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Abstract

Self-supervised pretraining has advanced the capabili-
ties of many computer vision tasks without requiring ad-
ditional labels. One drawback is this technique requires
extensive datasets and computational resources. This re-
quirement of large datasets to pretrain with has often pre-
cluded the use of smaller, more niche datasets. Recently
a method of pretraining has been developed that uses sev-
eral stages of training, arranging each subsequent pretrain-
ing step to a dataset more closely resembling the target la-
belled data. This Hierarchical PreTraining (HPT) allows
small datasets that are significantly different from general-
ized pretraining datasets (e.g. ImageNet) to build off sub-
sequent knowledge transfers of increasingly focused train-
ing. However, there remains computer vision domains that
are sufficiently difficult to acquire data that the use of syn-
thetic data to augment their training has become a common
convention. This paper examines how Remote Sensing Im-
agery (RSI) datasets, both augmented with synthetic data
and without, still benefit from HPT despite being a niche
domain. We show the fine balance that must be maintained
when pretraining with these small datasets through a series
of experiments focused on isolating various training param-
eters. We also demonstrate how these techniques lead to
model improvements over existing baselines with and with-
out synthetic data. Given that HPT provides a straightfor-
ward process to increase performance, and synthetic data
is a growing resource for dataset augmentation, these com-
bined methods can enhance a wide variety of current and
future computer vision tasks.

1. Introduction

Transfer learning is a powerful tool to transmit knowl-
edge learned from one domain to another. It is useful
to leverage the knowledge of domains that have abundant
datasets for training in domains that have little, and thereby
reduce the amount of computation needed [15]. Recently,

self-supervised learning methods have begun to surpass su-
pervised learning as the most effective way to pretrain mod-
els [18]. Due to the costs in labeling large datasets, transi-
tioning from supervised to self-supervised pretraining has
enabled advances in accuracy, with no extra labels, as well
as the enablement of targeted domain adaptation for label
scarce specialist domains [1].

Modern self-supervised pretraining techniques are often
framed in the context of utilizing large datasets [8] and
large batch sizes [4]. These constraints become problematic
when working with datasets that have limited labels and not
enough data to create batches of sufficient size. Tradition-
ally, supervised pretraining on large generalized datasets is
coupled with fine tuning on the target domain data, thereby
offering a layered narrowing of training. This transfer learn-
ing from a generalist dataset to a narrow domain increased
the efficiency of the labels in that target domain [14]. Us-
ing this narrowing of focus in training has also been shown
to aid in self-supervised training [18] through Hierarchical
Pretraining (HPT).

Remote sensing is a highly specialized domain [20]
where collecting data and labels requires specialized skills
and publicly available datasets have limited availability to
conduct traditional pretraining. Some areas of remote sens-
ing imagery and associated labelled data are so sparse that
creating 3D synthetic representations of the real data has
become an active area of research [21, 12, 11] and a viable
alternative to labelling data. This synthetic data generation
has high implementation costs due to a need for specialized
3D software and expert modeling knowledge. Even with
these high barriers of generating synthetic data this method
is a common component of the remote sensing community
and should be of interest to any pretraining task. Remote
sensing imagery lends itself to doing HPT in that these over-
head images provide a narrowing down of focus on objects
of interest intrinsically due to the relatively small size of the
objects compared to the overall image. Crops of these large
remote sensing images can be tailored to focus on or away
from targets of interest more easily than typical general pre-
training datasets which tend to have objects that encompass
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Figure 1: Example of the real RarePlanes data. Synthetic RarePlanes data shown in Figure 2

a larger portion of the image.

Our work covers the application of self-supervised pre-
training techniques as they are applied to narrow RSI
datasets and how the introduction of synthetic data aug-
ments this type of training. Specifically, we look at the
HPT framework, as described in [18], implemented with the
RarePlanes real and synthetic datasets [21] as well as the
High Resolution SAR Images Dataset (HRSID) [24], and
how the configurations generally accepted for large scale
contrastive self-supervised learning [4] need to be adapted
for much smaller datasets. Our main contributions are as
follows:

* We find that self-supervised generalized pretraining
outperforms supervised generalized pretraining. We
also see increasing performance improvements as we
layer on subsequent, more target aligned pretraining
steps for small datasets.

* We show the narrow range in which HPT configura-
tions can show improved performance over general-
ist self-supervised pretraining and how these models
can quickly overfit for worse performance. Specifi-
cally, how smaller batch sizes and fewer training iter-
ations perform better on these smaller datasets, which
is counter to current self-supervised results with very
large datasets [4].

