZ [3] have shown the ability to operate in
rivers, they have only seen limited deployments [3, 17, 18]
that leverage a-prioris of the operational environment. In
fluvial environments, a-prioris can easily be invalidated due
to time varying obstacle dispersion, course changes due to
river morphology, dynamic disturbances due to flowing wa-
ter, and rapid changes in operational depth.

For successful fluvial deployments, a system should be
able to identify navigable areas without relying on envi-
ronmental a-prioris. This becomes a problem for naviga-
tional systems that would need to generalize between flu-
vial and marine systems due to the vast differences in nav-
igable space, obstacles density, water clarity, and other en-
vironmental factors. The generalized navigation problem
can be simplified by grouping all obstacles (shore, rocks,
logs, etc.) and other non-water entities (trees, sky, etc.) into
a single non-water category. When this is done the nav-
igational problem becomes one of semantic segmentation
network water identification in the environment from ASV
onboard imagery.

While the image segmentation task is simplified when
formulated as a binary problem the generalization problem
still persists as water can appear vastly different in varying
lights, environments, and seasons. Semantic segmentation
neural networks are supervised learning methods that learn
to classify human annotated training data. Such implemen-
tations of supervised perception networks are exceptionally
dependent on the availability of training data obtained from
the targeted deployment environment, due to their inabil-
ity to rapidly generalize between dissimilar data. While
fluctuations in lighting and coloration can be augmented to
aid in network generalization, environmental fundamentals
can not be easily synthesized. Thus, the need for training
and testing on annotated data in varying environments is re-
quired to successfully train a network for real-world imple-
mentation. Semantically annotated datasets for unmanned
ground and aerial applications are publicly available and
abundant in number and size across many differing envi-
ronments [19–24]. However, few publicly available marine
datasets exist, leading to data sparsity problems. Of the
existing datasets many are not semantically annotated and
even fewer contain semantically annotated images of fluvial
scenes.

This lack of high quality training data has led to a dearth
in real-world deployments and forward work towards de-
ploying semantic segmentation networks on ASVs for navi-
gation of complex environments. This latter results in a lack
of knowledge within the marine robotics community re-
garding networks that are: 1) implementable on embedded
computers typically used in robotic systems, 2) fast enough

to allow real-world deployments, and 3) capable of learn-
ing complex datasets comprising fluvial, marine, and inland
waterways. To alleviate this problem, the authors recently
have created and published the publicly available River
Obstacle Segmentation En-route By USV Dataset (ROSE-
BUD) [25] that contains images of fluvial scenes from the
Wabash River and Sugar Creek in the U.S. state of Indiana,
Fig. 1.

Within this work an evaluation of twelve semantic seg-
mentation network architecture and encoder backbone com-
binations are trained and evaluated on a dataset comprised
of existing semantically annotated marine images [10], in-
land lakes and canals [26], and fluvial scenes [25]. Results
are presented for network capabilities on the representative
datasets as well as performance on an embedded system.
This paper specifically reports on: 1) how well varying state
of the art semantic architectures and encoder-pairs handle
marine semantic data; and 2) the performance of the survey
networks on a resource constrained NVIDIA Jetson Nano
embedded system commonly used in robotic development
and deployments of deep learning algorithms.

In the remainder of this work, a review of existing ma-
rine datasets for navigational tasks and semantic segmen-
tation networks is presented in Sec. 2. A brief review of
the datasets being used for training and testing of said net-
works are described in Sec. 3, while the network architec-
tures and encoders utilized within this work are explained
in Sec. 4. The network training process and evaluation met-
rics are discussed in Sec. 5 then the results of network test-
ing are presented in Sec. 6. A final conclusion and future
implementation work is explored in Sec. 7.

