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Abstract

The use of computer vision for product and assembly
quality control is becoming ubiquitous in the manufacturing
industry. Lately, it is apparent that machine learning based
solutions are outperforming classical computer vision algo-
rithms in terms of performance and robustness. However, a
main drawback is that they require sufficiently large and la-
beled training datasets, which are often not available or too
tedious and too time consuming to acquire. This is espe-
cially true for low-volume and high-variance manufactur-
ing. Fortunately, in this industry, CAD models of the man-
ufactured or assembled products are available. This pa-
per introduces CAD2Render, a GPU-accelerated synthetic
data generator based on the Unity High Definition Render
Pipeline (HDRP). CAD2Render is designed to add varia-
tions in a modular fashion, making it possible for high cus-
tomizable data generation, tailored to the needs of the in-
dustrial use case at hand. Although CAD2Render is specif-
ically designed for manufacturing use cases, it can be used
for other domains as well. We validate CAD2Render by
demonstrating state of the art performance in two industrial
relevant setups. We demonstrate that the data generated by
our approach can be used to train object detection and pose
estimation models with a high enough accuracy to direct a
robot. The code for CAD2Render is available at https:
//github.com/EDM-Research/CAD2Render.

1. Introduction
Machine vision has been around in the industrial land-

scape for a couple of decades and the recent surge in popu-
larity has made the technology a major innovation driver for
manufacturers. Most of the approaches are relying on clas-
sic vision and are finetuned towards the inspection system.
Although they are able to achieve great performance, they

Figure 1. Annotated training set examples of different use cases
generated with CAD2Render. left: CNC fabrication, middle: com-
pressor parts, right: tool detection.

require full control of the environment where all the oper-
ating conditions stay constant. As such, they are prone to
failure when variables like lighting or backgrounds might
change. Machine learning algorithms, on the other hand,
can be trained to handle such variations, but in turn, have
some major challenges that need to be addressed before be-
ing fully adopted in this industrial domain.

A first key challenge is the need for large annotated train-
ing sets, which are tedious, time consuming and very costly
to acquire. In the majority of cases, the data has to be anno-
tated manually, which can lead to bias or errors caused by
the human annotator. This limitation is more pronounced in
the manufacturing industry, as they have taken some major
steps forward in flexible assembly and product manufac-
turing, allowing them to transform their pipeline towards
flexible low-volume and high-variance production. In the
extreme case, each produced product can be of a different
shape (e.g. prosthesis manufacturing), where there is sim-
ply no time to manually capture and annotate datasets. A
second challenge is the complex outlook of the materials
used in manufacturing. Products are often made of metallic-
like materials that cause detailed and complex reflections. It
is very challenging for a vision technique to generalize to all
the possible and complex lighting effects.

A common approach to cope with small training datasets
is data augmentation: slightly distorting the available data
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Figure 2. Schematic overview of CAD2Render. Environment maps, CAD files and material properties are imported in CAD2Render and
used to create a high variety of 3D scene’s. Further variations to the material textures can be created by introducing defects like rust or
scratches. The scenes are then rendered with a path tracer to create a dataset for training machine learning algorithms.

points to create new points that still belong to the same cat-
egory. While it can provide better performance, it still re-
quires a minimum of data and it does not take into account
that the actual products are three-dimensional objects and
their visual appearance is governed by complex material
properties, lighting conditions, and geometrical detail. This
is especially relevant in the manufacturing industry with the
metallic-like materials.

This paper exploits the availability of CAD models and
the domain knowledge of the manufacturing process, to-
gether with the recent advancements in real-time ray trac-
ing, to propose a modular toolkit called CAD2Render. The
proposed toolkit is able to automatically generate large
amounts of photorealistic training images with extensive vi-
sual variations and their accompanying annotations for ma-
chine learning purposes. These annotations are generated
without human errors or bias. A schematic view of the
toolkit is given in Figure 2. We selected two industrial rele-
vant algorithms for validation, i.e. bin picking by means of
object detection and pose estimation, and keypoint detec-
tion. Both are important tasks for automating industrial se-
tups, requiring complex vision algorithms. We show that we
can achieve a performance capable of solving these tasks in
an industrial relevant environment when training on datasets
generated by CAD2Render.