* To the best of our knowledge, we’re the first to study
the incorporation of synthetic data in self-supervised
pretraining and it’s impact on downstream models.
We demonstrate self-supervised pretraining with syn-
thetic data improves model performance over tradi-
tional supervised pretraining but does not increase

performance when pretraining on a mixture of real and
synthetic data.

The paper is organized as follows. Section 2 covers re-
lated work in the self-supervised learning, synthetic over-
head imagery, and the intersection of self-supervised learn-
ing techniques with synthetic data. Section 3 provides de-
tails of: the dataset, models used, and configuration of the
training setup for our experiments. The results contained in
section 4 provides an analysis of the different training pa-
rameters evaluated in isolation as well as the results of our
synthetic experiments.

2. Related Work

Self-supervised learning is rapidly becoming the default
method in pretraining models for transfer learning tasks.
For visual features, these methods have been shown to of-
fer improvements on generalized datasets [8], in narrow do-
mains [1], and in transitioning pretraining hierarchically be-
tween the two [18]. Contrastive learning has been utilized to
achieve state-of-the-art results in self-supervised pretrain-
ing [2, 23] and the introduction of a Simple Framework for
Contrastive Learning of Visual Representations (SimCLR)
[4] provides an even simpler methodology while achieving
better results.

A common method to increase the amount of labeled
data has been to integrate synthetically generated data into
the training set. These synthetic generation mechanisms
generally incorporate multiple stages, from initial 3D sim-
ulation, through various methods of domain adaptation
[13, 22, 12], adding possible environmental simulations,
and to a final rendered realistic scene. In the realm of
overhead imagery these synthetic generation pipelines of-
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Figure 2: Example of the synthetic RarePlanes data. Real RarePlanes data shown in Figure 1

ten incorporate simulating the sensor platform [16] as well
as integrating real locations [21, 10]. This modular pipeline
is useful for separating out different techniques but relies
heavily on domain expertise to put the right models to-
gether. We are currently seeing more automated approaches
of scene generation especially with domain adaptation of
entire scenes based on a stochastic element. This not only
makes data more robust but also increases the amount of
data that can be generated [5]. An end-to-end automated
synthetic overhead scene generator is still out of reach, but
is getting closer with the introduction of more powerful im-
age generation and editing models [17].

While self-supervised learning seeks to capture feature
representation through self-labeling methods [18, 7] and
synthetic data can be thought of as hand crafting features for
data augmentations [13, 5] in supervised tasks, the intersec-
tion of these two categories has not been thoroughly studied,
even though they both can be used to improve downstream
supervised tasks. Some of the current work leveraging both
of these techniques include; using self-supervised learning
on wholly synthetic datasets with synthetic evaluation [9]
and as a comparison self-supervised training on real data to
supervised training on synthetic data [6]. Of specific inter-
est to our task is understanding if these hand crafted syn-
thetic features aid the HPT task of narrowing down targeted
self-supervised pretraining.

3. Method

We conduct a number of experiments to better under-
stand self-supervised pretraining on a limited remote sens-
ing dataset. We follow the general workflow of Reed et
al. [18], using generalist, specialist, and targeted pretrain-

ing. These three pretraining datasets go from focusing on
broad vision features, to domain oriented examples, and fi-
nally to images that are of our downstream objects of in-
terest. For generalist pretraining, we use model weights
created using self-supervised pretraining on ImageNet data.
The specialist and targeted pretraining data are described
in detail in Section 3.1 and are each generated from the
RarePlanes [21] or HRSID [24] dataset and do not in-
clude external imagery sources. We do not evaluate rep-
resentations directly but focus on downstream object de-
tection evaluation compared to the baselines established in
RarePlanes and HRSID. We use the VISSL [8] library for
model pretraining and Detectron2 [25] library for training
and evaluation of object detection models. For our pretrain-
ing we used between 8 and 24 V100 GPUs, depending on
batch size. Pretraining generally took only a few hours for
most experiments but could take up to 8 days when pretrain-
ing from scratch. Fine tuning of models was done on either
8 V100’s or 16 K80’s and took 3 hours and 10 hours to train
respectively.

