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Abstract

Thermopile array sensors are cost-effective thermal
imaging alternatives and are less vulnerable to privacy
intrusion, light conditions, and obtrusiveness. While nu-
merous occupant surveillance systems have been developed
based on such sensors, low spatial resolutions prohibit them
from deriving more sophisticated applications. To help re-
lieve the limitation, we propose to enrich thermopile ar-
ray sensors with additional non-thermal features and de-
velop, to the best of our knowledge, the first low-resolution
thermal-guided image synthesis model capable of produc-
ing realistic and attribute-aligned color images. These ther-
mal heatmaps are regarded as semantic maps, but have
very low resolutions. We propose an extension of SPADE
(Spatially-Adaptive Denormalization), namely SPADE-SR,
to incorporate the spatial property of a thermal heatmap
into a conditional GAN through iterative Self-Resampling.
Compared to SPADE, SPADE-SR yields better results in
terms of image quality and reconstruction error while using
significantly fewer model parameters. A new LRT-Human
(Low-Resolution Thermal Human) dataset comprised of
22k (thermal heatmap, RGB image) pairs with various ther-
mal and non-thermal coupling is derived to support our
claims. Our work explores the cross-thermal-RGB modal-
ity paradigm and poses a great opportunity for thermopile
array sensors in surveillance usages.

1. Introduction
Thermal imaging cameras capture emitted infrared ra-

diation from heated objects. They have been used in var-
ious fields, ranging from cutting-edge space telescopes to
everyday applications such as plumbing inspection, surveil-
lance, or thermal screening. Due to the recent COVID-
19 pandemic, many thermal-related applications have also
been developed [6, 5]. The sheer ability to see temperatures
makes thermal imaging an excellent way to detect human
presence under various illumination conditions. Infrared
solutions for common computer vision tasks such as image
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Figure 1. The proposed thermal-guided image synthesis model
learns to generate realistic and attribute-aligned images based on
low-resolution heatmaps and non-thermal codes. Our SPADE-SR
(SPADE with Self-Resampling) generator is more effective at in-
corporating the unconventional semantic map into the network.

segmentation and depth estimation can be found [33, 37].
Some works jointly utilize RGB and thermal information
for various tasks [35, 51].

Despite thermal cameras’ usefulness in various fields,
their popularity is limited by cost, ranging from hundreds
to hundreds of thousands of dollars. The active-cooled ones
are photon detectors equipped with cryocoolers to detect in-
frared radiation, which can provide high image quality. The
uncooled ones are thermal detectors that detect heat, which
stand as cost-effective alternatives for everyday applica-
tions [12]. Recently, the infrared thermopile array sensor,
an uncooled type of imager that has been actively integrated
with MEMS, has gained more popularity [30, 31]. Numer-
ous applications have been proposed, including fall/bed-exit
alarm, convulsive movement detection, activity recognition,
and posture classification. A thermopile array provides a
cost-effective option compared to full-scale thermal cam-
eras. While its lower spatial resolution naturally preserves
the privacy of monitored occupants, the lack of sufficient
details is a barrier to deriving more sophisticated applica-
tions, and the uncertainties from thermal data may lead to a
model with over-fitting or ill-posed problems.
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In this paper, we develop a deep-learning framework that
expands the thermopile array sensor’s capability by supply-
ing extra RGB image features of the monitored occupant.
The goal is to uplift a thermal heatmap to a natural, real-
istic RGB image with sufficient details fitting the heatmap.
Instead of tackling an application problem such as human
detection, we focus on modeling thermal and non-thermal
uncertainties in a disentangled manner through a genera-
tive process to provide an image synthesis tool for further
end usages. We propose a novel thermal-guided color im-
age synthesis model by utilizing a low-resolution heatmap
generated by a thermopile array sensor as a semantic map.
By bridging thermal and color imaging information, our
work explores this cross-modality paradigm and extends
thermopile array sensors to more general surveillance us-
ages. We depict our framework in Fig. 1.