2. Related work
Decreasing training set sizes is a popular area of re-

search. Data augmentation is a widely adopted approach
to increase the variability in datasets. By slightly distorting
the few available images, new examples are created without
the need of relabeling the data. The most common varia-
tions used are randomly cropping, rotating, scaling, mirror-
ing, color balancing, and adjusting brightness of the entire
collection of training pictures to create many slightly mod-

ified copies [28, 29]. More recently, similar basic image-
based variations are generated using deep learning [18].
All of these modifications are limited by the information
contained in the original 2D pictures, and by the fact that
each modification induces a loss of quality. On the other
hand, the actual products are three-dimensional and their
visual appearance is governed by complex material proper-
ties, lighting conditions, and geometrical detail.

Because of the scarcity of training data, recent works
propose techniques for training machine learning models
purely on synthetic data and have shown that it can achieve
similar results compared to SOTA [14, 20]. An important
conclusion they draw is that realism in the synthetic data is
a key factor. Tobin et al. [21] demonstrate the importance of
domain randomization when using synthetic data. In their
work they show that the domain gap between real and syn-
thetic data can be bridged by introducing enough variations
in the synthetic data generation. The machine learning al-
gorithms will see the domain gap as yet another variation of
the synthetic data.

Rendering photorealistic images is a complex task and
all the settings for 3D geometry, lighting and materials have
to be meticulously modelled in order to achieve convincing
photorealism [15]. In addition, rendering large datasets is a
time consuming task, certainly when the generator is based
on a ray tracing algorithm to generate the data. This can be a
limiting problem because, in low-volume and high-variance
manufacturing, new datasets need to be created in a short
amount of time. To speed up this task, it can be distributed
on a computer cluster or parallelized on a GPU. Kubric cre-
ated by Greff et al. [6] is a data generation pipeline that
is designed to both work on a single computer to facilitate
prototyping or small dataset generation, as well as to run on
large computer clusters to speed up the generation. This is
only useful when you have access to a computer cluster.
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Jeong et al.[9] used a NeRF variant to extend a dataset
of real images with new viewpoints. This limits the amount
of real data required for or a sufficiently large dataset. With
NeRF they are able to represent hundreds of photorealistic
images in a single format, also reducing the storage size re-
quired for the dataset. The data synthesized with this tech-
nique can reach better photorealism then rendering a scene
from scratch. It also doesn’t require an expert optimizing
the appearance of a digital scene. However, this technique
is not able to add highly customizable variations to the data.

Other approaches that use 3D rendering focus on a
narrow scope of application, such as side view render-
ing for face detection [4], stereo rendering for depth es-
timation [12], vehicle detection [1, 11] or large scale fac-
tory simulations [15]. In contrast, most products in indus-
trial manufacturing settings have complex material proper-
ties and as a result undergo intricate lighting effects when
changing the viewpoint or lighting properties. To include
these variations, this paper will focus on algorithms to vary-
ing this complex light propagation to cost-effectively syn-
thesize large amounts of training data with accurate and re-
alistic variations of lighting conditions, viewpoints, surface
properties, etc. 3D CAD models provided by the manufac-
turers will be utilized to support this process.

3. CAD2Render

CAD2Render is designed as a modular and highly
customizable toolkit built upon the HDRP pipeline of
Unity3D [24] for generating high quality synthetic data for
deep learning purposes. It focuses on photorealism by in-
cluding global illumination effects. A high level overview
is provided in Figure 2. Inspired by the key insight of Tobin
et al. [21], that domain randomization is a powerful tool to
successfully exploit synthetic data for training deep learning
models, we argue that CAD2Render should support a wide
set of complex variations. CAD2Render supports variations
such as model types, number of models, instancing, envi-
ronments lighting, viewpoints, exposure, supporting struc-
tures, materials, material appearance, textures, etc. These
variations are added in a modular fashion and can be en-
abled, disabled or extended in function of the use case.