3.1. Datasets

We chose two datasets in the RSI domain that are both
focused on detecting objects from overhead, but are very
far apart from the visual features available. The RarePlanes
dataset is made up of 3 channel RGB images observed from
an electro-optical sensor. The HRSID dataset is a single
magnitude channel that was collected by a Synthetic Aper-
ture Radar sensor. These types of images are both poorly
represented, or not represented at all, in most general pre-
training datasets such as ImageNet or CIFAR.

RarePlanes: The RarePlanes dataset [21] is comprised
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Figure 3: Example of inshore and offshore SAR images in the HRSID dataset. Offshore (center) typically only have objects
of interest present in them.

of a real (Figure 1) and synthetic (Figure 2) portion. The
real portion is made up of 253 satellite scenes (Maxar
WorldView-3 [3]) covering 112 locations. The synthetic
portion is comprised of 50k synthetic satellite images with
600k+ aircraft. Although the RarePlanes dataset has 10 dif-
ferent attributes that one can divide the classes amongst, this
study simply uses the RarePlanes provided 3 class designa-
tions: small, medium, and large.

Model pretraining, supervised fine-tuning, and model
evaluation were performed using the established RarePlanes
training and evaluation datasets as well as ImageNet pre-
trained backbones. The dataset was further broken down
into specialist and targeted portions for hierarchical pre-
training as described in Reed et al. [18]. For specialist
specific self-supervised pretraining, we created a dataset of
300k unlabeled images that are tiled sections of the large
untiled RarePlanes images. These tiled sections are of size
224x224 pixels and are randomly sampled to create smaller
subsets of data for specific training experiments. The tar-
geted dataset is a sample of the annotated training chips in
the RarePlanes dataset. Using the annotated training chips
ensured that each image had at least one object of interest
and is therefore “targeted” to this domain but is still uti-
lized in an unsupervised fashion. Supervised fine-tuning
and evaluation was performed using the RarePlanes evalu-
ation dataset. The described method of developing the spe-
cialist and targeted datasets applied for both the real and
synthetic dataset generation.

HRSID: The HRSID dataset [24] is made up of high
resolution SAR images. While the S in SAR denotes ”Syn-
thetic”, this is not the synthetic we are referring to in our
paper and instead refers to the satellite’s motion, along with
advanced signal-processing techniques, to simulate or ”’syn-
thesize” a larger antenna. There are 5604 cropped images

comprising 16951 ships taken from 136 original panoramic
SAR images. The original images were taken from 3 dif-
ferent sensors, Sentinel-1B, TerraSAR-X and TanDEM-X,
and all resolutions are under 3m. This dataset also uses 3
classes; small, medium, and large, which are defined by the
MS COCO scale division (<32 x 32 pixels, <= 96 x 96 pix-
els, >96 x 96 pixels). There are a mixture of inshore and
offshore scenes as shown in 3, with inshore representing
approximately 18% of all scenes. During fine tuning stages
with this dataset we resized images to 1000 x 1000 to match
the baseline training setup.

We used the established HRSID training and evaluation
splits for all experiments the same as the RarePlanes setup.
The specialist dataset was developed from a holdout nega-
tive dataset provided with the HRSID data, made up of 400
SAR images with no objects. We randomly chipped these
into 224x224 crops to generate approximately 25k images
for our specialist training. The HRSID targeted dataset was
simply all images containing at least one object of interest.
We did not filter the data to only inshore or offshore im-
ages as Wei et al. [24]. However, we provide metrics for,
and compare our results to their ResNet50 FasterRCNN as
described in more detail below.

3.2. Model

We use the SImCLR [4] framework to pretrain our self-
supervised learning representations. SimCLR is a con-
trastive learning framework that teaches a model to closely
associate multiple augmented views of the same image. The
SimCLR framework combines stochastic data augmenta-
tion, a neural network base encoder, a neural network pro-
jection head, and a contrastive loss function, defined as the
normalized temperature-scaled cross entropy loss or NT-
Xent. This loss function maximizes agreement or similarity,
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Dataset Method AP | AP-50 | AP-Small | AP-Medium | AP-Large
Shermeyer et al. (Baseline) 68.21 | 92.10 66.68 70.26 67.68

RarePlanes ImageNet SSL. . 75.06 | 93.58 71.59 78.83 74.75
ImageNet — Specialist 75.51 | 93.92 73.15 78.38 75.00
ImageNet — Specialist — Targeted | 75.98 | 93.54 73.45 79.64 74.85
Wei et al. (Baseline) 63.5 86.7 64.4 65.1 16.4

