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Abstract

Recent global growth in the interest of smart cities has
led to trillions of dollars of investment toward research and
development. These connected cities have the potential to
create a symbiosis of technology and society and revolution-
ize the cost of living, safety, ecological sustainability, and
quality of life of societies on a world-wide scale. Some key
components of the smart city construct are connected smart
grids, self-driving cars, federated learning systems, smart
utilities, large-scale public transit, and proactive surveil-
lance systems. While exciting in prospect, these technolo-
gies and their subsequent integration cannot be attempted
without addressing the potential societal impacts of such a
high degree of automation and data sharing. Additionally,
the feasibility of coordinating so many disparate tasks will
require a fast, extensible, unifying framework. To that end,
we propose the Distributed Smart City framework for Vi-
sion, or VDISC. VDiSC serves as a unified biometric API
harness that allows for seamless evaluation, deployment,
and simple pipeline creation for heterogeneous biometric
software. VDISC additionally provides a fully declarative
capability for defining and coordinating custom machine
learning and sensor pipelines, allowing the distribution of
processes across otherwise incompatible hardware and net-
works. VDiSC ultimately provides a way to quickly con-
figure, hot-swap, and expand large coordinated or feder-
ated systems online without interruptions for maintenance.
Because much of the data collected in a smart city con-
tains Personally Identifying Information (PII), VDiISC also
provides built-in tools and layers to ensure secure and en-
crypted streaming, storage, and access of PII data across
distributed systems.

1. Introduction

It is estimated that by 2023, research and development
toward smart city applications will reach a market share
of over $700 billion dollars [14], with hundreds of bil-
lions more going towards Internet of Things (IoT) research.
While innovation in this area pushes forward at unprece-
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Figure 1. An abstract example of how a declarative VDiSC com-
puter vision pipelined infrastructure works.

dented speed, less attention is being directed toward the safe
and secure capture and transmission of biometric informa-
tion the likes of which is vital to an effective smart city
implementation. Designed as a successor to the ground-
work laid by Face Recognition Oak Ridge (FaRO) in 2019
[5], VDiSC is a highly scalable inferencing framework for
streaming, processing, and visualization of biometric data
across distributed systems. Robust smart city and insight-
driven surveillance use cases rely on heterogeneous data
sources and software that may be incompatible or prove un-
wieldy when used in tandem. VDiSC addresses this prob-
lem by providing a unified API harness to accelerate the
creation and deployment of custom biometric pipelines, the
acquisition of high-quality data, and the capture of real-time
insights from streaming video. VDiSC is also redesigned
to include privacy protection and network security compo-
nents that are critical to its intended applications. Though
VDiSC is primarily configured for tasks related to image-
based biometric detection and identification using modal-
ities like face, whole body, and gait, it is flexible enough
that data sources capturing different modalities for varied
purposes can be integrated with relative ease.

This paper is organized as follows: In Section 2, we dis-
cuss privacy and potential means by which to protect it with
regard to face imagery. In Section 3, we give an overview of
related work. In Section 4, we provide a technical overview
of the VDIiSC architecture. In Section 5, we provide in-
formation about accessing VDiSC. In Section 6, we give a
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conclusion and discuss future work.

2. Privacy

Privacy is a key component of smart city research [15];
however, at this point in time, no studies, surveys, or
software have been published pertaining to this specific
topic [14].

While privacy remains an abstract concept in an era char-
acterized by the confluence of social media, omnipresent
digital connectivity, and inescapable data capture, failure to
adequately protect biometric information can yield very tan-
gible consequences. Advances in techniques used to recon-
struct faces from face feature vectors have necessitated ad-
ditional safeguards for not just raw face images but also the
unique descriptors extracted from them. Reconstructed face
images can be submitted to cheap consumer services that
can identify other images with matching subjects, many of
which contain identifying metadata or are otherwise linked
to identifying information online [24]. This undercuts as-
surances from many face recognition vendors over the years
that, once extracted, these feature vectors do not require en-
cryption because they are already unusable in the wrong
hands.