2. Background
Semantic Segmentation is frequently used to provide

contextualized location information from RGB based sens-
ing modalities (stereo and monocular RGB and RGB-
D). Unlike traditional neural network approaches for im-
age identification, semantic segmentation not only identify
classes within an image as a whole, but identifies where
within an image classes are. Semantic segmentation labels
individual pixels within an image using supervised neural
networks such as Convolutional Neural Networks (CNN)
or Fully Convolutional Networks (FCN). These networks
utilize an encoder and decoder combination where an en-
coder performs repeated convolutions into a feature rich la-
tent space, and a decoder upsamples the representative la-
tent space into a classified output at the same resolution
of the input image. Semantic segmentation networks have
been investigated and developed previously for uses ranging
from the marine navigation task in shipping lanes [11], to
indoor scene recognition [27]. These capabilities have been
employed together with simultaneous mapping and local-
ization (SLAM) to create semantic maps that provide anno-
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tated data clouds for autonomous navigation and decision
making while simultaneously allowing human robotic in-
sight [28]. Furthermore, none of the existing implementa-
tions the authors are aware of are explicitly done on em-
bedded systems meant for operation on mobile marine plat-
forms. This work investigates the application of supervised
segmentation to the fluvial navigation task through the use
of existing and established networks in the literature.

Within this work networks have been selected that use
various encoders, decoders, and network architectures to re-
duce the spatial losses from feature encoding that are com-
mon in semantic segmentation processes. This is because
the act of reducing spatial resolution to increase the depth of
features inherently leads to a loss of knowledge of the spa-
tial location of the features at the input resolution.For exam-
ple, Residual Networks [29] have residual outputs that are
used as inputs in subsequent convolutional layers. Unet [30]
is a special architecture that takes convolutional layers and
saves the feature space at the resolution of each layer for
incorporation with decoding deconvolutional layers of com-
parable resolution. Deeplabv3+ [31] uses atrous (or dilated)
convolutions along with atrous spatial pyramid pooling to
extract and decode features at different spatial strides to in-
corporate various spatial resolutions in the process.

ESPNet [32] implements a particular convolution fac-
torization module called Efficient Spatial Pyramid (ESP),
which is based on point-wise convolution and spatial pyra-
mid pooling of dilated convolutions. The ESP custom mod-
ule is used to build the entire network structure, reducing
the memory footprint and increasing execution speed. The
Bilateral Segmentation Network (BiSeNet) is a dual path
network that consists of a low-stride spatial path to preserve
spatial information and a context path with fast downsam-
pling to improve the receptive field. In the end, the two
paths are merged efficiently with a feature fusion module,
thus allowing a good balance between speed and segmen-
tation performance. SegNet [33] consists of an encoder-
decoder core architecture using 13 identical convolutional
layers (convolution, batch normalization and pooling) from
the VGG16 network as the encoder, followed by a decoder
composed of another 13 convolutional layers (convolution,
batch normalization, and pooling) to upsample the encoder
feature space to full input resolution; finally, the decoder
output is fed into a multi-class softmax classifier to do pixel-
wise classification.

A survey of semantic segmentation networks and their
applicability to marine surveillance using datasets was pre-
sented by Cane Et. Al [34], specifically the identification
of objects in marine images from the ground and air in the
Seagull [35], and SMD [36] datasets. This work turns such
a survey on its head by investigating network ability to rec-
ognize only water in a binary classification schema for nav-
igation instead of obstacle classification for surveillance.

Furthermore since 2018, new network architectures
and semantically annotated datasets have become pub-
licly available for the semantic classification task. Ex-
amples include the MaSTr1325 [10], Tampere-WaterSeg
[37], Waterline [38], Modd2 [39], Seagull [35] and SMD
[36] datasets. However, only the first three contain pub-
licly available ground truth pixel-wise annotations explic-
itly meant for aiding in surface navigation through semantic
network training. Furthermore, none of the aforementioned
datasets contain surface level imagery annotated for fluvial
navigation. To the authors knowledge, [25] is one of the
only publicly available semantically annotated fluvial seg-
mentation datasets built to aid in non-urban fluvial naviga-
tion.

