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Abstract

Recently, context awareness in vision technologies has
become essential with the increasing demand for real-
world applications, such as surveillance systems and ser-
vice robots. However, implementing context awareness with
an end-to-end learning-based system limits its extensibil-
ity and performance because the context varies in scope
and type, but related data are mostly rare. To mitigate
these limitations, we propose a visual context-aware frame-
work composed of independent processes of visual percep-
tion and context inference. The framework performs logical
inferences using the abstracted visual information of rec-
ognized objects and relationships based on our knowledge
representation. We demonstrate the scalability and utility
of the proposed framework through experimental cases that
present stepwise context inferences applied to robotic ser-
vices in different domains.

1. Introduction

The need for context awareness has emerged not only
in the Internet of Things (IoT) or in recommender systems
[1, 23] but also in vision applications, owing to the increase
in the use of real-world services, such as surveillance sys-
tems and service robots [10, 11]. Context awareness in vi-
sion implies a high-level understanding of complete visual
scenes that are beyond simple recognition, similar to human
cognition. Its scope of recognition varies from general situ-
ations, such as children having a picnic (rather than just the
actions of sitting or running around), to anomalies, such as
traffic accidents and intrusions.

Therefore, scalability and low data dependency are im-
portant factors for context awareness, because its domains
are extremely diverse to enumerate, but the related dataset
is mostly rare or non-existent [8]. From this point of view,
when implementing context awareness in an end-to-end
learning-based system, the feasibility as a real-world appli-
cation is significantly reduced. Although existing methods

[9, 28] exhibit quality performance in specific tasks, addi-
tional learning on the entire system is continuously required
as an extension of those tasks, leading to unavoidable ad-
ditional costs and a reduction in effectiveness. This con-
straint can be maximized especially, particularly when the
network-based methods are applied to service robots that
need to adapt to various environmental changes.

To mitigate this limitation, we propose a visual context-
aware framework (Vis-CAF) structured to maintain inde-
pendence in the processes of visual perception and context
inference for a flexible real-world application of context-
aware tasks. The perception process visually recognizes
objects/relationships, and the inference process infers their
contexts based on a high-level knowledge representation
using the abstraction of perceived results. This Vis-CAF
structure ensures quality recognition performance in vari-
ous categories using relatively rich object/relationship data.
In addition, the Vis-CAF structure enables the flexible ap-
plication of additional context-aware tasks through a simple
extension of knowledge concepts and reasoning rules. Al-
though the recognition models may need to be re-learned for
added object/relationship categories as context-aware tasks
increase, they can be fine-tuned at lower costs and higher
performances compared with those of end-to-end systems.

The main contributions of the Vis-CAF are as follows:

Scalability and flexibility. Vis-CAF can main-
tain its scalability and flexibility even with varia-
tions in context-aware tasks and service domains
because of the independent perception and infer-
ence processes. The structure of Vis-CAF facil-
itates an easy application of variations through
simple customization at the knowledge level.

Modularity. Because the processes of Vis-CAF
are performed by data flows between the individ-
ual modules, the existing detection models can be
applied with minimal restrictions. Further, modu-
larity enables parallel management with regard to
independent development and advancement.

Availability in multi-modality. Vis-CAF can
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Figure 1. Architecture of Vis-CAF. The colors in boxes, words and vertices represents the same objects in the example.

leverage sensed data from modalities, other than
vision, such as audio, text, and signal, by their
abstractions into the common domain knowledge
and definitions of corresponding reasoning rules.
If the knowledge is shared in real time, multi
agent service is also feasible.

2. Proposed Framework
2.1. Overall Structure of Vis-CAF

Vis-CAF aims to infer appropriate contexts by leverag-
ing the information perceived from an input video. As
shown in Figure 1, it comprises two main processes: the
perception and inference processes.
Perception Process The perception process focuses on
the visual analysis of each image frame in a video based on
deep neural networks, and the integration of the analyzed
results on consecutive frames (indicated as a segment). The
perception process comprises three modules: object detec-
tion, relationship recognition, and segment association. The
purpose of the first perception module is to detect and clas-
sify objects of interest using localization from a raw two-
dimensional (2D) image. The classified categories and the
corresponding bounding boxes are stored in a frame buffer
and used as inputs for relationship recognition. Any model
that outputs a similar format of detection can be applied to
the first module because modeling object detection is not
considered in the primary scope of this study.