3.1. Modular Variations

To facilitate the need for broad and complex variations in
the training data, we introduce a wide range of modular ran-
domizers that can introduce different types of variations in
the synthetic data. For the clarity of this paper, we have cat-
egorized the modules based on pose, lighting, appearance
and miscellaneous variations. This section describes how
these variations are generated.

3.1.1 Camera Variations

The camera pose is randomly defined in spherical coordi-
nates (θ, ϕ, r), in a sphere around a point of interest, ori-
entated towards this point. The user can define minimum
and maximum ranges for these parameters which are then
uniformly sampled within this range. The intrinsic parame-
ters of the camera can also be adjusted to match an existing
camera. To further match a physical setup it is also possible
to import exact camera poses from a BOP dataset.

3.1.2 Object Variations

The object pose is randomized by automatically spawn-
ing new objects in the scene. For each dataset, the user
can setup a spawning volume, which defines the 3D region
where new objects can be instantiated. Furthermore, the
user specifies a ”model path” that contains the actual models
to be spawned, in the form of prefabs. These prefabs can be
very simple, just a mesh representation of the CAD model,
or can be fully tailored to the use case. CAD2Render will
randomly select a set of 3D models from this folder and in-
stantiates them in the scene. The user can specify how many
random object are spawned per generated image and if each
model is unique or can be instantiated multiple times. In
addition, the built-in Nvidia PhysX engine can be enabled
or disabled to simulate the objects falling in a natural pose.
If enabled, the scene requires a supporting structure, for ex-
ample a table or pallet.

3.1.3 Lighting Variations

Training datasets need sufficient variation in lighting to
make deep learning techniques robust for sudden changes
in environmental effects [22]. Two types of variations in
light are supported by CAD2Render. First, random high dy-
namic range environment maps are applied to each rendered

object reflections intense highlights/shadows environment variations

Figure 3. Complex lighting variations. Left: inter-reflections be-
tween object and and pallet. Middle: intense highlights (top) and
hard shadows (bottom). Right: changes in environment lighting.
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image. The environment maps are randomly selected from
a user specified path. Furthermore, randomized exposure
and rotation of the environment map is supported. Second,
the user can specify additional light source prefabs, acting
as templates for additional 3D light sources. During ren-
dering, for each generated image, parameters such as the
number or 3D light sources, the intensity, position, rotation
and radius can be set and randomized.

An example of lighting variations is given in Figure 3.
The Figure shows examples of environment map variations
and variations of intense highlights, shadows and color. We
argue that this type of complex photorealistic variations in
reflections, shadows and highlights are crucial to incorpo-
rate in the training set, because a trained pose or object de-
tector needs to be able to differentiate between what is the
actual object and what are the complex light effects that can
confuse the model. The more complex light variations the
model sees during training, the more it is robust to such
changes in a real context. In addition, support for projector
variations is available, where the projection of patterns or
images can be simulated (example in Figure 1 right).

3.1.4 Appearance Variations

The appearance of each instantiated object can be varied
on-the-fly. The assigned material properties, in the form
of normal, roughness, albedo and displacement maps, can
originate from different sources. They can be manually de-
signed, extracted from real sample materials, extracted of
the internet or (procedurally) generated (see Figure 2 on the
left). In the case of the former three, a database of existing
material models can be passed to the CAD2Render toolkit.
In the case of the latter, variations of material textures can be
automatically generated by the toolkit. At the moment, the
toolkit supports three types of texture generators that are in-
dustrially relevant: scratches, rust and polishing lines. The
settings of these generators can be tailored the the specific
needs of the use case at hand. CAD2Render can randomly
select and apply materials from a user defined path, simi-
lar to the environment maps. Additional variations can be
set, with random parameters for HSV offsets, rust, polish-
ing lines, scratches, etc. The database of materials can be
provided by the user or can be based on online sources such
as the Measured Material Library for Unity HDRP [23].

