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Abstract

In civilian video security monitoring, retrieving and
tracking a person of interest often rely on witness testimony
and their appearance description. Deployed systems rely on
a large amount of annotated training data and are expected
to show consistent performance in diverse areas and gen-
eralize well between diverse settings w.r.t. different view-
points, illumination, resolution, occlusions, and poses for
indoor and outdoor scenes. However, for such generaliza-
tion, the system would require a large amount of various an-
notated data for training and evaluation. The WACV 2023
Pedestrian Attribute Recognition and Attributed-based Per-
son Retrieval Challenge (UPAR-Challenge) aimed to spot-
light the problem of domain gaps in a real-world surveil-
lance context and highlight the challenges and limitations
of existing methods. The UPAR dataset, composed of 40 im-
portant binary attributes over 12 attribute categories across
four datasets, was extended with data captured from a low-
flying UAV from the P-DESTRE dataset. To this aim, 0.6M
additional annotations were manually labeled and vali-
dated. Each track evaluated the robustness of the competing
methods to domain shifts by training on limited data from a
specific domain and evaluating using data from unseen do-
mains. The challenge attracted 41 registered participants,
but only one team managed to outperform the baseline on
one track, emphasizing the task’s difficulty. This work de-
scribes the challenge design, the adopted dataset, obtained
results, as well as future directions on the topic.

1. Introduction

Person Attribute Recognition (PAR) and attribute-based
person retrieval in surveillance data are challenging tasks
on single domains due to limited image quality, strongly
localized attributes, and limited visibility due to varying
viewing angles or occlusions. PAR aims at recognizing per-
sons’ semantic attributes, such as gender, age, or informa-
tion about clothing. Attribute-based retrieval systems may
build on PAR methods and allow searching through an ex-
tensive database of person images for individuals match-
ing a specific set of semantic attributes. For deployment
and long-term use of such machine learning algorithms in
a surveillance context, the algorithms must be robust to do-
main gaps that occur when the environment changes.

The domain gap between five PAR datasets is illustrated
in Fig. 1 The Market1501 [38, 16] dataset has mostly im-
ages with low resolution. Also, many individuals are in-
teracting with objects, such as riding a bicycle or carry-
ing things. The images are closely cropped, sometimes too
close, such as in the rightmost image, which results in only
partly visible persons. The PA100K [18] dataset has images
with higher resolution. However, there are several cropping
errors where the legs, head, or both are missing. The images
in the P-DESTRE [10] dataset were captured using UAVs.
Thus, the images show steep camera angles in comparison
with datasets recorded by static cameras. Furthermore, this
dataset contains several cropping errors where only the head
and torso are visible. The PETA [2] dataset consists of low-
resolution images with a different cropping scheme than the
other datasets. Large amounts of images have an extensive

1166



Market1501

PA100K

P-DESTRE

PETA

RAP2

Figure 1: PAR datasets – Sample images from the five
datasets composing the UPAR-Challenge dataset. Each
dataset shows different characteristics and thus poses dif-
ferent challenges.

crop, causing images to contain multiple individuals. Be-
sides, lighting conditions vary significantly across images.
These datasets are mainly captured in an outdoor environ-
ment. The RAP2 [15] dataset, on the other hand, is cap-
tured indoors in a shopping mall. Due to this, most pic-
tures have better lighting. In general, the main differences
in the datasets come from different resolutions, camera an-
gles, and cropping.

The WACV 2023 Pedestrian Attribute Recognition
and Attributed-based Person Retrieval Challenge (UPAR-
Challenge)1 aims to demonstrate the problem of domain
gaps in a real-world surveillance context and highlight the
challenges and limitations of existing methods to provide
a direction for future research. The problem of domain
shifts is particularly present when only limited training
data is available and when the test data follows a differ-
ent inherent data or attribute distribution. To inspect the
consistency of performance across varied scenarios, the
UPAR Dataset [27], composed of four of the aforemen-
tioned datasets PA100K, PETA, RAP2, and Market1501, is
extended with the P-DESTRE dataset to increase diversity
further. To this aim, a total of 0.6M new binary annotations
are contributed to P-DESTRE.