3. Dataset

To capture the wide variety of images from an ASV
operating in the presence of different obstacles, and espe-
cially in fluvial environments; a dataset was built consist-
ing of annotations and images from the ROSEBUD [25],
MaSTr1325 [10], and Tampere-WaterSeg [26, 37] datasets.
The dataset combination provides a diverse spectrum of sce-
narios such as littoral, harbor, lake, canal, and fluvial im-
agery. The environmental spectrum provides a variety of
scenes for training and represents many of the scenes an
ASV may encounter on varying rivers such as harbors, rural
creeks with heavy debris fields, urban rivers with minimal
debris and estruaries.

While the Tapere-Waterseg dataset and ROSEBUD
datasets already have binary masks for supervised training,
the MaSTr1325 annotations are multi-class; thus the anno-
tations were converted to binary masks by combining all
non-water classes into a single ”non-water” class. All three
dataset together create 2474 unique images for use. In order
to assess the performance of the networks, the dataset has
been randomly divided into three subsets: training, valida-
tion, and testing. The training represents 70 % (1732 im-
ages) of the data, validation 20 % (495 images), and testing
10 % (247 images). Across the training subset the split be-
tween MaSTr1325, Tampereseg, and ROSEBUD was 54.2
- 23.5 - 22.3%, with the validation and testing split being
52.9 - 25.3 - 21.8% and 50.6 - 27.1 - 22.3% respectively.
The images were then augmented as in [40] with each im-
age being augmented for color, orientation, exposure, and
blur for a total of 13 augmentations. This brings the total
number of images to 34636, with 24248, 6930, 3458 for
training, validation, and testing respectively.

4. Segmentation Networks

To tackle the binary semantic segmentation task within
the training and test dataset within this work, eight different
semantic segmentation architectures are utilized with three
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of the eight architectures being employed with three differ-
ent encoder architectures for latent space generation. The
eight semantic architectures used are: 1) DeepLabV3+ [31],
2) Unet [30], 3) PSPNet [41], 4) WaSR [42,43], 5) WODIS
[12], 6) BiSeNet [44], 7) SegNet [33], 8) ESPNet [32].

WODIS was modified from that reported in [12], to adapt
the network to the binary segmentation task at hand. This
was done by using Binary Cross Entropy (BCE) loss instead
of negative log likelihood loss and by passing the network
output through a sigmoid function rather than a softmax.
A custom dataloader for the binary dataset was also cre-
ated and used for training and testing of WODIS and all
other networks. Similar changes were made to the WaSR
network; however, as shown in Sec. 6, the FPS for this net-
work is not reported since it was not implementable on the
NVIDIA Jetson Nano due to its high memory footprint re-
quirements.

Of the eight architectures DeppLabv3+, Unet, and PSP-
Net were implemented multiple times with different en-
coders for latent space generation. ResNet was chosen for
its frequent use within the literature, and ability to use resid-
ual layers to maintain feature and spatial resolutions. Two
ResNet implementations [29], ResNet 101 and ResNet 50,
were used to test the affect of encoder depth on the perfor-
mance of the network. Finally EfficientNet [45] was also
implemented as a encoder build to balance size and compu-
tational cost with accuracy.

Each of the seven architecture-encoder combinations
were implemented using the Segmentation Models Pytorch
repository [46]. While the implementations of BiSeNet
was from [47], SegNet [33], ESPNet from [32], WODIS
from the link in [12], and WaSR from the link present in
[42]. Thus, the total of twelve implementations were: 1)
DeepLabV3+ - ResNet101, 2) DeepLabV3+ - ResNet50,
3) Unet - ResNet101, 4) Unet - ResNet50, 5) Unet -
EfficientNet-b4, 6) PSPNet - ResNet101, 7) PSPNet -
ResNet50, 8) WaSR, 9) WODIS, 10) BiSeNet, 11) SegNet,
12) ESPNet.