A popular solution to face feature vector vulnerability is
homomorphic encryption (HE), and the application of fully
homomorphic encryption (FHE) to biometric matching has
been a popular area of research in recent years. HE enables
the encryption of face feature vectors such that matching is
done in homomorphic space, and plain face feature vectors
need never be exposed to networks or to server environ-
ments. In spite of its advantages, however, FHE does not
support real-time biometric identification and, as it stands,
is not a fit for VDiSC. While authors in [18] show that sim-
ple matching can be performed in real time using FHE, there
is little utility in these results when considering the need to
encrypt all new faces captured by a particular sensor and
search a gallery of arbitrary length for matching individu-
als. Instead, VDiSC leverages partially homomorphic en-
cryption (PHE) to serve in its place. The principal dis-
tinction between FHE and the PHE utilized by VDiSC is
that the former supports the evaluation of arbitrary func-
tions by way of its support for both addition and multipli-
cation in homomorphic space [2] while the latter does not.
The PHE implementation used by VDiSC is homomorphic
over addition but supports only multiplication between en-
crypted and unencrypted operands to yield encrypted re-
sults. This means that cosine similarity is not supported
in homomorphic space and matching must be performed by
other means. VDiSC’s PHE implementation is described in
greater technical detail in Section 4.7.

3. Related Work

The FaRO [3, 5] framework, which inspired the founda-
tion of VDiSC, arose from the need to create a convenient
pipeline for biometric evaluations that would mitigate the
often cumbersome integration tasks found in open-source
and academic algorithms. The goal was an efficient frame-
work in which components of a given pipeline (e.g., sen-
sor source, template extractor, detector, matcher) could be
swapped in and out with ease to provide the optimal system
for a particular use case. The initial development team was
also concerned with scalability in the shift from cloud-based
servers to edge-deployed systems. To provide this opti-
mized computational architecture, gRPC was tightly imple-
mented to manage the streaming interfaces between server
systems and client systems.

The VDiSK framework and its FaRO predecessor have
been utilized in the development of a specialized biomet-
rics system for the identification of drivers and passengers
in moving vehicles [7, 21]. Given FaRO’s successful per-
formance in this implementation, it was further extended
to incorporate more benchmarking and state-of-the-art al-
gorithms to benefit the biometrics community and was re-
leased openly [3, 5].

In parallel to the release of VDiSC’s predecessor FaRO,
which was released as a gRPC client—server biometrics
evaluation framework, other similar frameworks were also
being developed and released. The Nvidia Triton Inference
Server [1], which began development in November 2018,
provided similar gRPC client—server functionality, but was
developed with TensorRT specifically in mind. Addition-
ally, VDiSC now provides complete declarative infrastruc-
ture for chaining microservices together into workflows—a
feature Triton does not have.

Apart from Triton, other software suites aim to provide
similar unified API function calls to hosted machine learn-
ing models. Software such as Amazon’s Sagemaker [13]
provides cloud-specific hosting tools callable by a unified
API, while libraries such as OpenVINO [10] make it pos-
sible to load models on many different hardware architec-
tures. VDIiSC provides generic worker interfaces that har-
ness APIs such as Sagemaker and OpenVINO, which al-
lows for greater diversity of hostable models. In the next
section, we will discuss the unique and novel aspects of
VDiSC’s architecture and implementation, and what sets it
apart from other software in the model workflow space.