The UPAR Challenge 2023 is split into two tracks asso-
ciated with semantic pedestrian attributes, such as gender or
clothing information: Person Attribute Recognition (PAR)

1https://chalearnlap.cvc.uab.cat/challenge/52/
description/

and attribute-based person retrieval. Both tracks are eval-
uated with public and private sets, with the aim of testing
the robustness of the competing methods to domain shifts
by training on limited data from a specific domain and eval-
uating using data from multiple unseen domains. The chal-
lenge attracted a total of 41 registered participants on its
different tracks. With a total of 94 submissions at the dif-
ferent challenge stages and tracks, the challenge highlighted
the difficulty of the task. Only one solution managed to out-
perform the challenge’s baseline [27] on track 1 as detailed
in Sec. 4.1.

The paper summarizes the preparation and results of the
UPAR-Challenge. In the following sections, we describe
the challenge setup (Sec. 3.3), challenge data preparation
(Sec. 3.1), evaluation methodology (Sec. 3.2), analysis of
submitted results (Sec. 4.2), and a brief discussion of in-
sights and future research directions (Sec. 4.3).

2. Related Work

Pedestrian Attribute Recognition. The first deep-
learning-based approaches to pedestrian attribute recogni-
tion assumed the task to be a multi-label classification
task, training models with cross-entropy loss. To coun-
terbalance biases in attribute distributions in the datasets
DeepMAR [11] gives higher weights to rare attributes
during training. Recently, approaches such as attention
mechanisms for focusing on the correct regions of an im-
age [18, 17, 13, 35, 6, 23], and using multi-scale fea-
tures [37, 23, 31, 34, 39] have achieved gains in perfor-
mance over earlier works. However, these approaches tend
to have highly complex architectures. Recent publications
have shown that it is possible to get state-of-the-art perfor-
mance using only a backbone model and simple tricks to
improve training [8, 27] or applying spatial and semantic
regularization [7].

The above mentioned approaches achieve strong perfor-
mance on single datasets [16, 18, 2, 11, 14] that usually
focus on only one scenario. The UPAR dataset [27] uni-
fies four different datasets on a common set of labeled at-
tributes and allows studying how well these models gen-
eralize over the domain gap that exists between different
scenarios. In this work, we contribute annotations for the
P-DESTRE dataset to UPAR in order to increase diversity
w.r.t. camera angles and image resolutions.

Attribute-based Person Retrieval. The first kind of ap-
proaches of solving attribute-based person retrieval is by
training a PAR model. Then, given an attribute description
as a query, the system retrieves images that most closely
match the given attribute vector, making the result explain-
able [32, 24, 12, 25, 29, 26, 28, 5]. The other approach is
to align attribute descriptions and image embeddings in a
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shared cross-modal feature space. This can be implemented
by, e.g., using high-dimensional hierarchical embeddings
and an additional matching network [3] or by matching per-
son attributes and images in a joint feature space [36, 1].

3. Challenge Design

The WACV 2023 Pedestrian Attribute Recognition and
Attribute-based Person Retrieval Challenge is split into two
tracks associated with semantic pedestrian attributes, such
as gender or clothing information: PAR and attribute-based
person retrieval. Both tracks were built on the same data
sources, but had different evaluation criteria. Three dif-
ferent dataset splits for both tracks use other training do-
mains. Each track evaluates how robust a given method
is to domain shifts by training on limited data from a spe-
cific domain and evaluating using data from several out-of-
distribution domains. Both tasks use the same image data
for training and evaluation. In detail, the tasks to solve in
the tracks are defined as follows:

• Track 1: Pedestrian Attribute Recognition: The
task in this track is to develop and train an attribute
classifier that accurately predicts persons’ semantic at-
tributes under domain shifts.

• Track 2: Attribute-based Person Retrieval:
Attribute-based person retrieval aims to find persons
in a vast gallery database that match a specific attribute
description. Approaches should take binary attribute
queries and gallery images as input and rank the
photos according to their similarity to the query.

Each track was composed of two phases, i.e., the devel-
opment and test phases. During the development phase, the
public training data was released, and participants were re-
quired to submit their predictions concerning a validation
set. During the subsequent test phase, participants needed
to submit their results for the test data, which was released
just a few days before the end of the challenge. Participants
who beat the baseline and are thus candidates for winning
the challenge were required to share their codes and trained
models after the end of the challenge so that the organizers
could reproduce the results submitted at the test phase in a
code verification stage. At the end of the challenge, top-
ranked methods that passed the code verification stage were
considered valid submissions and were applied to a private
test dataset for final ranking.