5. Network Training and Evaluation
All twelve of the networks detailed in Sec. 4 were trained

on desktop computers running NVIDIA 3000 series GPU’s.
BiSeNet, SegNet, ESPNet, and all networks that utilize
ResNet101 and EfficientNet as encoders were trained on a
NVIDIA RTX3090 with 24 GB of VRAM and clock speed
of 1.4GHz. WODIS and all networks that utilized ResNet50
as an encoder were trained on a NVIDIA RTX3080 with 8
GB of VRAM and a clock speed of 1.4 GHz.

All Unet, DeepLabV3+,and PSPNet networks were
trained for 30 epochs with a learning rate of 1e − 4, Dice
coefficient loss [48], and early stopping implemented with
respect to validation water Intersection Over Union (IOU)
given as IOU = TP

TP+FP+FN where TP, FP, and FN are

the standard classification of network inferences of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) with respect to the networks binary
classification of water. The early stopping had an early stop-
ping patience of seven epochs, and delta of 5e − 4. WaSR
was implemented in a similar fashion, but with the custom
loss function detailed in [42] across both the water, and re-
sulting non-water class.

WODIS was trained over 30 epochs with a learning rate
of 1e − 4 and BCE loss [49] but without early stopping.
BiSeNet, SegNet, WaSR, and ESPNet were all also imple-
mented with BCE loss and without early stopping criteria
and trained for 1, 50, 10, and 10 + 10 (encoder, decoder)
epochs respectively. Across BiSeNet, SegNet, WaSR, and
ESPNet the learning rates were also different as 5e − 3,
1e−3, 1e−6, and 5e−4 with exponential weight decay of
1e − 4, 1e − 8, 1e − 6, and 5e − 4. BiSeNet used an SGD
optimizer [50] while others used the Adam optimizer [51].

To evaluate how well the networks handled the test
dataset four macro metrics are reported: 1) Mean
Pixel Accuracy (MPA), 2) Mean Intersection Over Union
(MIOU), F1 Score (or Dice coeffecient), and the Speci-
ficity (Spec), using the following definitions: MPA =

TP+TN
TP+TN+FP+FN , MIOU = 1

n

∑n
1 IOUn where n is the

number of classes (in this case two), Spec = TN
TN+FP ,

F1Score = Pr×Se
Pr+Se where precision (pr) and sensitivity

(se) are defined as pr = TP
TP+FP and se = TP

TP+TN .

6. Results
The evaluating metrics of the training as discussed in

Sec. 5 are presented as two separate sections to show the
quantitative and qualitative results separately in Sec. 6.1 and
Sec. 6.2. The quantitative results section discusses the met-
rics reported from testing of trained networks and the im-
plementation speed on the embedded platform NVIDIA Jet-
son Nano that features a Quad-core ARM A57 @ 1.43 GHz
with 4 GB memory and a NVIDIA Maxwell GPU that al-
lows efficient implementation of neural networks. The qual-
itative results section presents a visual comparison of the
network output masks to complement the results obtained
in the quantitative section. The results are presented and
discussed separately to provide a macro (dataset) and a mi-
cro (image) view of network performance. Table 1 shows
that all networks except BiSeNet and SegNet have MPA,
MIOU, F1 Score, and Spe over 0.96.

6.1. Quantitative results

In general, all of the networks performed exceptionally
well at a macro dataset level. This is in part due to the com-
plexity and size of the multi-class networks being used for
binary segmentation tasks as well as the significant amount
of augmentations and training data utilized.
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Network MPA MIOU F1
Score Spe Avg.