We design a LRT-Human (Low-Resolution Thermal Hu-
man) dataset containing human-occupied scenarios with
different lighting and clothing properties representing ther-
mal and non-thermal variables. We capture the scene with
a 64-pixel, 8×8 resolution Panasonic Grid-EYE infrared
array sensor along with an RGB camera. These data are
used to train a conditional generative adversarial network
that synthesizes diverse and realistic color images based on
given thermal information. In order to feed spatial condi-
tions into the generator network, many works follow the
content-style paradigm using Adaptive Instance Normal-
ization (AdaIN) [21] or Spatial Adaptive Denormalization
(SPADE) [44] to perform Semantic Image Synthesis. Al-
though our task can be categorized as a spatial condition-
ing problem, it exists several differences. As opposed to
the conventional content-style relation, our condition (low-
resolution thermal heatmap) is pixelated and its structural
relation to the output RGB image is quite coarse. Fur-
thermore, the heatmap structure is limited to heated objects
only. Our task is more similar to the Semantic Image Syn-
thesis paradigm, where the output image should be condi-
tioned spatially according to a semantic map. However, the
thermal heatmap does not necessarily resemble the segmen-
tation map because each thermal value is a continuous tem-
perature, rather than discrete labels, and its resolution gap
to the generated image is large.

Motivated by the above observations, we propose
SPADE-SR, a Self-Resampling SPADE that is more effec-
tive in imposing spatial normalization at different resolu-
tions throughout the network and in fixing the structural-
misalignment problem caused by the resolution gaps be-
tween heatmaps and RGB images. We evaluate SPADE-SR
on LRT-Human and our results demonstrate that SPADE-
SR can synthesize high-quality images based on disentan-
gled thermal and non-thermal attributes while outperform-
ing SPADE using significantly fewer model parameters.
Our work makes the following contributions:

• We propose a novel thermal-guided image synthesis
model based on a low-resolution thermopile sensor
that generates high-quality and attribute-aligned color
images (FID 8.3).

• SPADE-SR improves over SPADE by incorporating an
unconventional low-resolution thermal heatmap as a
semantic map using a self-learned feature up-sampling
branch.

• A new LRT-Human dataset containing 22k (thermal
heatmap, RGB image) pairs with various thermal and
non-thermal coupling is developed.

2. Related Works
2.1. Thermal Imaging

From space telescopes that search extragalactic stars to
fever detection in the pandemic, thermal imaging plays an
essential role in modern technological developments. A
thermal image sensor is made up of an array of detectors
that is capable of capturing infrared radiation. The Planck’s
law suggests that any object with a temperature above abso-
lute zero would emit radiation in the thermal infrared spec-
trum (3 to 15 µm wavelengths). Actively-cooled thermal
detectors pick up photons like regular cameras; such sen-
sors provide high image quality, but need to work under
very low temperatures so that they do not flood by their
own radiation. Uncooled thermal detectors, typically found
in everyday applications such as thermal screening or build-
ing inspection, work by measuring the change of resistance
or voltage when the detector material is heated by infrared
radiation and are more cost-effective [12].

Through thermal cameras, human bodies become eas-
ily visible against the environment. This makes an excel-
lent application to Internet-of-Things. However, uncooled
micro-bolometer detectors cost at least several hundred dol-
lars. Recently, thermopile array sensors [30, 31] have
gained more popularity due to their lower price. Integrating
IoT with thermopile array sensors is an alternative solution
to RGB cameras when cost, privacy, light condition, and
obtrusiveness are concerns [46].

Thermopile array sensor-based monitoring tasks can
be categorized into activity recognition, posture recogni-
tion, and localization. For activity recognition, [29] uti-
lizes spatial-temporal information and proposes a CNN and
LSTM based model to recognize five human activities. Also
from a spatial-temporal viewpoint, [42] includes optical-
flow features and proposes a CNN and GRU based model
to recognize seven human activities. For posture recogni-
tion, a system to recognize 26 yoga postures through ther-
mopile array sensors is proposed in [13]. LFIR2Pose [25] is
a CNN-based key-point estimation model. For localization,
sensors are usually placed on the ceiling. A CNN-based
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classifier [3] is designed for human counting and localiza-
tion via a Canny edge detector. [45] proposes a multi-human
localization and tracking system.

Other applications include convulsive movement detec-
tion [17], contactless respiratory monitoring [49], hand ges-
ture recognition [4], and fall detection [36]. A fuzzy logic-
based dynamic background removal algorithm [15] is able
to take out non-human heat sources from a heatmap.

2.2. Conditional GAN

Generative Adversarial Networks (GANs) [14] have
demonstrated their ability to generate complex high-
dimensional data such as high-fidelity images. Train-
ing a GAN involves a process of updating a generator G
and discriminator D alternatively and needs careful hyper-
parameter tuning. To improve training stability and genera-
tion quality, some works [1, 34] focus on loss function, and
some on gradient regularization [16, 40, 38], training strat-
egy [28, 20], or network architecture [50, 27].