Based on the output from object detection, the second
perception module performs relationship recognition that
recognizes the inter relationships of detected object pairs
using neural network-based prediction. The detailed model
architecture and procedures in the relationship recognition
module are presented in section 2.2.

The analyzed results per image frame obtained from
the perception modules are stacked in a meta-information
buffer with a fixed size, implying that the old results are
removed. As the meta-information buffer stacks a new
segment, consecutive image frames of the same tempo-

ral length using a sliding window, the segment association
module performs two functions: tracking and association.

First, the segment association module successively iden-
tifies a tracking ID of each object in the new segment by
applying a tracking algorithm to all meta-information of the
tracked objects in the buffer. Note that the meta-information
buffer contains not only objects in the new segment, but also
those in previous segments that are recently analyzed be-
cause the temporal length of the buffer is set to be longer
than that of the segment. After tracking, the module asso-
ciates each pair of tracked objects by the statistical deduc-
tion for its relationship among the entire frames of the new
segment, and excludes the pairs that are below a frequency
threshold. Consequently, the associated meta-information
of the objects and relationships for a segment is used to in-
fer potential contexts through the inference process.
Inference process The inference process comprises three
modules: knowledge instantiation, context inference, and
knowledge manager, as shown in Figure 1. The knowl-
edge instantiation module aims to abstract low-level meta-
information into high-level domain knowledge represented
in the web ontology language OWL [2] format. The mod-
ule maps the detected objects to individuals in a knowledge
namespace by matching their locations or identities based
on SPARQL [22], and generates temporary individuals de-
noting as unidentified for mismatched objects. Further, re-
lationships are anchored in the corresponding ontological
properties or concepts and linked to the mapped individuals
of related objects by a subject/object relation. Because our
knowledge is represented based on an event-oriented ontol-
ogy, cognitions of objects and relationships are instantiated
as event individuals. We present the details of the knowl-
edge representation in section 2.3.

In our knowledge base, we define reasoning rules in
the semantic web rule language (SWRL) [12], a language
used to express rules for the semantic web. Vis-CAF per-
forms context inference on individuals in the knowledge
base based on reasoning rules and fundamental ontologi-
cal characteristics of hierarchy and property. Vis-CAF au-
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Figure 2. The modeling of visual relationship recognition in Vis-CAF with an example.

tomatically stores the newly inferred axioms and outputs
some of those corresponding to the context of interest in
a triple format. Because the point of context inference is
the inclusion of ontological expressions and logics appro-
priate for particular situations, we present exemplarily de-
fined rules through experiments.

The scale of knowledge base gradually increases as the
number of input videos increases, causing high spatial and
temporal costs for knowledge queries and reasoning. To re-
duce the spatial and temporal complexities, the knowledge
manager automatically discards volatile individuals, such as
unidentified people/objects and event individuals that have
not been detected over a period of time. In addition, from
a conceptual perspective, the knowledge manager also per-
forms manual updates to the ontology schema and reason-
ing rules, and integration of external knowledge, such as
environment maps for a service robot. These conceptual
functions are not included in the automated context-aware
process and are performed at ordinary times. Consequently,
a series of inference processes for an input video can be per-
formed continuously and without errors while maintaining
the scale, consistency, and rules of knowledge.

2.2. Visual Relationship Recognition

Vis-CAF leverages the relationships between objects that
are visually analyzed on a video for context inference as
aforementioned. We model visual relationship recognition
(VRR) as a deep neural network-based method that predicts
the relationship between a pair of detected objects. Note
that VRR is performed on each image in a segment. The
model architecture of VRR is illustrated in Figure 2. VRR
takes an image with the meta-information of the detected
objects, including bounding boxes and categories, as input
and outputs a predicted relationship category. We use four