3.1. UPAR-Challenge Dataset

The challenge dataset2 used in the UPAR Challenge
at WACV’23 is an extension of the existing UPAR

2https://github.com/speckean/upar_challenge
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P-DESTRE

Figure 2: UPAR-Challenge Domains – Distribution of im-
age embeddings extracted using an ImageNet pre-trained
Inception model and projected into two-dimensional fea-
tures using linear discriminant analysis. Train and test set
embeddings from the same dataset overlap entirely. In con-
trast, the UPAR-Challenge dataset, as a combination of
multiple sub-datasets with disjunct data distributions, poses
a more realistic and challenging problem and requires mod-
els to generalize well across different domains.

dataset [27]3, which provides annotations for 40 binary at-
tributes over 12 categories from four datasets (detailed list
in Tab. 1). This dataset enables the investigation of attribute
recognition and attribute-based person retrieval methods’
generalization ability under different attribute distributions,
viewpoints, varying illumination, and low resolutions. The
public part of the challenge dataset consists of the harmo-
nization of three public datasets (PA100K [18] (outdoor),
PETA [2] (mixed), and Market1501-Attributes [16, 38]
(outdoor)). The private part of the challenge test dataset is
composed of RAP2 [14] (indoor) and P-DESTRE [10] (out-
door). The P-DESTRE dataset was recorded with drones
flying between 5.5 and 6.7 meters in height over differ-
ent scenes of the campuses of two universities in Portugal
and India. We asked 16 paid annotators to manually de-
fine the color of the upper-body and lower-body clothing for
eleven unique colors plus additional classes to indicate mul-
tiple colors or colors not included in the color list. Further-
more, annotations for the lower-body and upper-body cloth-
ing lengths were assigned in a further iteration. Thus, we
provide 0.6M manually labeled and validated new binary
annotations for 22,518 images for the P-DESTRE dataset.

As can be seen in Fig. 2, the distributions of the data
vary significantly compared to different sets of the same
dataset. For instance, for the Market1501-dataset the train
and test set embeddings from the same dataset overlap en-
tirely. In contrast, embeddings (produced by an Inception
model trained on ImageNet) of the RAP2 and P-DESTRE
show apparent disjunct data distributions, which poses a

3https://github.com/speckean/upar_dataset
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Category Age Gender Hair length UB clothing length UB clothing color LB clothing length LB clothing color LB clothing type Backpack Bag Glasses Hat

Attributes

Young Female Short Short Black Short Black Trousers&Shorts Backpack Bag Normal Hat
Adult Long Blue Blue Skirt&Dress Sun
Elderly Bald Brown Brown

Green Green
Grey Grey
Orange Orange
Pink Pink
Purple Purple
Red Red
White White
Yellow Yellow
Other Other

Table 1: UPAR Attributes – Attribute annotations included in the UPAR dataset.

Split ID Training Public Evaluation Private Evaluation

0 Market1501 PA100K, PETA RAP2, P-DESTRE
1 PA100K Market1501, PETA RAP2, P-DESTRE
2 PETA Market1501, PA100K RAP2, P-DESTRE

Table 2: UPAR-Challenge splits – The challenge uses a
Cross-validation (CV) protocol, i.e., there are three splits of
training and validation data. Only data from one domain
is used for training in each split, so that evaluation is per-
formed on unseen domains.

Split ID # Training images # Attributes with positive sample

0 10,000 35
1 79,001 40
2 8,668 39

Table 3: Number of training images – Number of training
images per split and the number of attributes that are used
for evaluation, i.e., attributes with at least one training sam-
ple. Validation and public testing for track 1 is done using
14,580 and 33,407 images, respectively.

Split ID # Val queries # Val gallery images # Test queries # Test gallery images

0 2,267 11,656 2,706 16,949
1 1,325 4,658 2,557 23,421
2 2,336 12,846 2,169 26,444

Table 4: UPAR-Challenge public evaluation splits – The
number of queries and gallery images for track 2.

more realistic and challenging problem and requires mod-
els to generalize well across the different domains. Follow-
ing [27], this challenge applies a cross-domain evaluation
scheme using three different splits to assess the generaliza-
tion performance of the submitted methods for the public
evaluation, as described in Tab. 2. Statistics for track 1 and
track 2 are provided in Tab. 3 and Tab. 4 respectively.