Conditional GANs (cGANs) can generate samples con-
cerning some premise information. The vanilla cGAN [39]
provides an additional label to G through concatenation,
and D is to recognize whether the data-label pair is valid
or not. AC-GAN [43] also provides a class vector to G,
but D does not see the data-label pair and has to predict
the label from the data, while G is encouraged to gener-
ate data that maximizes the corresponding class probability.
Other works such as Conditional Batch Normalization [11]
for feeding class vector, and projection discriminator [41]
for increasing generation diversity.

A single categorical label describes an image globally.
Some information such as segmentation map, heatmap, and
keypoint are in spatial forms, and they describe an im-
age locally. Reshaping such information into a 1D vector
would loss critical spatial properties. Pix2pix [24] and Cy-
cleGAN [53] tackle the problem from an image-to-image
translation viewpoint. However, a deterministic mapping
is assumed between input and output and it does not suit
multi-modal problems. Another formulation is to factor-
ize an image into a content-style form, where content in-
fluences spatial structures (e.g., edge and shape) and style
controls spatial-irrelevant attributes (e.g., color, texture, and
semantic) [9, 22, 54, 7], where Adaptive Instance Normal-
ization (AdaIN) [21] is utilized to modulate style informa-
tion. On the other hand, Semantic Image Synthesis fo-
cuses on generating semantically aligned images from a
given segmentation map [44, 48, 55, 47]. The state-of-the-
art models are variants of Spatial Adaptive Denormalization
(SPADE) [44], which re-scales and shifts feature maps spa-
tially according to the segmentation map.

GANs and cGANs have been successfully used for im-
age synthesis in different applications. Compared to exist-
ing works, our work is unique in feeding in low-resolution
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Figure 2. The overall image synthesis model.

thermal images as an input source in synthesizing natural
RGB images, thus making cross-modality image synthesis
possible. A recent study on cross-modality prediction of fu-
ture videos from previous videos through wearable sensor
data is proposed in [26].

3. Methodology

3.1. Overview

Consider a sensor rig accommodating a thermopile sen-
sor and an RGB camera that synchronously collect data.
Our goal is to generate a realistic RGB image x from a low-
resolution heatmap h obtained from the thermal sensor. One
might attempt to train a deep neural network that performs
direct image translation x = f(h) with a reconstruction loss
to achieve this. While being straightforward, such a map-
ping is considered ill-posed because (1) most RGB-related
information simply does not present in the thermal domain,
and (2) the super-resolution process itself is ill-posed. It
may simply output a pixel-wise average RGB image of all
possible solutions from a given thermal heatmap, leading to
blurry and unrealistic image quality.

This work approaches the problem from a generative
viewpoint. We introduce a noise variable z ∼ Pnoise(z) to
the function x = f(z, h) to model non-thermal uncertain-
ties. We derive a conditional GAN (cGAN), specifically in
the form of AC-GAN, where h plays as a condition. We se-
lect AC-GAN for our problem formulation because the ther-
mopile sensor data is often noisy, and its low-resolution and
progressive scanning nature might produce hard-to-notice
misalignment between h and x. AC-GAN not only recog-
nizes the ground-truth heatmap-RGB relation but also en-
courages high mutual information between the generated
image f(z, h) and h [8]. To incorporate h into the gen-
erator network, we propose SPADE-SR, a Spatial Adaptive
Denormalization method with Self-Resampling. In contrast,
the original SPADE resizes semantic map beforehand.
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Figure 3. (a) SPADE. (b) SPADE-SR. (c) Illustration of structural misalignment due to resolution gap. (d) SPADE-SR ResBlock

The dataset is denoted as S = {d1, d2, . . . , dK}, where
each di = (xi, hi), i = 1 . . .K, consists of an RGB image
xi ∈ RHx×Wx×3 and a thermal heatmap hi ∈ RHh×Wh×1.
Our goal is to generate an RGB image x̂ = G(z, h) ∈
RHx×Wx×3, where h is a heatmap and z ∼ N (0, 1), z ∈
R128, is a noise variable representing non-thermal attributes
independent of h. The discriminator D takes an image and
outputs a reconstructed heatmap ĥ ∈ RHh×Wh×1 and a re-
alness score s ∈ R1. Once the training of G and D is com-
pleted, we then train an inversion encoder I that converts
a source image x to its corresponding non-thermal code z̃.
We then use the code z̃ = I(x) in combination with dif-
ferent heatmaps to generate new RGB images based on that
specific z̃. The overall diagram of our model is depicted in
Fig. 2. More details are given below.