multi-modal features to maximally capture the information
potential of an image: word embedding, relative geometry,
mask, and visual features.
Word Embedding Feature To capture the language po-
tential, we use GloVe [20] pre-trained on Wikipedia 2014
and Gigaword 5. The concatenated vector of the subject
and object category embedding vectors is fed into a fully
connected (FC) layer to learn the correlation. The use of
the language-contextual information in the cognition of vi-
sual relationships was demonstrated as effective in previous
studies [18, 16].
Relative Geometry Feature The relative geometry of
objects involves a significant cue in VRR, particularly
for categories of spatial relationships. Given bound-
ing boxes for the subject and object as (x, y, w, h)
and (x′, y′, w′, h′), respectively, where (x, y) denotes a
center point, the relative location is first calculated as
[log |x−x′|

w , log |y−y′|
h , log w

w′ , log
h
h′ ] based on the widely

used form of spatial features [13]. Subsequently, we em-
bed this 4 dimensional vector into a high-dimensional space
with reference to [19]. The embedding process is based on
the computation of cosine and sine functions of different
wavelengths, which is a method of positional encoding in a
transformer [26]. We set the wavelength factor to 1000 and
the encoding dimension to 16 in the experiments.
Mask Feature Coordinate values have a limitation to
fully represent the relativity of two objects. In addition,
we use a binary spatial mask of the bounding boxes in an
image, based on [16], which demonstrates its effectiveness.
The spatial mask comprises two channels for the subject and
object, with non-zero pixels in the bounding box area. Sub-
sequently, the spatial mask that is down-sampled to a size
of 32 × 32 is compressed using two convolutional layers,
each of 5× 5 and 3× 3 filters and one FC layer.
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Figure 3. The main schematic structure of the ontology-based knowledge.

Visual Features We leverage visual appearances because
the VRR model needs to distinguish a pose of an object and
a topological state of an overlapped region. Each cropped
image for the subject and object bounding boxes and their
union is independently input to a convolutional neural net-
work (CNN)-based feature extractor and further to an FC
layer to generate a visual feature. We adopted VGG-16 [24]
as the backbone network in our experiments.

The four generated features are concatenated and fed into
a fusion layer to learn the joint representations. The fusion
layer comprises two FC layers with a classification output
layer. Section 3.1.1 specifies the dimensions of the VRR
networks used for experimental evaluation.

2.3. Ontology-based Knowledge Model

For the scalability and flexibility of our proposed frame-
work, the main focus is on the use of knowledge. We define
upper-level concepts through hierarchical clustering, which
comprises four main sub-models: temporal, spatial, rela-
tionship, and agent. Figure 3 depicts the schematic structure
of the main parts of the upper-level concepts. Further, we
define bidirectional semantic relations internally and exter-
nally among the sub-models to represent their associations.
We introduce them schematically in this section, the details
of which are shown with an example graph instance in the
experiment section 3.2. For the construction of the knowl-
edge schema, we refer to some of the event-oriented man-
ners and concepts of previous studies [6, 3] that emphasized
extensibility and utility in robotic service applications.
Temporal Model The proposed knowledge is an event-
oriented ontology; therefore, a PerceptionEvent individual
is first generated to include all the perceptions of a video
segment. Each perception of objects or relationships is
instantiated in ObjectDetection or RelationshipRecognition

event individuals, associated with the corresponding object
or relationship individual in the knowledge base and linked
to the PerceptionEvent individual in inclusion form by the
subEvent relation. We define several temporal properties—
startTime and occursAt—to indicate the occurrence of time
points and places of events. CurrentTime is a purposeful
concept to use when reasoning only on the present event.
Spatial Model The spatial model includes general con-
cepts for objects and places and domain concepts for coor-
dinate systems and robot maps. We categorize object con-
cepts into structural objects, which represent immovable
objects (for example, tables, chairs, and beds) that can be
described in a specific map, and portable objects, which
are unidentifiable objects (for example, bags, and bottles)
that can move irregularly. We define the attributes of object
concepts as movable, loss, or occupancy states. The coor-
dinate systems comprises two classes—BoundingBox and
RotationMatrix. Vis-CAF uses rotation matrix-based coor-
dinates when applied to real-world services with 3D spa-
tial robotic maps and uses bounding boxes when applied
to simple 2D videos. In real-world applications, the local-
ization of objects and places in a service environment, and
their linkages to the robot map are available using the object
properties location and describedInMap, respectively.
Relationship Model Relationships classified from VRR
are defined in this model. Relationship concepts are primar-
ily categorized into action and spatial relationships. Each
relationship is represented as having a subject and an object
in a triple format via the inter-relations of the aforemen-
tioned ObjectDetection and RelationshipRecognition indi-
viduals. Furthermore, the measured distance from the per-
ception process of each relationship is annotated in the
knowledge base and is used when reasoning the adjacent
degree of the corresponding subject and object.
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Table 1. Category-wise composition of a VRR training set. The
numbers in the brackets indicate augmented instances.