3.2. Evaluation Protocol

The challenge used a cross-validation evaluation proto-
col, i.e., there were three splits for training, validation, and

test data. As the task was to develop models that generalize
well to other domains, only data from one domain is used
for training in each split. Evaluation was performed on im-
age data originating from several domains. Since the mod-
els should be applicable to multiple unseen domains with-
out any changes, it was not allowed to use different mod-
els, hyper-parameters, or approaches for different sub-sets
of evaluation data within the same split. The training data
was identical for both tracks, and training splits are defined
as illustrated in Tab. 2.

Only images specified for the train split were allowed
for training. The use of any other data was strictly prohib-
ited and checked during code verification. Some attributes
did not have positive samples in the training data of a split.
Such attributes were ignored during the evaluation to re-
ceive meaningful results.

Since the challenge aimed to investigate methods that
generalize well on new and possibly unknown domains
without re-training, calibration, or domain adaptation, we
only provided little information about the private test set.
The final challenge winners were selected based on the
score achieved on the evaluation server and the performance
on the private test set.

Different evaluation metrics are used for the two tracks:

1. Harmonic mean from mA and instance-based F1

2. Harmonic mean from mAP and R-1

Since for rare attributes, approaches may achieve high
accuracy by consistently predicting the absence of an
attribute, the label-based mean accuracy (mA) and the
instance-based F1 score are reported. The difference be-
tween mA and instance-based F1 score is that the mA
calculation considers each attribute separately, while the
instance-based F1 score measures the quality of predictions
of all attributes with respect to the persons. First, the met-
rics were computed separately for each of the three splits
and then averaged across the splits.
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3.3. Baseline

We use the UPAR baseline proposed by
Specker et al. [27] as our challenge baseline since it
achieves state-of-the-art results for both challenge tasks.
The model follows a straightforward classification ar-
chitecture consisting of a ConvNeXt [20] backbone and
a fully-connected classification head. Similar to related
works, PAR is considered a multi-label classification
problem with binary attributes. Therefore, the baseline
includes a Sigmoid activation layer as the final layer and is
trained with a weighted cross-entropy loss function [11].
The learning rate is initialized with 1e − 4, and a plateau
scheduler lowers it by a factor of 0.1 once the validation
loss has not decreased for more than four epochs. Weight
decay was set to 5e−4, and the AdamW optimizer [21] was
applied since it improves generalization ability compared
to the vanilla Adam [9]. The baseline model was primarily
developed with the focus on cross-domain attribute-based
retrieval. So, multiple tricks and modules are applied
to avoid overfitting and improve generalization. For
example, exponential moving averages of model weights,
suitable batch sizes, label smoothing, dropout, and data
augmentation techniques are leveraged.

The baseline is implemented and trained using PyTorch
1.11 and CUDA 11.3 on NVIDIA GeForce RTX 3090
GPUs. To speed up the training processes, adaptive mixed
precision is applied and trainings are aborted as soon as the
validation accuracy stops to improve.

4. Challenge Results

The challenge ran from 15 September 2022 to 31 Octo-
ber 2022 through Codalab4[22], an open-source framework
for running competitions. Track 1 of the challenge attracted
a total of 30 registered participants. During the development
phase, two active teams made a total of 67 submissions.
We assume most teams chose to use the training data for
cross-validation offline rather than the public development
leaderboard. Afterward, during the test phase, six active
teams made a total of 9 submissions. The fewer submis-
sions in the test phase come from the maximum number of
submissions per participant in this final phase. It was set
to 3 to prevent participants from improving their results by
trial and error. Furthermore, since several teams could not
surpass the baseline in the development phase, we believe
those teams needed more time to improve their submission
for the test phase. Since track 2 did not attract much atten-
tion and no approach was able to surpass the baseline, the
results of this track are shortly reported and discussed.