The simulation of rust and scratches is inspired by the
work of Mihaylov [13]. Figure 4 shows examples of rust
and scratch variations. In this example, we start from a ba-
sic material texture, extracted from a real physical exam-
ple. The extracted material textures are adjusted to include
imperfections such as rust or scratches. These variations
are generated during the execution with the help of Sim-
plex noise [7]. The noise map is used to mark areas where
the imperfections need to be generated. To allow for more

physical example extracted material

CAD2RENDER 
generated image

rust
random 

variations

scratchesCAD

Figure 4. Example of rust and scratch variations. An extracted
path material from a physical example (top left) is used in combi-
nation with a CAD file (bottom left) to generate synthetic images
(middle). On top of the extracted material, we can add different
material effects such as rust and scratches (right).

variations in material texture, we have implemented a tex-
ture resampling algorithm, based on the work of Opara et
al. [16]. The goal is to use an input texture and to gener-
ate a new texture that looks similar but has some distinct
variations. The proposed approach rearranges the pixels
of the input texture and tries to limit any obvious seams.
The advantage of this technique is that any type of varia-
tion can be modeled as long as an example texture is avail-
able. Because the technique of Opara et al. [16] is designed
for offline rendering it is too slow (in the order of minutes)
for synthetic data generation. To improve generation time,
we have optimized the algorithm for GPU, allowing it to
run at interactive frame rates. Figure 5 illustrates the ap-
proach of the resampling algorithms. First random patches
are copied from an example image (on the left) to the de-
sired output texture. This will create obvious seams where
two patches meet (middle part). Then a pixel based algo-
rithm is ran recursively to, step by step, improve the result-
ing texture (on the right). Each pixel determines the differ-
ence in pixel colors from their current neighborhood com-
pared to the neighborhood they had in the original texture.
Then every pixel will calculate the neighborhood difference
of multiple pixels suggested by other pixels in the neigh-

Figure 5. Texture resampling. Left: starting material texture. Mid-
dle: first iterations of copied patches. Some noticeable hard edges
can be perceived. Right: refined result after 15 iterations.
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borhood and change to the pixel with the lowest difference.
This is done multiple times in a row, reducing the radius of
the neighborhood with each iteration.

3.1.5 Miscellaneous

To conclude, there are some miscellaneous dataset settings
that can be set, such as: image resolution, rendering pro-
file (see Section 3.2), post processing profile for white bal-
ancing, tonemapping, gamma correction, camera exposure,
settings for export, number of physics frames and render
frames before export, etc. It is important to note that
CAD2Render is built upon Unity and the flexibility of the
underlying game engine allows the user to implement or op-
timize any additional requirements for the use case at hand.
This will possibly allow it to be applicable to other domains
than the manufacturing industry as well, as long as CAD
models are available.

3.2. Rendering Profiles and GPU Acceleration

The quality and speed of the renders are highly customiz-
able because CAD2Render is based on the High Definition
Rendering Pipeline of Unity [24]. Unity has a built-in GPU
accelerated path tracer that can be used for rendering when
photorealism is important. The main drawback of using
pathtracing for the generation of the images is the time it
takes to render. For some applications a large number of im-
ages might be needed. Complementary research has exper-
imented with the amount of CAD2Render images needed
to train object detection models and has shown that a large
amount of images are beneficial when no domain knowl-
edge is used [25].

DLSS 2.0 and/or NVIDIA OptiX Denoiser/Intel Open
Image Denoiser can be used to reduce the time it takes to
generate a converged image. To further increase the gener-
ation speed, two other rendering modes can be used: raster-
ization or hybrid. Rasterization relies on the classic render-
ing pipeline and hybrid mode is rasterization with limited
ray tracing support for shadows, reflections and ambient oc-
clusion. Changing the rendering approach to rasterization
or hybrid can have a considerable positive impact on gen-
eration time, but can introduce different types of artifacts.
In Figure 6 some differences in artifacts are shown between
the full pathtracer and the hybrid renderer. The hybrid ren-
derer fails to show all reflections, shadows and highlights
that are present in the images generated with the path tracer.
The path tracer can introduce noise in areas where the result
path tracer converges slowly if no denoiser is used.

Table 1 gives an overview of the rendering time com-
pared to the resolution between path tracing (at 500 rays
per pixel) and rasterization. All measurements were taken
with the template scene of the CAD2Render repository on a
RTX2070S GPU and an i7-10700KF CPU. Based on em-

pirical observations, enabling the denoiser and rendering
1/10 of the samples will introduce no noticeable artifacts
or noise, allowing for an additional speedup factor of 10.
However, further research is required to prove this does not
impact the performance of the machine learning models.