3.2. SPADE-SR

In SPADE, features go through multiple up-sampling
stages. In each stage, these features go through Batch Nor-
malization [23] first and then denormalized spatially using
scaling (γ) and shifting (β) parameters according to a se-
mantic map. The parameters are learned by passing the
semantic map through two convolutional layers, including
a shared one followed by two separated ones for γ and β,
respectively. In order to impose spatial normalization at dif-
ferent resolutions throughout the network, the semantic map
is resized (interpolated) to match required resolutions, as
shown in Fig. 3a. However, for our low-resolution thermal
heatmaps, up-sampling them drastically to higher resolu-
tions might fail because images with large resolution gaps
do not align well, as illustrated in Fig. 3c. With SPADE,
the two convolutional layers are too shallow to handle such
gaps effectively. While simply adding layers may solve the
problem, the model size would significantly increase.

In contrast, our SPADE-SR employs a dedicated seman-
tic network branch that performs a learned resizing (self-
resampling) process that effectively transforms the seman-
tic map into rich, multi-resolution features based on its own

̂xz
Spade-SR 

ResBlk 
up 2x

Spade-SR 
ResBlk 
up 2x

Spade-SR 
ResBlk 
up 2x

conv & 
act.

dense &  
reshape

h ResBlk ResBlk 
up 2x

ResBlk 
up 2x

ResBlk 
up 2x

(Ht, Wt)

(Hx, Wx)

Figure 4. Structure of G.

needs before inferring the parameters γ and β, as shown in
Fig. 3b. It is interesting to note that removing Batch Nor-
malization in the layers of semantic branch yields a huge
difference and is crucial to the results. This observation is
in line with the viewpoint of SPADE, which states that nor-
malization would “wash out” the conditional information.

3.3. Models

Generator In Fig. 3d, we show the proposed SPADE-
SR ResBlock, which is the building block of our generator
network G, as depicted in Fig. 4. SPADE-SR Resblock is
modified from the Residual Block (ResBlock) [19] by re-
placing the Batch Normalization with SPADE-SR. The G
consists of two network branches. The main branch is built
upon layers of SPADE-SR ResBlock, iteratively transform-
ing the noise vector z into an RGB image x̂. The semantic
branch is built with standard ResBlocks without Batch Nor-
malization to process the thermal heatmap h. The generated
image (Hx,Wx) is eight times the heatmap (Ht,Wt). So
there are three up-sampling stages (three SPADE-SR Res-
Blocks). The layer details of G are shown in Table 1.

Discriminator The discriminator D is to differentiate
between a real image x and a fake image x̂ by returning
a realness score s. Aside from this task, there is an aux-
iliary task for D to infer the heatmap h, either from x or
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Semantic Branch Main Branch

h ∈ RHh×Wh×1 z ∈ R128

ResBlk 1→ ch Linear 128 →Hh ×Wh × 512

ResBlk up ch → ch SPADE-SR Blk up 512→ 512

ResBlk up ch → ch SPADE-SR Blk up 512→ 256

ResBlk up ch → ch SPADE-SR Blk up 256→ 128

- BN, LReLU, 3× 3 Conv 128→ 3

- Tanh

Table 1. Layer specification of G.

x̂. This auxiliary task represents the conditional distribu-
tion Q(h|x). D has two output heads, with one dense layer
for s and another ResBlock and convolution layer for ĥ.

3.4. Loss Functions

GAN Phase G and D are trained in an adversarial man-
ner, where G tries to fool D by producing realistic images
and D tries to tell real from fake images apart. In this work,
we adopt the hinge loss [34] as the realness rating for D.
For G and D, their loss to minimize are:

LG
adv =− 1

n

n∑
i=1

sfakei

LD
adv =

1

n

n∑
i=1

relu(1 + sfakei ) +
1

n

n∑
i=1

relu(1− sreali ),

(1)
where sfake and sreal are D’s realness rating for x̂ and
x, respectively. To impart training stability, we apply R1-
regularization [38]:

R1 =
1

n

n∑
i=1

∥∇D(xi)∥2. (2)

We train D and G to minimize a heatmap reconstruction
loss, encouraging G(z, hi) not to lose the information of
hi. We adopt a loss threshold, similar to the hinge loss, to
cope with noisy thermal data:

LDG
mi =

1

2n

n∑
i=1

relu(|hi − ĥfake
i | − 0.05)+

relu(|hi − ĥreal
i | − 0.05),

(3)

where ĥfake and ĥreal are reconstructed thermal heatmaps
of x̂ and x inferred by D, respectively. The total loss of the
D and G are defined as:

LD
total = LD

adv + γLDG
mi + βR1

LG
total = LG

adv + γLDG
mi .