Rank Method Challenge Avg. mA F1

1 melaeric 76.8 75.8±1.6 77.9±2.5
- UPAR Baseline [27] 75.3 71.5±1.9 79.6±3.0
2 Jai C21 72.6 70.2±2.9 75.2±2.7
3 harshtripathi6 72.1 66.5±1.8 78.8±1.9
4 jzsherlock 71.3 67.6±1.5 75.5±3.3
5 ko4ro 69.3 66.6±2.9 72.3±6.1
- Strong Baseline [8] 69.3 66.2±3.0 72.6±5.3
6 neptune 65.2 62.8±2.9 67.8±3.3

Table 5: Codalab Leaderboard for track 1 on the public
test set – Best scores are highlighted in bold. Only one team
managed to surpass the challenge baseline [27]. The Strong
Baseline [8] is included as a supplementary baseline and not
ranked.

Rank Method Challenge Avg. mA F1

1 melaeric 78.0 75.4±3.7 80.9±2.7
- UPAR Baseline [27] 76.0 71.0±2.8 81.7±2.4

Table 6: Leaderboard for track 1 on the private test set
– Best scores are highlighted in bold. Similar to the public
leaderboard, melaeric outperforms the baseline w.r.t. mA
and the challenge average score.

4.1. Leaderboard

Both tracks’ public leaderboards at the test phase are
shown in Tab. 5 and Tab. 7. We include the Strong Base-
line [8] and the UPAR Challenge baseline in the rank-
ing for orientation in track 1. All teams except one are
able to surpass the Strong Baseline, which was not spe-
cially designed for cross-domain PAR. Only one team,
melaeric [30], achieved better mA than the UPAR baseline,
while none achieved a greater F1 score. This team achieved
the best mA score by a large margin of 4.3 points against
the UPAR Challenge baseline. In contrast, their results in
terms of F1 score were worst than the UPAR baseline by 1.7
points. This team leads on the overall ranking with a signif-
icant margin of 1.5 points in challenge average against the
UPAR Challenge baseline and 4.2 points against the next
participant. After code verification, the top-1 solution is
evaluated against the private test set. As shown in Tab. 6, the
winning solution surpasses the baseline again with a large
margin for the challenge average. While the standard devia-
tion of team melaeric’s method grows larger, the mA results
outperform the baseline by 4.4 points. Again, the baseline
achieves a higher F1 by 0.8 points.

Regarding track 2, the baseline performs significantly
better than melaeric. A possible explanation is the focus of
their solution to improving mA at the cost of the F1-score,
which, as an instance-based metric, is a more reliable pre-
dictor of retrieval performance.

4https://codalab.lisn.upsaclay.fr/
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Rank Method Challenge Avg. mAP R-1

- UPAR Baseline [27] 14.0 12.4 16.1
1 melaeric 10.8 9.4 12.6

Table 7: Codalab Leaderboard for track 2 on the pub-
lic test set – Best scores are highlighted in bold. No ap-
proaches managed to outperform the baseline.

Next, we briefly introduce the winning solution that
passed the code verification stage based on the information
provided by the authors.

4.2. Top-1 Team melaeric

The winning team melaeric proposed an extensive net-
work architecture illustrated in Fig. 3. While the UPAR
Challenge is based on a single-branched CNN baseline,
this method bases on a more complex three-branched ar-
chitecture with various and diverse elements. They used
a Swin-Base [19] as their Transformer [4] backbone. The
extracted features are then forwarded to an Attribute and
Contextual Feature Projection module, where spatial con-
textual and attribute-specific features are learned individu-
ally. To this aim, this module is composed of two paral-
lel parts: a spatial projection and an attribute projection.
As shown in Fig. 4, different receptive fields with kernel
sizes of 3×3, 5×5, and 7×7 are adopted in three parallel
branches and subsequently concatenated to capture spatial
contextual information. The attribute projection part builds
attribute features by matrix multiplication between modu-
lated features and attention masks. These attribute and con-
textual features are then concatenated in their Relation Ex-
ploration Module, which consists of a Graph Convolutional
Network [33] and a Transformer to capture relationships
among spatial features and attribute-specific features. Their
training is formulated as a multi-label classification prob-
lem and adopts binary cross-entropy loss to supervise their
training at three places. Considering the distribution im-
balance between attributes, they introduced a penalty term
based on the positive sample ratio of each attribute in the
training set. In terms of data augmentation, random hori-
zontal flipping, cropping, scaling, translation, erasing [40],
and gaussian blur are applied to the images during training
to reduce overfitting. This approach is similar but less ex-
tensive than the augmentation strategy used in the UPAR
Challenge baseline.