3.3. Exporting to BOP format

To allow for easy application of the generated datasets,
CAD2Render exports the annotated dataset to the standard-
ized BOP format [8]. This file format contains RGB im-
ages, object and camera poses, camera parameters, instance
segmentation, depth maps and 3D models. The BOP for-
mat and its accompanying toolkit are originally designed
for easy-of-use benchmarking for pose estimation, but due
to the rich annotations it can be used for other tasks, such as
object detection, segmentation and depth estimation.

3.4. Importing BOP for digital twin creation

CAD2Render supports the import of existing BOP
datasets as well. This is especially useful for creating a
digital twin dataset of a real dataset. This feature makes
it easier to research the domain gap between synthetic and
real images. The Dataset of Industrial Metal Objects [5] is
one such digital twin dataset, generated by CAD2Render.
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Figure 6. Comparison between the Unity path tracer and a hy-
brid renderer. The Hybrid renderer fails to generate all reflections,
shadows and highlights, while the path tracer can introduce noise.

Rendering 10.000 images

Resolution
Path tracing
500 samples
time (hours)

Rasterization
time (hours) Memory

(GB)
DLSS DLSS DLSS DLSS

1280 x 720 7.9 7.8 2.3 2.3 5.4
1920 x 1080 8.3 13.2 2.4 2.4 11.3
3840 x 2160 22.3 30.0 3.4 3.6 43.8

Table 1. Generation time and storage size for a dataset of 10.000
images. Comparison between various resolutions and render mode
(path tracing compared to rasterization). Measured on a RTX2070
Super GPU and an i7-10700KF CPU at 3.80GHz.
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Figure 7. Overview of the flow of the validation algorithm

4. Validation

Validation of CAD2Render is done on two industrially
relevant use cases: bin picking and 2D keypoint detection.
The former requires solutions for both object detection and
pose estimation. The latter is a useful approach to detect im-
portant landmarks. The validation results are trained solely
on synthetic data and tested on real data. Bin picking is
applied to metallic objects on a table. Keypoint detection
is done for two use cases: tools in use in natural environ-
ments and assembly validation on a top down view of a
work piece. This wide range of applications highlights the
customizability of the toolkit.

4.1. Bin Picking of Metal Objects

The proposed method has been validated in a setup
representing an industrial pick and place application, using
a collaborative robot (cobot), equipped with a suction cup
and a static camera. The identification of the objects and
subsequent position and pose estimation was done with two
state of the art networks: YoloV4 [2] for object detection
and PVNET [17] for pose estimation. These models are
applied sequentially on the input image, where the object
detector will calculate the crop in which the object is found.
This crop is then used as input for the pose estimator,
calculating a full coordinate set for the object in the image.
In the case where multiple items are found by the object
detector, each crop is processed individually. Figure 7
shows a high-level overview of how both networks are used.

Dataset Description
A large dataset of 20.000 images was generated. The im-
ages contain from 1 to 10 identical items. The item used for
this study is a small stamped metal piece, approximately 7
by 7 centimeter and not symmetrical. The rendered images
feature random camera angles, within a defined window of
heights and angles. Also, the randomized ambient lighting
was applied, as explained in Section 3.1.3.

Figure 8. Result of the validation methodology. The red X rep-
resents the ground-truth, while the black dots are the results of
subsequent estimations by the Pose Estimator.

pos Std Dev [mm] Max dev [mm] Min dev [mm]
x 0.91 7.50 0.040
y 1.37 9.92 0.002
z 11.16 57.90 0.220

Table 2. Validation Results of the position estimation for Metal
Plates on the ChArUco board.

Validation Setup
Quantifying the accuracy of the combined pipeline has to
be performed with the appropriate hardware considerations
in mind. More precisely, an accurate calibration of the
camera pinhole model [10] is vitally important. For this,
a ChArUco board was used, which is a combination of a
chequerboard and ArUco markers.This board is also used
to perform the extrinsic calibration, where the relationship
between camera pixels and the world geometry is estab-
lished by calculating the transformation from the camera
coordinate system to the world coordinate system. A
reference point (or origin point) is established from which
geometrical distances can be calculated.