Category # of instances (aug.)

behind 1,890 (1,050)
in 3,836 (-)

in front of 1,050 (1,890)
next to 3,004 (3,004)

on 19,157 (895)
under 895 (19,157)

Agent Model The agent model represents an actor who is
the subject of an applied service or activity, and it can also
be an object to be detected. In this model, we define data
properties as profile attributes (such as name, face-id, and
gender) for person, and properties (such as specifications)
for robot or other agents. The agent model is closely asso-
ciated with spatial and temporal sub-models. Using the on-
tological relations, worksOnMap and actorOf, we concep-
tualize the current map of the robot, which is used in local-
ization, and the subject of perception events, respectively.
Furthermore, concepts in the agent model inherit properties
of the spatial model through subclass hierarchical relations.

3. Experimental Results
3.1. Evaluation of Visual Relationship Recognition

3.1.1 Experimental configuration

Category The VRR training involves two types of
categories—the input object and output relationship. We
selected 18 generic object categories (for example, person,
table, chair, bag, bottle, and so on) and 6 spatial relation-
ships (for example, behind, in, in front of, next to, on, and
under). Even in the limited circumstance where only using
a few spatial relationships, we experimentally verified the
availability and versatility of Vis-CAF.
Dataset We used images in the visual relationship dataset
(VRD) [18], visual genome [14], and open images [15]
for training, resulting in our training set, as shown in Ta-
ble 1. While extracting relation-annotated images for the
above categories from these datasets, sub-categories were
merged into the corresponding super-categories (for exam-
ple, ’stand behind’ into ’behind’, and ’handbag’ into ’bag’).
We augmented the training set by switching subject and ob-
ject and/or changing their spatial relationship to the oppo-
site. For example, from instances, ’A in front of B’ and
’C next to D’, new instances, ’B behind A’ and ’D next
to C’ were generated. Consequently, the total number of
image instances was 55,828, which are randomly divided
category-wisely into a 9:1 ratio for training and validation,
respectively. For the test set, we randomly sampled 30 in-
stances for each category from the test images in VRD.
Feature Dimensions For word embedding vectors of ob-

Table 2. Ablation study of VRR by varying its configurations.

Model configuration Precision Recall F1 score

CE 0.66 0.6 0.629
CE + BLC 0.68 0.64 0.659

FL 0.7 0.64 0.669
FL + BLC 0.69 0.66 0.675

FL + BLC + FT 0.74 0.68 0.704

Notations: CE (cross-entropy loss), BLC (balancing), FL (fo-
cal loss), FT (fine tuning)

Table 3. Category-wise performance with FL + BLC + FT.

Category Precision Recall F1 score

behind 0.76 0.43 0.549
in 1.0 0.37 0.54

in front of 0.59 0.67 0.627
next to 0.58 0.7 0.634

on 0.58 1.0 0.734
under 0.9 0.9 0.9

ject categories, we used 100-d GloVe. Before propagation
to the fusion layer, the final dimensions of the word embed-
ding, mask, and each visual feature were 64, 64 and 128,
respectively, each of which was the output dimension of the
FC layer. The final relative geometry feature was a 64D
embedded vector without an FC layer. For visual features,
a cropped input image for the subject, object, or union was
resized to 128 × 128 × 3 prior to CNN-based feature ex-
traction. These multi-modal features were associated with a
64D hidden layer and a 6D output layer in the fusion layer.
Configuration in Training We adopted an ADAM opti-
mizer with a learning rate initialized to 0.001 and reduced
to 0.00001 at a minimum and set the batch size to 32, re-
sulting in approximately 50 epochs by early-stopping. For
the ablation study, we varied the loss functions, balancing
mini-batch, and fine-tuning the CNN-based backbone net-
work. To alleviate the data imbalance between categories,
we used a focal loss function [17] to compare of categor-
ical cross-entropy loss and stochastically balancing mini-
batches in the data ratio by category. The top-4 layers of
CNN-based backbone networks for visual features were un-
freezed during fine-tuning.