4. VDiSC Architecture Overview

VDiSC was designed specifically as a unifying API har-
ness for biometric algorithms, usually for the purposes of
evaluations and experiments. The underpinning design de-
cisions for VDiSC revolve around the ability to quickly de-
velop and deploy real-time, secure, and safe computer vi-
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Figure 2. The hierarchy of VDiSC entities. Generic gRPC mes-
sages called VDiSCRecord and VDiSCReply, which contain out-
puts from workers and pipelines, can be passed among all en-
tities at any level. VDiSC Clients connect to VDiSC Services,
which hold persistent instantiations of VDiSC Pipelines. VDiSC
Pipelines contain chained-together graphs of VDiSC Workers,
which act as microservices. Each VDiSC Service also contains
persistent connections to other VDiSC Clients in its area network,
which in turn connect to their own services. This provides the
basis for the recursive VDiSC chaining that makes it so powerful.

sion and biometric workflows in unconstrained settings, us-
ing a declarative paradigm that allows the user to easily con-
nect a myriad of vision algorithms and microservices.

VDiSC ’s design revolves around a gRPC server—client
architecture that utilizes message passing and procedure
calls to stream real-time video from client to server and
asynchronously receive return results from server to client.
VDiSC is built on three main hierarchical concepts: work-
ers, pipelines, and services. The hierarchy itself can be seen
in Figure 2. All of these entities perform machine learn-
ing tasks on inputs by accepting a generic gRPC message,
called a VDiSCRecord, and returning a generic gRPC mes-
sage, called a VDiSCReply. These record and reply mes-
sages act as a unifying language within VDiSC and can
be passed among between clients, servers, workers, and
pipelines interchangeably. In this way, workers, pipelines,
and services can pass messages either locally within them-
selves or between services and pipelines being hosted else-
where. As can be seen in Figure 2, this implicitly cre-
ates a recursive hierarchical networking structure that al-
lows workers hosted within remote services to propagate
through network channel chains, similar to a mesh network.
VDiSC client calls can be made to connect these workers
and pipelines in a variety of ways using a declarative in-
terface. These powerful concepts provide the foundation
for VDiSCs remarkable online configurability when being
used to deploy and fine-tune distributed and heterogeneous
machine learning systems in smart city infrastructures.

4.1. VDiSC Workers

Each individual worker performs a single task, known
as a microservice, such as detection, segmenting, or feature
extraction. The worker contains the initialization construc-
tors to load the particular libraries, models, and resources
required to perform that task. Each worker also implements
a set of initialization options. The VDiSCWorker also im-
plements a method to report information about itself, in-
cluding what type of microservice it provides, and what
resources it has available to it. Each worker takes VDiS-
CRecords as input and returns VDiSCReplies as output. On
an abstract level, all workers are able to interface with each
other through records and replies but will throw exceptions
if a given VDiSCReply does not contain the required input
for a subsequent worker.

4.2. VDiSC Pipelines

Each VDiSC Pipeline consists of a directed acyclic graph
workflow of DiSC Workers, chained together via their in-
puts and outputs. The VDiSC Pipeline leverages the Multi-
processing library to allow for asynchronous calls to various
workers in either an unordered manner or first-in-first-out
order queues. In this way, local resources can be utilized
to their fullest extent to perform parallel jobs that do not
require order, or that require only minimal ordered depen-
dencies between workers within the workflow.

The VDiSC Pipeline itself subclasses the VDiSC Worker
and can utilize nested pipelines within its own workflow.
This nested pipeline functionality helps provide further flex-
ibility when creating more complex dependency graphs in
distributed wide area networks. An example of this nested
pipeline infrastructure is shown in Figure 1.

4.3. VDiSC Services

A VDiSC Service implements the entire gRPC server re-
quired to make remote calls across a network channel. This
server contains four main elements:

e The code and infrastructure that allows online declar-
ing of VDiSC Pipelines constituted of chained-
together VDiSC Workers.

e A set of local VDiSC Workers that are loadable and
run-able within the VDiSC Service’s local environ-
ment.

o A set of VDiSC Clients that all connect with other vis-
ible VDiSC Services available on the network.

e One or more VDiSC Databases that are endpoints to
collect output from various VDiSC Workers, in sce-
narios when databases must be created for enrollments
or searches of various entities.
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Figure 3. A visualization showing the specific and generic com-
puter vision calls implemented in the VDiSC Client that allow for
communication to VDiSC Services, and their nested workers and
pipelines. The client provides a unified API and CLI to access
workers and pipelines within a service. If a computer vision—type
call that does not fall within the outlined client framework is re-
quired, such as a special type of super-resolution or other process-
ing, it can be implemented ad-hoc using the “generalized worker
call.”