The validation method then follows the following steps:
(1) carefully place the item on the grid; (2) use the pose
estimator to estimate the location of a corner of the item
(loop for 10 times); (3) calculate geometrical position of
this point with respect to the origin point; (4) calculate
difference with known location. The camera used in
this setup was an IDS UI-3280CP Rev. 2, which has a
2456x2054 pixel sensor and a global shutter.

Validation Results
The object was placed at various locations of the ChArUco
board, generally at 30mm intervals. As no rotations of the
object were performed, the validation is only valid for the
position estimations and not for the rotation estimation.
Figure 8 shows the result of the validation methodology
explained in this section. It can be seen that there is a
specific area in the image outside which the subsequent
estimations of the keypoint show relatively large deviations.
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Table 2 shows the statistical analysis of the combined
results. It can be seen that the standard deviation in the
Y-direction is slightly larger compared to the X-direction,
which can be explained by the fact that the used camera
sensor is not square and therefore there are more pixels
in the Y-direction. This means that these pixels fall in
the more heavily curved part of the lens, increasing the
deviation. More generally, it is shown that, provided good
camera calibration, the models can be accurate to close
to 1 mm in both X and Y directions, which will be more
than good enough in most pick-and-place applications. The
estimation in the Z-direction is large, however this is a
classic issue with height estimations from 2D images that
can be improved in the future with a multi-camera setup.

Robustness against harsh light conditions
To demonstrate the robustness of the developed algorithms
against harsh lighting conditions, a simple physical setup
was conceived on which an object at a known location
and orientation could be subjected to either high or low
lighting conditions. A dataset was rendered following
the method explained in 3.1.3, this time using a slightly
larger metallic object. A simple method of counting the
saturated pixels on the surface of the object under test gave
an approximate value of light intensity. From Table 3, we
can see that under all but the most harsh conditions, the
XY-deviation, calculated as the Euclidean distance between
the ground-truth and the estimated location, is low. It can
be observed that when the light intensity reaches more
than 70%, the deviation reaches around 1cm, which can be
considered to be extreme.

Intensity (%) XY Deviation [cm]
0.000 0.276

35.440 0.340
44.090 0.742
69.990 0.565
73.170 1.460
83.660 2.444

Table 3. Deviation of the estimated XY-location of an object under
a wide range of light intensities.

4.2. 2D Keypoint Detection

As an additional validation case, CAD2Render was used
to train models for the problem of semantic 2D keypoint
detection. Specifically, two problems are tackled: localiz-
ing keypoints in images of different hand tools and using
keypoint detection to validate the assembly of aluminium
beams. To find the landmarks, a UNET [19] type architec-
ture with intermediate supervision was trained for to gen-
erate probability maps for each semantic keypoint location.
The problem of tool keypoint detection was investigated by
Vanherle et al. [27] using the CAD2Render tool, for more
details consult their paper.

4.2.1 Tool Keypoint Detection Use Case

For this use-case we attempt to find the location of certain
sementic keypoints of hand tools. The tools considered are
a screwdriver, hammer, wrench and combination wrench.
For each of these tools we find a number of keypoints by
training a model for each tool.

Dataset Description
To train such models, a large amount of data is needed. For
each tool we collected a few textured 3D models from the
internet. The 3D tools from the internet did not closely
resemble the target tools, but did belong to the same class of
tool. The CAD2Render toolkit was used to generate 20.000
images for each tool. The tools were randomly spawned
in a space with a random environment map as background.
Additionally, a few random objects from ShapeNet [3]
were also spawned in the space to simulate occlusions. For
this validation case, the faster hybrid renderer was used.
Figure 9 shows some examples of synthetically generated
images from the tool keypoint dataset.

Figure 9. A few examples from the tool keypoint detection dataset
created by CAD2Render.