(4)

We set β = 5.0 and γ = 2.0 in our implementation.
Inversion Phase After the GAN training phase, we then

train the inversion encoder I . The first objective of I is
the L1 pixel-wise error. To further ensure that z̃ produces
not only similar but plausible images, an adversarial loss
LI
adv is added by utilizing the pretrained D into the inver-

sion phase [52]:

LI
rec =

1

n

n∑
i=1

|xi −G(z̃i, hi)|

LI
adv =

1

n

n∑
i=1

sreci ,

(5)

where sreci is D’s realness rating for the inverted image
G(z̃i, hi). We set λ = 0.1 in our implementation. The
total loss of I is defined as:

LI
total = LI

rec − λLI
adv. (6)

4. Experiments
4.1. Dataset

We developed the LRT-Human (Low-Resolution
Thermal-Human) dataset, which was collected on a simple
sensor rig that accommodates a thermopile sensor, an
RGB camera, and an MCU. Note that there exist other
thermal-human datasets [10, 2], which, when downsam-
pled, have a similar form to ours. However, LRT-Human
focuses on modeling thermal and non-thermal attributes
with less challenging image details. The dataset consists of
22K (low-resolution thermal heatmap, RGB image) pairs
with a human occupant under various scene configurations
in a way that thermal and non-thermal attributes can be
verified explicitly. To match the thermopile sensor and
RGB camera spatially, we calibrate them by finding a
translation and scaling parameter that maximizes the
overlapping area between heatmaps and human masks of
RGB images acquired by the publicly available pretrained
Mask R-CNN [18]. Fig. 5 displays some random samples
with different human poses and positions under several
clothing and lighting conditions. Table 2 contains more
dataset specifications.

Figure 5. Random sample pairs from the LRT-Human dataset.

4.2. Evaluation

We set dimensions Hx, Wx, Hh and Wh to match the
dataset specification. Thermal heatmaps between 19 to 30
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(a) (b)Figure 6. Left: generated image samples. Right: real image samples.

Name Value

Dataset Parameters

Thermopile array sensor Panasonic AMG8833
Thermal heatmap resolution 8× 5 (w × h)
RGB camera Apple iPhone XS
RGB image resolution 64× 40 (w × h)
Field of view 60◦ × 37.5◦ (w × h)
# of data pairs 21, 959

Thermal Attributes

# of human occupant {0, 1}
Occupant position Random positions
Occupant pose Random poses

Non-Thermal Attributes

# of clothing colors 5
# of lighting conditions 2

Table 2. Specifications of the LRT-Human dataset.

degree Celsius are re-scaled linearly to [−1 : 1]. We use
Adam [32] optimizer with β1 = 0, β2 = 0.999, and learn-
ing rates = 2 × 10−4 and 5 × 10−5 for D and G, respec-
tively. For the inversion phase, we use Adam with β1 = 0,
β2 = 0.999, and learning rates = 2×10−4 and 5×10−5 for
the D and I , respectively. The batchsize is set to 256, and
the update ratio for D to G (GAN) and for D to I (inver-
sion) are both 1:1. We train the GAN phase with 400 epochs
and inversion phase with 10 epochs. We apply exponential
moving average on model parameters for evaluation using
decay rates of 0.999 and 0.99 for the GAN and inversion
phases, respectively. The total training time for GAN and
inversion phases takes about 13 hours on a single Nvidia
V100.

Generation Quality The Fréchet inception distance
(FID) [20] is evaluated for image generation quality by
comparing the feature distributions between real and gen-

erated images, with 0 as the lowest score (best image gen-
eration).

FID = ||µ− µw||22 + tr(Σ + Σw − 2(ΣΣw)
1/2), (7)

where µ and µw are the means and Σ and Σw are the covari-
ance matrices of the features for real and generated images.
The features are a 2048-dimension vectors taken out from
the intermediate layer of the Inception network. A com-
parison of generated and real image samples is shown in
Fig. 6. We reach an FID score of 8.32, and we note that
lower scores might be achieved by further training.