These main elements allow users to connect to a VDiSC
Service via a VDiSC Client, then create pipelines of VDiSC
Workers (either local or remote) via a declarative interface.
These chains can be created from either fully local workers
or a mixture of local and remote workers.

4.4. VDiSC Clients

A VDiSC Client acts as the interface that connects with
any given VDiSC Service. Each client connects to a sin-
gle VDIiSC Service via a dedicated gRPC channel. Clients
provide an API to call workers, pipelines within a VDiSC
Service, and a command-line interface (CLI) that allows
end users to interact with the services and workers available
to a given client.

Clients have a set of specific, specialized remote pro-
cedure calls that can be requested from a VDiSC Service,
along with a generic call that can be made for procedures
that do not fall within the general detect—extract—enroll—
search architecture of computer vision. The specific remote
procedure calls with dedicated implementations within the
client are enumerated in Figure 3.

Each client—service pair connects via an encrypted gRPC
network channel. Section 4.7 provides more detail on this
channel encryption.

4.5. VDiSC Sources and Databases

VDiSC Sources implement a simple finite or indefinite
iterator for streaming media. Each VDiSC Source imple-
ments a grab functionality, which “grabs” the next frame
from a given camera or video file. The built-in generic
VDiSC Source can read most video files and codecs, along
with the ability to read Real-Time Streaming Protocol,
M3US8, and gstreamer syncs [23]. Other sources that uti-
lize proprietary software development kits, such as Pylon
or Vimba, can be easily implemented and integrated into

the VDiSC Ecosystem by subclassing the VDiSC Source.

VDIiSC Clients connect directly to a VDiSC Source and
stream their output to connected services. Because VDiSC
Clients and Services need not live within the same envi-
ronment, software or environment conflicts can easily be
resolved by hosting a service outside of the environment
on which the camera or source must run. For example, if
a given machine vision camera worked only with software
designed for Windows, the VDiSC Client could run within a
Windows environment while streaming output to a service
located on a DGX Linux environment suited for real-time
processing.

VDiSC Databases are designed to store enrolled tem-
plates and embeddings extracted from various worker
microservices—at a high level, implementing record enroll-
ment, deletion, and search. The built-in VDiSC Database
implementation also connects directly to the PHE layer to
create a secure template storage solution that cannot leak
private information. VDiSC databases are loaded as a per-
sistent object within a VDiSC Service and are, therefore,
accessible as a remote database propagated through nested
VDiSC server—client connections.

4.5.1 Zero-Configuration Networking

VDiSC utilizes Zero-Configuration Networking (Zero-
Conf) [22], also known as Apple Bonjour, to make services
discoverable within a local area network or wide area net-
work. This feature creates a DNS-like service with which
VDiSC Services are easily addressable over the network,
even in the presence of changing IP addresses. Services
hosting both workers and pipelines broadcast their presence
with a unique name. This allows other services within the
network to automatically connect and discover other work-
ers and pipelines available to it through service-to-client
connections. Using ZeroConf, VDiSC clients can discover
and utilize all workers and pipelines active and visible on a
given network without needing to know exact IP addresses.

4.6. Streaming and Analytics in Real Time

Because VDiSC is designed as a real-time streaming
client—server framework, decisions were made with the end
user in mind. In Figure 4, we show a simple graphical user
interface (GUI), built directly into the VDiSC library, that
can display real-time streaming results from given work-
ers and pipelines. This GUI can be deployed either on the
server or client end, or both. While the GUI is relatively
bare-bones, it is designed to be easily extensible and cross-
platform capable. This feature provides users of VDiSC
either a out-of-the-box visualization tool for their real-time
deployed systems or a straightforward guide on how to im-
plement their own custom interface.
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Figure 4. A simple cross-platform GUI built into VDiSC for easy
visualization of biometric data.