3.1.2 Recognition Performance

Table 2 presents the results of the ablation study using our
VRR model. We used the mean values of precision, re-
call, and f1 score for measurements of category-wise per-
formances. The results indicate that VRR with focal loss
achieves improved performance compared to VRR with
cross-entropy loss. Balancing mini-batches during training
alleviates the data unbalance problem by comparable per-
formance improvements. However, the use of both focal
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loss and balancing performs not relatively effective because
of the duplication of the alleviation. Fine-tuning the CNN-
based backbone networks that extract visual features re-
sults in reasonable effectiveness in both precision and recall.
This implies that fine-tuning enables the model to improve
its learning ability to capture the interactions between ob-
jects. For a concrete validation, we excluded misannotated
test instances and re-evaluated the performance of our VRR
model with the configuration with best performance, FL +
BLC + FT (focal loss + balancing + fine-tuning). Conse-
quently, the actual performance with a precision of 0.82 and
a recall of 0.8 on 132 refined test instances was achieved.

The category-wise performance of the best model is
shown in Table 3. Categories with a relative lack of data
were predicted by high precision and low recall perfor-
mance, perticularly with respect to the in relationship, im-
plying that the data imbalance problem was not fully re-
laxed. However, we verified the significant effect of our
training methods and data augmentation on the under rela-
tionship, outperforming the other relationships, although its
actual number of instances was only 895. The aforemen-
tioned evaluations are further discussed in section 3.3.

3.2. Case Studies of Context-Awareness

We conducted several case studies that were assumed to
have been applied to robotic services in different domains.
The case studies show that Vis-CAF can implement various
context-awareness by defining additional knowledge-based
reasoning rules without changing the processes, demon-
strating the scalability and utility of Vis-CAF. In this exper-
iment, based on the objects and relationships in 2D images
of a video obtained from the perception process, we assume
that the robot’s localization can be performed based on a
map in 3D rotation matrix format using the video depth in-
formation. For the perception process, we applied YOLOv2
trained on the COCO dataset and a simple algorithm based
on intersection-of-union (IOU) as the object detector and
tracker, respectively. Only the relationships between ob-
jects within a certain distance, the measurement of which
was obtained with reference to [7], were recognized to re-
duce the time complexity for real-time services. We used a
pellet reasoner [25] to apply our rules for context inference.

General reasoning cases Service robots must have
the ability to provide personalized services to their cus-
tomers, independent of a specific domain. Vis-CAF can
identify personal attributes or relationships without apply-
ing additional detectors trained for specific purposes. For
instance, the recognition of users with a disability using the
following SWRL rule enables personalized reception.

Person(?p), WheelChair(?wc), on(?p,?wc)
-> disabled(?p, true)

The relationship information is significant in context-

awareness because, even in this case, the simultaneous de-
tection of a person and a wheelchair should not be regarded
as disabled. Similarly, a robot acquires the ability to ac-
tively approach and cope with a new-comer who is inferred
as a customer, using relationships, such as ’person-on-seat
(in a waiting area)’ or ’person-in front of-kiosk’.

When trained to recognize action relationships beyond
spatial relationships, VRR can naturally make more diverse
general reasoning. For instance, the training enables more
various personalized services, such as setting a seat in ad-
vance for an infant and suggesting storage of carry-on lug-
gage, which can be inferred using ’person-hold-person’ and
’person-carry-luggage’ relationships, respectively.

Anomaly inference in hospital The implementation
of anomaly detection based on deep learning has a severe
problem because of the scarcity of a dataset [5], implying
that structured reasoning can be more efficient in terms of
cost and scalability. Vis-CAF can detect an anomaly by
defining reasoning rules for abnormal situations and further
leveraging the localization capability of the robot.