HRSID ImageNet SSL. 67.36 | 90.45 68.28 69.85 35.19
ImageNet — Specialist 67.91 | 90.49 69.05 70.37 39.6
ImageNet — Specialist — Targeted | 68.03 | 90.58 69.0 69.14 42.72

Table 1: Comparison to HPT object detection metrics compared to baselines provided in Shermeyer ef al. [21] and Wei et
al. [24]. Combinations of 3 different HPT stages are shown. Specialist are random samples from imagery and targeted are
crops that have at least one known object in them. Details of sampling method are described in Section 3.1

between sampled positive pairs using an adjusted tempera-
ture parameter that helps the model learn from hard nega-
tives. The optimal temperature parameter differs with each
batch size and number of training epochs. Shown in their
original paper, this loss function proved better than alterna-
tive loss functions such as logistic loss and margin loss.

We use a ResNet50 with a Feature Pyramid Network
backbone for pretraining and model fine-tuning in all ex-
periments. For our downstream object detection network
we use Faster-RCNN [19]. This setup is similar to that used
in both dataset baselines [21, 24] and allows us to directly
compare results.

3.3. Training Setup

We use a hierarchical pretraining setup to conduct our
experiments as described in [18]. Hierarchical pretraining
involves multiple layers of pretraining to progressively get
more similar to the dataset that will be used in the down-
stream task. All of our experiments begin with a general-
ist pretrained base model, which is a SImCLR trained Im-
ageNet model from the VISSL model zoo. We then iso-
late and experiment with different training configurations,
e.g. batch size, training iterations, and pretraining stages,
to understand where self-supervised pretraining still offers
increased performance for small datasets. Due to the ten-
dency for the pretraining model to overfit, we focused many
of the pretraining configurations on smaller batch sizes and
fewer iterations. Finally, we evaluate by fine-tuning on the
training dataset provided in each baseline.

4. Results

Our experiments are consistent with findings from pre-
vious research that self-supervised learning produces high-
quality visual representations for downstream tasks [4]. Our
results specifically demonstrate the potential for these rep-
resentations to be fine-tuned for object detection using a
limited remote sensing dataset. Object detection models

fine-tuned from backbones created using self-supervised
learning performed better than models fine-tuned from
backbones created using supervised learning, whether these
self-supervised models were pretrained using ImageNet,
domain specialized data, target specific data, or a combi-
nation of the 3, as shown in Table 1.

We also find that an optimal batch size for pretraining
is smaller when using a narrow domain specific dataset
than originally found in [4]. We generally found a neg-
ative correlation between batch size and downstream ob-
ject detection performance with specialized pretraining, in-
dicating that the optimal setup for generalized pretraining
(large batch sizes) is different than the optimal setup for
specialized pretraining (small batch sizes) with limited tar-
get datasets, as shown in Section 4.3. Additionally in Sec-
tion 4.2, we find differences between the optimal number of
training iterations used to pretrain a large generalized base
model, as found in [4], as compared to the number of train-
ing iterations that are effective for specialized pretraining
with limited data. While a base model can be trained for
many iterations, we found specialist pretraining to overfit
quite quickly, sometimes in fewer than 1,000 training itera-
tions, aligning with results seen in [18].

Finally, we experimented with synthetic data as a sole
source of training beyond ImageNet and as an augmenta-
tion technique for self-supervised pretraining. These exper-
iments were only performed with the RarePlanes data. We
find that synthetic data is useful for specialist pretraining
to improve object detection models. We also found self-
supervised learning to be less effective in a zero-shot set-
ting, i.e. limited to HPT only on synthetic data, when com-
pared to having unlabeled but domain relevant real data.

4.1. Data Quality Analysis

We analyzed the impact of using a targeted vs specialist
set of remote sensing images for fine tuning a base self-
supervised pretraining model. For our targeted dataset, we
sampled the labelled training data such that each of the
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images is guaranteed to contain one or more object. Our
RarePlanes specialist dataset was created by randomly se-
lecting approximately Sk images from the unlabeled chips
generated from methods described in more detail in Section
3.1. This exact number of images was chosen such that the
targeted and specialist datasets were the same size and did
not bias experiments. As this specialist dataset is created
from areas that generally do not contain objects, the diver-
sity is much greater compared to the targeted images which
are guaranteed to have at least one object in them. The ran-
dom images may contain objects such as buildings, roads,
planes, or boats, but often only contain grass, dirt, or ocean
and are without objects entirely. This is the intrinsic vari-
able object focus that remote sensing imagery can provide
for HPT versus ground level imagery which often always
has objects of interest in them.