4.7. Privacy and Network Security
4.7.1 Partially Homomorphic Encryption Layer

VDiSC implements a built-in service that provides PHE
using the Paillier Cryptosystem [19]. More specifically,
VDiSC utilizes a modified version of the Python imple-
mentation of Paillier PHE provided here [8]. One of the
bottlenecks of the Paillier Cryptosystem is the speed and
efficiency with which the modular multiplicative inverse
(MMI) can be run [12]. Traditionally, this calculation
is performed utilizing the extended Euclidian algorithm
(EEA) [17]. However, naive implementations of the EEA
can be prohibitively slow.

In [8], authors sped up this calculation for single num-
bers by utilizing the GMPY?2 library [16], a C-based Python
interface that utilizes the GNU MPFR library for multiple-
precision arithmetic [9]. For VDiSC, we further vectorized
this MMI using Numpy [20]. In Figure 5, we show the ef-
fectiveness of this vectorized algorithm in the use of per-
forming vector dot products for L1 distance calculations on
face templates ranging from 1 to 1,024 dimensions. As can
be seen in Figure 5, the VDiSC vectorized multiplicative in-
verse performs almost an order of magnitude faster than the
original implementation in [16].

4.7.2 Encrypted gRPC Channels

As a second layer of security, VDiSC provides one-
line flags to ensure that the gRPC channel connecting a
VDiSC Client and Service is encrypted using either RSA or
ED25519. This allows data to be passed securely either on
local gRPC channels or when being transmitted over wide
area networks.

5. Where to Access VDiSC

VDiSC will be freely available and hosted on Github.
The repository contains documentation as well as Jupyter
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Figure 5. PHE encryption times for face vector embeddings of
different dimensions. The original EEA, while the most straight-
forward, performs the slowest. We have markedly optimized the
GNU implementation using GMPY?2 (orange) to perform two to
three times faster (blue) within the VDiSC framework by utilizing
vectorized operations to parallelize the EEA.

Notebooks as a get-started guide for implementing VDiSC
Workers and utilizing the VDiSC API and CLL

Currently, VDiSC or its variants are used on multiple
projects “in the wild.” A through-windshield imaging sys-
tem [7] utilizes the framework to perform its recognition.
Similarly, the Deep-HDR fusion algorithm pipeline [21] uti-
lizes the framework to route imagery from multiple camera
sources to channels within the given network.

VDiSC is also being utilized in driver safety projects [11]
to determine what methods of data privacy work best to pro-
tect data of drivers in driver-facing camera systems. VDiSC
has also been effectively utilized for low-resource real-time
computer vision on edge devices [6, 4].

6. Conclusions and Future Work

VDIiSC is a ground-up reinvented declarative computer
vision framework that builds upon the achievements and
successes of VDiSC by increasing flexibility and effi-
ciency and responding to the growing need for truly secure,
streaming-based inferencing frameworks for use in smart
city and real-time surveillance implementations.

A major avenue for future work is the continued devel-
opment of the Oak Ridge Identity Testbed (ORID), a frame-
work composed of sensors, biometric detection and identi-
fication algorithms, and computing platforms. Powered by
VDiSC, ORID streams video data over the internal network
from cameras deployed across Oak Ridge National Labo-
ratory campus to one or more GPU servers for processing
and routes results back out to create impactful visualizations
for security operations centers and other demonstrations. It
provides flexibility for rapid deployment of sensors and al-
gorithms for testing and evaluation and the infrastructure
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required to build novel datasets with minimal lead time. Fu-
ture work will also include integration of multimodal sen-
sors and algorithms with VDiSC and ORID, further investi-
gation into privacy-protecting technologies, and automated
collection and annotation of novel datasets for algorithm de-
velopment.
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