Validation Setup
To verify whether the datasets generated by CAD2Render
are suitable to train a keypoint detection model on, we
test the performance of the trained model on real images
of tools. For each of the four tools we captured 50 real
photographs, and manually annotated these images. To
properly test the robustness of the trained models objects
were photographed in wide variety of poses, lighting
conditions, camera angles and backgrounds. Additionally,
occlusions and truncations are introduced. The model
trained on the synthetic data was then used to detect
keypoint locations in the real images.

Validation Results
To measure the model’s performance we use the Percent-
age of Correct Keypoints (PCK) [30] metric with an α of
1.0. The results are shown in Table 4. The models were
trained on synthetic images, created randomly without tak-
ing domain knowledge into account. Yet, these models are
able to detect keypoints in the unseen real images with good
accuracy. This shows that the CAD2Render toolkit is able
to create synthetic images that are suitable for this problem
space and that images produced by the faster hybrid render-
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ing mode can produce good models as well. Additionally,
research has shown that models trained on images generated
by CAD2Render perform better on this task than models
trained on images generated by simple 2D image augmen-
tations [26]. This shows the benefit of using 3D information
to generate training data.

Tool PCK0.1

Screwdriver 86.1
Wrench 88.9

Combination Wrench 86.1
Hammer 84.4

Table 4. Accuracy of the keypoint detection models for each tool
trained on the synthetic data. Performance is measured in PCK0.1

over the validation set of real images [27].

4.2.2 Assembly Validation Use Case

To further assess the usefulness of the keypoint detector
model trained on synthetic images of CAD2Render, we ap-
plied it to an additional defect detection use case, in the
form of a simple assembly validation tool. The target as-
sembly comprises of two aluminium beams, connected by
two rubber insulators. These four sections are assembled on
an automated line and the assembly quality is validated us-
ing a camera with high dynamic range. Figure 10 shows a
good and a bad assembly of both real and synthetic images.

The keypoint detection model was trained for each part
on the specific parts of the items that perform the insertions.
During inference, the corresponding pairs for keypoints are
assessed for their euclidean distance to fall below a prede-
fined threshold. If the distance is too great, that specific
insertion is assumed to be not successful and the assembly
has failed. Figure 10 shows the output of the model. When
applied to all input images (26 in total) the model could
successfully identify good and bad assemblies in all cases.

5. Limitations and Future Work
Although we performed extensive experiments showing

the good performance of models trained on data generated
by CAD2Render, a direct comparison to other methods is
missing. Future work should compare the performance of
models trained using our method to the performance of
models trained on data generated by other state of the art
methods. Additionally, parameters such as speed of render-
ing and ease of use should also be taken into account. Addi-
tionally, we would like to investigate the impact of the dif-
ferent quality rendering modes in CAD2render on the final
model performance. A number of training data variations
were introduced to help improve generalization. A study on
the impact of these variations on downstream performance
is beyond the scope of this paper. For an in depth analysis of
the impact of light and pose variations on object detection

good assembly bad assembly

sy
nt

he
tic

(C
A

D
2R

en
de

r)
re

al
ex

am
pl

es

Figure 10. Assembly validation of good and bad assemblies. Top:
synthetic examples generated with CAD2Render. Bottom: Output
of the model shown on top of real examples in the case of a good
validation (all points within spec) and a bad validation (one of the
insertion areas show points that are too far from each other).

performance, for datasets generated by the CAD2Render
tool, we refer to complementary research [25].

6. Conclusion

This paper proposed a novel toolkit for synthetic data
generation, that can generate a vast amount of complex
photorealistic variations, including changes in lighting,
appearance and pose. It is cost-effective and optimized for
rendering speed on consumer hardware by exploiting the
recent advancements in real-time raytracing and denoising,
which is essential for fast deployment in low-volume
and high-variance manufacturing. At the moment it is
specifically designed for industrial use cases. However, it
can be easily utilized in other domains as well, provided
that there is CAD data available. Since it allows for the
import and export of datasets in a standardized fashion,
it can generate synthetic simulations of existing datasets,
a so called digital twin. As such, it can be an enabling
technology for future research on sim2real and how to
close the domain gap between the real and synthetic
world. Future improvements would be to include more
realistic variations in the appearance of the objects based
on extracted appearance of real physical examples. This
would possibly reduce the sim2real domain gap that still
exists in the generated data.
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