Assuming a circuit service scenario in a hospital, a robot
detects an emergency when a patient falls based on its map
information, according to the following rule:

Person(?p), ?Bed(?b), under(?p,?b),
?HospitalRoom(?hr), locatedIn(?b,?hr)

-> isInEmergency(?hr, true)

A situation in which a person is lying under (rather than on)
a bed may be a rare emergency case, especially in a hospital
room. Similarly, a robot performing a crime prevention sce-
nario at night identifies a suspicious person close to objects
(for example, a cash register or an access-restricted door)
located in a secured area. Subsequently, the robot can exe-
cute appropriate service tasks, such as immediately calling
the medical staff and raising alarm on the suspicious.

Complex context-awareness in restaurant We
present a more complex context-awareness of Vis-CAF in
an actual video, assuming a service scenario for a serving
robot in a restaurant environment. The purpose of the case
study of the Occupancy and Loss scenario is for the robot
to infer the occupancy state of a restaurant table and the oc-
currence of a lost object while locomoting.

The example knowledge individuals for the scenario are
shown in Figure 4. Based on the event-oriented approach of
our knowledge, we represent each object in a has relation
linked to the corresponding event. In addition, we associate
the perceived place and related map information of objects
with corresponding object properties and specify their at-
tributes, such as user profile, coordinate, distance, and oc-
cupancy/loss state, with data properties. These associations
enable the robot to identify and localize a visible person and
a table. Using such knowledge graph representations for
segment scenes, Vis-CAF performs three levels of stepwise
context inference in the Occupancy and Loss scenario.

75



Figure 4. Example of knowledge instantiation in the Occupancy and Loss scenario.

Figure 5. Qualitative results in Occupancy and Loss scenario assuming a restaurant service environment. Underlined triples represent new
inferred relations obtrained using the inference process in each scene of video segments. The red words in the upper-right region indicate
the assumed situation of whether the recognized table is registered in POS system. Only primary relationships are illustrated in this figure.

Figure 6. Actual SWRL rule on Protégé for near relation.

Step 1. Reasoning the adjacency between objects: Figure
5 shows the key scenes of the scenario and the qualitative
results. The first scene is a situation in which a customer
approaches an unoccupied table. The robot continuously
recognizes objects and spatial relationships and uses the dis-
tances to infer their adjacency relations following the rule
in Figure 6. This actual rule is defined as fairly complicated
because it is expressed based on event individuals for tem-
poral expression; however, the representation of rules in this
paper is conceptually simplified for readability as follows:

Relationship(?r), Subject(?s), Object(?o),
hasSbj(?r,?s), hasObj(?r,?o),
distance(?r,?d), swrl:lessThan(?d,0.8)

-> near(?s, ?o)

The criterion value of 0.8 is based on the numerical range
of the distance measurement. Similarly, we also defined a
reasoning rule for closeTo with a criterion under a distance
of 0.4. near and closeTo properties have a symmetric char-
acteristic for the opposite relations. Consequently, the robot
perceived one of the contexts, ’the chair is near the table’.
Step 2. Context awareness of occupancy: In this step, we
present a higher-level contextual inference that leverages
the inferred adjacency relations. A serving robot requires
the ability to recognize the occupancy contexts of tables in
sight, despite not receiving a menu order. If a person sits on
a chair for a certain duration, the table to which the chair
belongs can be reasonably considered as occupied by the
person. Assuming that a chair belongs to its nearby table,
we represent the above cognition by the following rule:

Person(?p), Chair(?c), on(?p,?C),
Table(?t), near(?c,?t),

76



-> isOccupied(?t,true), occupiedBy(?t,?p)

This enables awareness of the entire context of table occu-
pancy beyond the simple perception of ’sitting-on’ behavior.
If a robot stores the knowledge for the inferred occupancy
context, other reception robots sharing the same knowledge
can avoid the confusion of guiding new customers to a pre-
occupied table. This ability implies that Vis-CAF has direc-
tivity and availability for multi-robot applications.

Using another nonvision modality such as a POS system,
the robot can distinguish the occupancy of tables. The third
scene shows an assumed situation in which a menu order is
registered in the POS system. The registered information of
the POS system is abstracted to an POSInEvent individual
and the related properties in the knowledge representation.
We define an additional rule based on POS system events.