Disentanglement This work aims to generate RGB im-
ages from independent thermal and non-thermal sources.
These two sources should not be entangled, meaning that
each source is only responsible for its designated purpose.
To evaluate the disentanglement performance, we randomly
sample k RGB images from the dataset and use I to retrieve
their z̃. We then randomly sample n thermal heatmaps
and use them to generate k × n images. We observe
the visual changes between these two factors in Fig. 7.
These two attributes pose a clear and independent relation,
where heatmaps control occupants’ poses and non-thermal
attributes z̃ control clothing and lighting styles, proving the
disentanglement property.

Reconstruction We further evaluate the robustness of
G by conducting a reconstruction error measurement. In
the LRT-Human dataset, samples in the same clip have the
same non-thermal attributes (i.e., same clothing and light-
ing). Consider any clip. First, we randomly sample an RGB
image from the clip and get its non-thermal code z̃ from I .
Second, we use this z̃ combined with all heatmaps in the
clip and generate an entire fake clip. Last, we calculate the
mean absolute error between the two clips. This helps eval-
uate the pose/position correctness of the generated images
and tests the consistency of non-thermal attributes across
the whole fake clip since only a single z̃ from a random
image in the clip is used. SPADE-SR scores an average of
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(a) (b)

Figure 7. Disentanglement evaluation. The top row (red) shows the source images from which non-thermal codes are retrieved from I ,
and the left-most column (green) shows the heatmaps. Each cell represents a generated image given the corresponding non-thermal code
and heatmap. The model performs well-each column has similar clothing and lighting style while each row has similar human pose and
position. Notice the source image with no occupant (3rd from right) still results in a valid inverted latent code that generates plausible
images.
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Figure 8. Visualization of image samples and frame-wise reconstruction error across a clip. Notice that the error at the source frame is not
necessarily the lowest, suggesting that the non-thermal latent code z̃ is generalized, not tailor-learned.

0.0272 in mean absolute error across all clips in ten runs.
We select some clips and plot the frame-wise reconstruc-
tion errors along with image samples for visualization in
Fig. 8. We have three discoveries. First, SPADE-SR per-
forms well on replicating an entire clip, generating similar
poses/positions and non-thermal attributes at every frame.

Second, most large errors in a clip are not caused by an
incorrect z̃, but by image imperfections or slight postural
differences due to the low-resolution nature of heatmaps or
minor RGB-heatmap miss-alignment in the dataset. Third,
there is no trend that the errors of the source frames are the
lowest, suggesting that SPADE-SR learns a generalized la-
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model FID ↓ recon. ↓ param. ↓

SPADE-64 11.68 0.0334 12.6M
SPADE-128 9.62 0.0278 15.3M

SPADE-SR-32 9.51 0.0275 11.3M
SPADE-SR-128 8.03 0.0266 16.3M

SPADE-SR-64 8.32 0.0272 12.9M

Table 3. Comparison on models.

tent code z̃, instead of memorizing a tailored code at that
specific frame.

4.3. Comparison

Table 3 compares SPADE and SPADE-SR in various
model sizes on the LRT-Human dataset. SPADE-SR out-
performs SPADE in both FID score and reconstruction error
while using fewer parameters, even at one-fourth of chan-
nel size (32 v.s. 128). After multiple trials, we observe that
SPADE with 64 channels would always collapse, generat-
ing samples with missing attributes (e.g., clothing color).
We did not further test smaller channel sizes such as 32 be-
cause we suspect that it has reached SPADE’s limit. We
select SPADE-SR with 64 channels as our standard model
because it strikes a balance between performance and model
size.

5. Conclusions

This work presents, to the best of our knowledge, the
first thermal-guided image synthesis model based on low-
resolution heatmaps that is able to generate high-quality
and attribute-aligned images. With the Self-Resampling
tweak, we propose SPADE-SR that improves over SPADE
by performing a learned resizing process instead of interpo-
lation. We evaluate our model on the proposed LRT-Human
dataset and SPADE-SR demonstrates outstanding genera-
tion quality, disentangling property, and reconstruction er-
ror. SPADE-SR also outperforms SPADE in model size.
On the application side, we will develop privacy-preserving
surveillance based on SPADE-SR as our future work. An
obvious limitation of our current work is that we only con-
sider one occupant in the scene. In order to improve its gen-
erality, it deserves to consider multiple occupants. Future
directions also include assessing the influence of heatmap
resolutions under different task difficulties, utilizing spatial-
temporal features, learning intermediate information such
as pose and keypoint, learning to handle unseen image sam-
ples, and further experimenting SPADE-SR on large-scale
datasets.
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