Finally, a noticeable difference to the UPAR Challenge
baseline is that this model dealt with image resized to 384×
384 Pixels instead of 192× 256 pixels.

4.3. Results & Findings

In this section, we compare the UPAR baseline [27] to
the top-1 approach for track 1 of the challenge and discuss

findings concerning PAR across multiple image domains
with different characteristics and attribute distributions.

Training data. First, we investigate the influence of the
training data on the generalization performance. Most ap-
proaches on the leaderboard, including the baseline and the
winning approach, achieve the best results for split 1 due
to the largest amount of training data. This finding is also
valid for the private test set, as shown in Tab. 8. Since the
split contains about eight times the number of training im-
ages than the other ones, more diverse and realistic scenar-
ios with respect to, e.g., attribute distributions are reflected.
In addition, more positive samples for the single attributes
allow more robust recognition of rarely occurring attributes,
such as seldom colors.

Evaluation data. Next, we examine the results of the dif-
ferent evaluation datasets. Regarding mA, the best scores
are achieved on the P-DESTRE dataset. The reason is the
high resolution of the images. Even small characteristics,
such as glasses, are clearly visible and can thus be bet-
ter recognized by the models. Worst mA results were ob-
served for the RAP2 dataset regardless of the training data
used. Deeper investigations indicate that especially color
attributes generalize poorly on the RAP2 dataset and that
imbalanced attribute distribution severely impacts the re-
sults. Concerning the instance-based F1, the highest scores
are achieved for RAP2, P-DESTRE, and Market1501, while
especially on PETA the F1 is significantly lower.

Label-based vs. instance-based metrics. The results in
Tab. 8 clearly show that melaeric’s approach leads to con-
sistently higher label-based mA scores while the baseline is
advantageous if the focus is on the instance-based F1. It is
expected that approaches are biased toward either label- or
instance-based metrics dependent on the method’s design.
Melaeric applies Transformers and an Attention module to
improve the localization and recognition of fine-grained at-
tributes. As a result, melaeric’s method is better suited
to recognize, e.g., the glasses attributes compared to the
UPAR baseline. In contrast, the baseline was developed
with the focus on attribute-based person retrieval and, there-
fore, instance-based metrics. To achieve promising retrieval
performance, it is more important to get consistent attribute
predictions with respect to the entire appearance of per-
sons rather than recognizing every occurrence of individ-
ual, highly localized attributes. This leads to the fact that
the UPAR baseline clearly outperforms the track 1 winner
on track 2, i.e., the retrieval task since instance-based scores
are better.

Image domain shifts. Fig. 2 visualizes the different distri-
butions of the sub-dataset images. It can be seen that e.g.,
the RAP2 and P-DESTRE data can be clearly distinguished
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Figure 3: Overview of the winning solution of team melaeric – Their overall architecture is composed of (i) Feature
Extraction, (ii) Attribute and Contextual Feature Projection (ACFP) and (iii) Relation Exploration Module (REM).

Approach Split Average Market1501 PA100K PETA RAP2 P-DESTRE
mA F1 mA F1 mA F1 mA F1 mA F1 mA F1

melaeric

0 72.6 75.8 – – 76.8 77.9 70.7 71.0 69.0 77.8 73.7 76.6
1 79.0 81.9 76.6 83.1 – – 78.7 77.3 76.6 83.1 84.1 84.1
2 75.3 80.5 73.4 79.1 78.6 79.0 – – 72.3 83.4 76.7 80.3

Avg 75.6 79.1 75.0 81.1 77.7 78.5 74.7 74.2 72.6 81.4 78.2 80.3

UPAR Baseline [27]

0 69.2 77.2 – – 73.0 78.7 67.1 72.4 66.2 78.7 70.6 78.9
1 74.6 83.7 74.9 85.9 – – 73.4 79.5 72.0 84.1 78.0 85.2
2 70.0 81.1 69.8 81.2 70.9 79.6 – – 68.6 83.5 70.8 80.2

Avg 71.3 80.4 72.4 83.6 72.0 79.2 70.3 76.0 68.9 82.1 73.1 81.4

Table 8: Detailed results – Comparison of the baseline with the winning approach. Best results are highlighted in bold.
While melaeric’s method achieves better mA values, the baseline achieves higher F1 scores. Regarding splits, best scores are
achieved when training on split 1, which has the most training data.

based on general image features. However, the challenge re-
sults indicate that these distribution shifts regarding image
data only have a minor influence on the generalization per-
formance. For instance, training the winning approach on
split 1 and comparing the results on PETA and P-DESTRE,
P-DESTRE scores with respect to both metrics are much
higher, although the more significant domain gap concern-
ing image data. Being robust against characteristics such
as varying image resolutions or attribute distribution seems
much more critical for good generalization performance.