FPS
Size
[MB]

Parameter
[Million]

Unet
ResNet50 0.9942 0.9881 0.9930 0.9943 1.17 124.27 32.5

Unet
ResNet101 0.9948 0.9893 0.9938 0.9954 0.87 196.92 51.5

Unet
EffecientNet4 0.9867 0.9730 0.9842 0.9821 1.05 77.64 20.2

Deeplabv3+
ResNet50 0.9942 0.9881 0.9931 0.9944 1.21 101.99 26.7

Deeplabv3+
ResNet101 0.9942 0.9882 0.9931 0.9943 0.88 174.64 45.7

PSPNet
ResNet50 0.9930 0.9857 0.9916 0.9949 3.42 92.91 24.3

PSPNet
ResNet101 0.9930 0.9856 0.9916 0.9937 3.39 165.56 43.3

WODIS 0.9923 0.9843 0.9908 0.9914 1.41 187.5 49.0

BiSeNet 0.9730 0.9377 0.9679 0.9692 0.74 20.01 5.2

SegNet 0.9741 0.9382 0.9681 0.9937 0.43 117.9 29.4

ESPNet 0.9840 0.9706 0.9804 0.9863 18.04 15 0.35

WaSR 0.9957 0.9949 0.9962 0.9899 272.89 71.4

Table 1: Quantitative comparison of networks after completing training on the combined dataset as detailed in Section 3.
Additionally, each network was implemented on the Nvidia Jetson Nano and executed to evaluate the speed in FPS, and the
memory footprint in terms of the network size and number of parameters.

BiSeNet and SegNet have a relatively low F1 Score of
around 0.93 but still have high MPA, MIOU and Spe. The
result also shows that besides the WaSR network all of the
networks can be implemented on the embedded NVIDIA
Jetson Nano system at varying inference speeds. WaSR
was not able to be implemented due to the limited mem-
ory present on the embedded NVIDIA Jetson system. Most
networks implemented within this survey have a FPS below
1.5 due to their size and complexity. PSPNet with ResNet
50 and 101 both have a performance over 3 FPS. The light-
weight ESPNet architecture has the best inference perfor-
mance with an operation rate of 18.04 images per second on
the embedded system. However, lightweight architectures
are not always fast in every implementation as BiSeNet, a
lightweight network, has a slower inference rate than even
larger networks such as WODIS and PSPNet, and was still
less accurate than ESPNet.

The results show that network size and complexity for
accuracy is not the end goal for autonomous deployments
on embedded systems. This shows up in the data as an ex-
ample of diminishing returns, where for the data presented

increasing the network size from 101.99 MB (DeeplabV3+
ResNet50) to 174.65 MB (DeeplabV3+ ResNet101) did not
yield a significant increase in network performance, while
decreasing the systems average inference speed by 0.33
to less than a frame per second. Such decreases in infer-
ence speed can be detrimental to autonomous system con-
trol structures operating at speeds at or greater than 10Hz in
dynamic environments such as rivers more so than a small
decrease in output accuracy.

All of the Unet, Deeplab, and PSPNet implementations
had exceptionally high F1 scores as they were all trained
with dice coefficient loss and with early stopping criteria
relative to their F1 score on the validation dataset. Finally,
as expected with images such as those present in complex
scenes as shown in Fig. 1, all of the networks struggled
with MIOU, likely due to the complex entanglement be-
tween water and object reflections and water when present
behind obstacles (Fig. 2f right) as well as submerged objects
(Fig. 2h center).
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(a) Unet ResNet50

(b) Unet ResNet101

(c) Unet EffecientNet4

(d) Deeplabv3+ ResNet50

(e) Deeplabv3+ ResNet101

(f) PSPNet ResNet50

(g) PSPNet ResNet101

(h) WODIS

(i) BiSeNet

(j) SegNet

(k) ESPNet

(l) WaSR

Figure 2: Illustration of network outputs on ROSEBUD
dataset [40]. Columns from left to right are the test image,
the ground truth mask, and the output of the network.