POSInEvent(?pi), Table(?t),
hasTarget(?pi,?t) -> isOccupied(?t,true)

Essentially, our proposed framework is capable of using
multi-modalities by the abstraction of their sensed data or
stored information to the shared knowledge base.
Step 3. Discovering a lost object: Vis-CAF performs a
more complex context-awareness for the cognition of a loss
event based on the previous inference logics, as follows:

Table(?t), isOccupied(?t,false),
Bag(?b), under(?b,?t), closeTo(?b,?t)

-> isLost(?b,true), lostAt(?b,?t)

This rule integrally includes the occupancy and adjacency
inferences and spatial relationship recognition. Addition-
ally, defining other objects, spatial relationships, and ad-
jacency relations, rather than bag, under, and closeTo, in
the form of logical disjunction may enable the awareness of
other types of lost objects in more generic situations.

In the third scene, the robot found a bag under the table
but inferred that it was not a lost object because the robot
regarded the bag as the possession of a customer occupy-
ing the table. The fourth scene assumes that the customer
leaves the seat before checking out. Therefore the table was
still perceived to be occupied although visually unknown by
whom due to the remaining POS-In status. Therefore, the
bag remained in the default loss state, false, similar to the
third scene. Finally, after the check out (that is, the unregis-
tered status in the POS system), the table was re-expressed
as unoccupied; subsequently, the bag close to the table was
inferred as lost with its location. If a counter is notified im-
mediately upon discovery, the robot can perform appropri-
ate services, such as delivering the lost item to the customer
before leaving or requesting storage in ’Lost and Found’.

We verified that the stepwise context inference could be
designed by merging or hierarchically constructing reason-
ing rules. The results of the experimental cases demonstrate
the extensive and effective use of the proposed framework
for various context-awareness.

3.3. Discussions

On analyzing the test results of VRR, we observed a ten-
dency for predictions to be biased according to language
modal features rather than other modal features. For in-
stance, the predicate, ’person-under-chair’, was not recog-
nized even in an intended scene. Overall performance can
be further improved using detailed techniques, such as cal-
ibrating the learning ratio of modal features in VRR and
subdividing a balancing data manner using not only the re-
lationship category but also the object category.

We demonstrate that fine-tuning the VGG-16 backbone
networks in our VRR model was effective in improving the
performance, indicating the potential for better enhance-
ment when the backbone is replaced with a more suitable
model. A scene graph generation model can better capture
the associations between objects and extract more elaborate
visual features for relationship prediction [27].

In rule-based context inference, Vis-CAF tends to de-
pend on the consistency of rules. Therefore, in terms of
knowledge management, the application of an additional
method is necessary wherein the method periodically in-
spects rule conflicts, monitors conflicted rules, and tem-
porarily excludes them during contextual inference.

The reasoning rule is quite specifically represented and
defined in a duplicate form because of the limitations in the
variety of SWRL expressions. Our framework can be made
aware of more abundant contexts by applying the Prolog [4]
or Drool rule engine [21], which have more diverse logi-
cal expressions, such as negation and individual generation,
and fully leverage ontological characteristics. For instance,
the anomaly inference for a patient’s fall can be more accu-
rate by adding a rule that a person should not be detected on
a bed based on a negation expression.

4. Conclusions

In this study, we proposed Vis-CAF, a context-aware
framework that performs knowledge-based inference using
visually perceived information. Vis-CAF is structured to
maintain process independence in perception and inference
to ensure scalability and flexibility for variations in context-
aware tasks. Further, we present the VRR model for percep-
tion and ontology-based domain knowledge with rules. We
demonstrated the effectiveness of Vis-CAF through experi-
mental case studies on different robotic service domains.

In our future work, we intend to apply scene graph gener-
ation methods to fully capture object associations for VRR.
In robotic applications, we plan to use video depth informa-
tion to clarify the distinction between relationships, such as
’behind’ and ’in front of’. For context-awareness, we intend
to extend the ability to express rules and adopt a Bayesian
network and graph neural networks to increase inference di-
versity and apply pattern recognition for surveillance.
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