We analyzed the impact of dataset quality across differ-
ing number of training iterations. Our results can be found
in Figure 4. We found that using the targeted dataset for
self-supervised fine tuning led to superior results, indicating
that SImCLR may perform better as a pretraining frame-
work when using images with objects. However, using
this type of data led to over-fitting more quickly with the
RarePlanes data, making the selection of number of train-
ing epochs used even more important when using a targeted
dataset, but the opposite was found with the HRSID data.
In both cases, optimal pretraining epochs were between 10
and 30 which is an observation explored more in the next
section.

4.2. Training Length

When using HPT, the generalist pretraining produces
high-quality representations that have been shown to out-
perform supervised methods. We find this to still be the case
with our limited dataset, as supervised fine-tuning directly
from the base self-supervised weights produces excellent
results. When continuing with the other steps of HPT, our
experiments have shown that it is easy to overfit when con-
tinuing training on the domain-specific datasets, confirming
findings from [18].

Figure 4 shows our results when varying the number
of training epochs during self-supervised learning. In this
experiment, we fine-tune from ImageNet, and experiment
with both the targeted and specialized datasets to conduct
self-supervised pretraining. We keep batch size, model
type, and other values constant.

We find that downstream object detection performance
improves with additional self-supervised pretraining from
the original base self-supervised weights. However, the
model achieves the level of optimal performance early dur-
ing training before rapidly overfitting to the data. When
compared to generalist pretraining as seen in [4], which
continues to improve with longer training cycles, the
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Figure 4: Impact that pretraining epochs has on downstream
AP score on the test dataset with Targeted and Specialist
HPT setups. Targeted data has been sampled such that im-
ages have at least one relevant object in them and specialist
data is a random sample from all of the original large train-
ing images in the training set, which disproportionately do
not have relevant objects. The Baseline is the ImageNet
self-supervised pretraining.

smaller dataset performs in the opposite, which is expected
with limited examples in a contrastive learning environ-
ment. This can also be shown in the difference between
overfitting rates between the targeted and specialist pre-
training as discussed in Section 4.1. This difference in over-
fitting rates highlights the impact that the diversity of data
has, which drives how fragile the model is to varying the
training length.

4.3. Batch Size Analysis

We analyze the impact that batch size selection has on
HPT. In [4], the authors find that contrastive learning ben-
efits from larger batch sizes in their experiments using
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Figure 5: Results of various batch sizes and training iter-
ations has on downstream AP score. Number of training
epochs as been adjusted for each batch size so that they
roughly align with the displayed iterations; 110, 550, and
5500. This is done so that model update counts are effec-
tively the same for different batch sizes at the same iteration
number.

large generalized training datasets. In our experiments,
conducted using a smaller, more narrow, domain-specific
dataset, we find that smaller batch sizes generally lead to
better performance than larger batch sizes with the gap be-
ing more consistent the larger the batch size.

We conduct self-supervised pretraining while varying
the batch size over three different levels of training itera-
tions. The use of iterations here instead of epochs aligns
with the Reed er al. [18] method and allows us to ensure
that model weight updates are kept consistent for the same
batch sizes at different numbers of epochs. We use the tar-
geted datasets for self-supervised training, and start with the
ImageNet initialized weights. For supervised fine-tuning
and evaluation we use the original train and test datasets.

The smallest batch size used was 256, while the largest
batch size used was 3,072. Fine-tuned evaluation results
are shown in Figure 5.

We find that for lower numbers of iterations the small-
est batch size works best and though this shifts slightly for
large numbers of iterations the trend of smaller batch sizes
are generally better, holds. While Chen et al. [4] showed
that larger batch sizes with self-supervised learning led to
better downstream results, we have seen the opposite rela-
tion emerge when the training dataset is much smaller than
that of ImageNet. As the batch size starts to become a sig-
nificant portion of the entire dataset, there becomes less for
the model to learn to discriminate from. Additionally, The
narrow domain of remote sensing imagery is much more ho-
mogenous than generalized vision datasets and disciminat-
ing features can be much harder to learn when mixed with
many similar examples, as shown in the consistent higher
performance of smaller batch sizes.