Attributes. Last, we aim to gather insights about attributes
that generalize well and attributes that need further research
in order to achieve the performance necessary for practi-
cal application in a real-world scenario. For this, we pro-
vide mA scores for selected attributes in Fig. 5. In gen-
eral, gender, hair length, and clothing lengths generalize

well to unseen domains. Regardless of the approach used,
high mA scores are achieved across all evaluation splits.
These attributes are often clearly identifiable and have suf-
ficient training examples on all splits. In addition, we have
observed that colors that appear regularly (e.g., black or
white) or eye-catching colors (e.g., red or yellow upper-
body clothing) were predominantly correctly recognized.
As expected, problems occur for strongly imbalanced at-
tributes, i.e., attributes with only a few training samples, at-
tributes with greatly varying attribute distributions, or small
and highly-localized attributes such as glasses. So, at-
tributes that are also hard to recognize in a specialization
setting. This substantiates the finding from the previous
paragraph. Shifted attribute distributions seem to be more
important than differences concerning image data shifts.
Moreover, the results indicate that the difference between
the baseline and melaeric’s w.r.t. mA arises from the per-
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Figure 4: Spatial Projection from melaeric – Three dif-
ferent sizes of convolution kernels, i.e., 3 × 3, 5 × 5 and
7 × 7 are used to obtain the spatial features of different re-
ceptive fields. Each convolutional layer is followed by a
Batch Normalization (BN) layer and the ReLU activation.
The features from three branches are concatenated together
to represent image spatial features.

formance for hard-to-recognize attributes. While the UPAR
baseline even outperforms the winning approach regarding
well-recognized attributes (gender mA: 89.3% vs. 86.8%),
melaeric achieves significantly better performance on the
complex cases. For instance, the mA for regular glasses is
about 7.5% points higher. Similar results are obtained for
attributes such as rare lower-body colors (purple, yellow,
green, orange) or age, which suffers from imbalanced distri-
butions. The focus on person retrieval of the UPAR baseline
leads to the fact that the single attribute recall is low com-
pared to the precision. Since melaeric uses higher spatial
resolution, spatial projection, and attention, they achieve
higher recall scores and therefore mA values.

5. Conclusions

The UPAR Challenge attracted over 42 participants, who
made 80 submissions during validation and 14 submissions
for the test set. Most of the participants could not manage
to beat the proposed baseline. Only one participant could
surpass the baseline by quite a large margin. Especially
for attributes with limited training samples, the participant
achieved more robust results than the baseline in terms of
resistance to domain gaps. The challenge and these results
highlight the difficulty of Pedestrian Attribute Recognition
and Attribute-based Person Retrieval in real-world surveil-
lance scenarios. The evaluation protocols for both tasks
were challenging and designed to reflect real-world chal-
lenges. While 0.6M annotations for the P-DESTRE dataset,
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Figure 5: Cross-domain mA scores – Comparison of the
baseline and the winning approach w.r.t. mA of selected at-
tributes. Values are average scores across all evaluation sub-
sets and splits. The figure indicates that melaeric’s approach
especially outperforms the baseline concerning hard-to-
recognize attributes. Regarding easy attributes, both meth-
dos lead to similar results.

with imagery taken from drones, especially contributed to
the UPAR dataset for this challenge, the dataset itself did
not influence the final results much. Interestingly, while im-
proving the mA metric significantly for the PAR task using
a complex combination of Transformer and GCN, the win-
ner solution could not improve against the baseline w.r.t.
to the instance-based F1 or in the retrieval task. Analy-
sis of the results reports that although there are more sig-
nificant domain gaps concerning image data between some
datasets, the performance against varying image resolutions
and attribute distribution seems much more critical for good
generalization performance. Following Specker et al. [27]
and the results of this challenge, we emphasize that future
research should focus more closely on realistic application
scenarios instead of smaller individual datasets.
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