6.2. Qualitative results

The macro level results show that the networks perform
exceptionally well at identifying scenes and many qualita-
tive outputs such as that shown in Fig. 2d which illustrates
the networks’ performance in complex scenes such as im-
ages with fallen trees in a river system. However, the net-
works occasionally struggle with complex fluvial scenes as
shown in Fig. 2. As many obstacles present within fluvial
environments, especially natural and rural areas, are small
in size compared to the environment but can be detrimen-
tal to ASV navigation and vehicle safety. The ability of a
network to recognize small obstacles such as thin branches,
partially submerged rocks, and stumps is hard to gauge from
dataset wide quantitative results.

An example of network difficulties that does not show
up in macro data is shown in Fig. 2b. In the figure an image
is taken of a dry riverbed, that the Unet ResNet101 fails to
properly parse into water and non-water areas. Such an en-
counter is not out of the question when traversing remote
rivers with seasonally varying river depths. In other in-
stances such as that shown in Fig. 2i, reflections in the water
from the sky can create confusion for networks, in this case
the BiSeNet network.

Despite these issues, the networks can perform well in
circumstances with great variance in exposure and image
hue, such as that shown in Fig. 2j, Fig. 2l, and 2e. This is
due to the ability to augment image hue and brightness to
enhance the training data, thus future data sets aimed at im-
proving navigation should focus on varying environments
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(a) Input Image (b) Unet ResNet50 (c) Unet ResNet101 (d) Unet EffecientNet4 (e) Deeplabv3+ ResNet50

(f) Ground Truth (g) Deeplabv3+
ResNet101

(h) PSPNet ResNet50 (i) PSPNet ResNet101 (j) WODIS

(k) BiSeNet (l) SegNet (m) ESPNet (n) WaSR

Figure 3: Illustration of network outputs on a same image from ROSEBUD dataset [40]

rather than varying seasons.
The qualitative comparison in Fig. 3 shows the perfor-

mance of the networks when segmenting a complex scene
containing water, trees, sky, and a partially submerged log.
The proximity between the camera and obstacle ridden fore-
ground also creates difficulty due to the cameras lens dis-
tortions. WaSR, Segnet, Unet ResNet101, and Unet Effe-
cientNet produced masks close to the ground truth. PSP-
Net Resnet50 detected the submerged part of the log even
though it is marked as water in the ground truth. Although
this classification is a FN detection, it gives a higher fac-
tor of safety for the navigation task due to the high speci-
ficity of the image. Unet ResNet50, Deeplabv3+, PSPNet
Resnet101, WODIS, and BiseNet were prone to poor detec-
tion of the log above water. ESPNet not only failed to detect
half of the log, but also made abundant FP predictions.

7. Conclusion

In this paper, a survey of twelve networks was performed
with training on a combination of datasets including ROSE-
BUD, MaSTr1325, and Tampere-WaterSeg to provide qual-
itative and quantitative results for each network. Addition-
ally, all the networks were implemented on an NVIDIA Jet-
son Nano to evaluate the performance on real-world hard-
ware.

Since all the evaluated networks exhibited good results

in terms of MPA, MIOU, and F1 score, and Specificity. De-
termining the best network depends on other aspects such as
the environment and the computational resources available.
Although the application in general is fluvial navigation, the
environment plays an important role in the selection of the
most suitable network. If the segmentation network is go-
ing to be used in a dynamic environment with a lot of dif-
ferent obstacles, then a good trade-off between speed and
accuracy is needed, which in this survey was the case for
PSPNet50 with 3.42 FPS and an MIOU of 0.9857. If on the
other hand, the environment requires a fast reaction due to
currents or wind, then the obvious option is ESPNet which
reached 18.04 FPS and an MIOU of 0.9706.

In the future, the selected networks will be integrated
into the navigation stack of a real ASV platform and tested
on different rivers to evaluate their performance. The newly
collected data will be used to assess the performance of
the networks in an unseen environment. The results from
these experiments will serve to determine what properties
of the selected networks are more appropriate to have in
real-world applications.
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