4.4. Synthetic Data

In addition to the experiments using the RarePlanes real
dataset, we explore various self-supervised training scenar-
ios involving the RarePlanes synthetic dataset: 1) Using
self-supervised pretraining in a zero-shot setting, where no
real labels are used in training, but HPT is done with dif-
ferent stages of synthetic, specialist real data, and both. 2)
Leveraging synthetic data in a real data augmentation sce-
nario, where all models are fine tuned on real data and syn-
thetic data is incorporated into some HPT stages. Results
can be found in Table 2.

In the zero-shot setting where we have synthetic labelled
and real unlabeled data available for training, we found that
incorporating the synthetic data into pretraining did not pro-
vide improvements over the baseline. While using weights
that had been pretrained using generalized and specialist
pretraining improved results slightly as compared to the
Shermeyer et al. [21] fully synthetic experiments.

For the data augmentation scenario, we find that using
synthetic data for model pretraining improves downstream
object detection performance over the baseline Shermeyer
et al. [21] fully real experiment results. Although this im-
provement is in line with improvements of simply perform-
ing HPT with the real data alone. We see a drop off in per-
formance when incorporating real and synthetic pretraining
but all three scenarios are markedly better than the baseline.

We also performed an experiment to understand the im-
pact of where placing synthetic pretraining in our HPT has
on model performance. As seen in Table 2 in the last two
rows of each Supervised Training section, where the Spe-
cialist — Synthetic and Synthetic — Specialist results are
shown. We find that in both fine tuning scenarios having the
specialist pretraining as the final pretraining stage leads to
generally better improvements. This specialist pretraining
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Supervised Training | HPT AP | AP-50 | AP-Small | AP-Medium | AP-Large
Shermeyer et al. (Synth) 35.88 | 59.09 27.70 37.09 42.85
ImageNet SSL 3535 | 57.23 26.46 36.90 42.70

Synthetic Fine Tune ImageNet — Syntlllet.ic 3229 | 53.28 26.20 37.96 32.71
ImageNet — Specialist 36.77 | 58.00 28.12 39.32 42.87
ImageNet — Specialist — Synthetic | 33.17 | 53.02 26.06 37.46 35.98
ImageNet — Synthetic — Specialist | 34.85 | 56.29 25.89 39.44 39.24
Shermeyer et al. (Real) 68.21 | 92.16 66.68 70.26 67.68
ImageNet SSL 75.06 | 93.58 71.59 78.83 74.75

Real Fine Tune ImageNet — Syntlllet'ic 75.33 | 94.13 7191 78.92 75.16
ImageNet — Specialist 75.51 | 93.92 73.15 78.38 75.00
ImageNet — Specialist — Synthetic | 75.16 | 93.55 72.48 78.60 74.40
ImageNet — Synthetic — Specialist | 75.44 | 93.95 72.47 78.50 75.36

Table 2: Comparison to HPT object detection metrics compared to baseline provided in Shermeyer et al. [21] (all synthetic
and all real experiments). Results are split between the supervised training method where Synthetic Fine Tuning experiments
utilize zero real labels at any training stage and Real Fine Tuning uses real labels in the final supervised training stage.

stage aligns more with the downstream evaluation which is
also on real data. This difference in performance is more
pronounced in the zero shot mode, i.e. the model has super-
vised fine tuning on synthetic data.

Overall, synthetic data offers more improvement to real
data augmentation tasks compared to zero-shot detection
tasks when used in pretraining models. Qualitative views
of the data, as shown in Figures 1 and 2, show that there are
visual features that separate our real and synthetic datasets.
Having synthetic data more aligned with the downstream
task may close the gap in observed pretraining benefits.

5. Conclusion

In this work we have analyzed the impact a resource con-
strained dataset has on self-supervised pretraining, how to
optimize pretraining for this type of dataset, and how the
addition of synthetic data may impact downstream tasks.
Our experiments explored how different subtle changes
in training configurations affect self-supervised pretraining
and show that model performance can still be increased with
small amounts of data. We also show that HPT can lead to
quick model overfitting when coupled with small datasets
and the importance that image diversity plays in being ro-
bust to this overfitting.

With regards to remote sensing imagery, we demonstrate
that synthetic data can provide a benefit when used in the
dataset augmentation role. We also show that the nature
of overhead imagery lends itself to HPT tasks as it inher-
ently contains the ability to sample the data in a more tar-
geted way. Taken together, we demonstrate that more niche
datasets can still leverage self-supervised pretraining and
that synthetic data can provide some benefits in this envi-
ronment depending the specific training augmentation role.
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