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Abstract

Biodiversity loss and ecosystem degradation are global
challenges demanding creative and scalable solutions. Re-
cent increases in data collection coupled with machine
learning have the potential to expand landscape monitoring
capabilities. We present a computer vision solution to the
problem of identifying invasive species. The Australian Tree
Fern (Cyathea cooperi) is a fast growing species that is dis-
placing slower growing native plants across the Hawaiian
islands. The Nature Conservancy organization has part-
nered with Amazon Web Services to develop and test an
automated tree fern detection and mapping solution based
on imagery collected from fixed wing aircraft. We utilize
deep learning to identify tree ferns and map their loca-
tions. Distinguishing between invasive and native tree ferns
in aerial images is challenging for human experts. We ex-
plore techniques such as image embeddings and principal
component analysis to assist in the classification. Creating
quality training datasets is critical for developing ML solu-
tions. We describe how semi-automated labeling tools can
expedite this process. These steps are integrated into an au-
tomated cloud native inference pipeline that reduces local-

ization time from weeks to minutes. We further investigate
issues encountered when the pipeline is utilized on novel
images and a decline in performance relative to the train-
ing data is observed. We trace the origin of the problem to
a subset of images originating from steep mountain slopes
and riverbanks which generate blurring and streaking pat-
terns mistakenly labeled as tree ferns. We propose a pre-
processing step based on Haralick texture features which
detects and flags images different from the training set. Ex-
perimental results show that the proposed method performs
well and can potentially enhance the model performance by
relabeling and retraining the model iteratively.

1. Introduction
In recent decades the rate of environmental degradation

and habitat loss has accelerated [19]. Traditional landscape
monitoring procedures and methodologies require in many
cases substantial resource and time investments, limiting
ecological forecasting at short time scales [4]. The advent
of satellite and drone technologies has expanded ecological
data collection capacity [12], while ecological data analysis
at scale is still an area of active research and development
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[5]. High-throughput machine learning (ML) solutions are
emerging as one of technologies with the biggest impact on
ecological monitoring and forecasting [14].

Hawaiian forests are essential as a source of clean wa-
ter and for preservation of traditional cultural practices
[11], however they face critical threats from deforestation,
species extinction, and displacement of native species by in-
vasive plants [21]. The Nature Conservancy (TNC) is help-
ing to address the invasive plant problem through "Citizen
Science" initiatives [1] such as the Hawaii Challenge [6],
which allows anyone with a computer and Internet access
to participate in tagging invasive weeds across the land-
scape. AWS has partnered with TNC to augment these ef-
forts by contributing expertise in computer vision and cloud
resources.

Among the most aggressive species invading the Hawai-
ian forests is the Australian Tree Fern (ATF), originally in-
troduced as an ornamental but now rapidly spreading across
several islands by producing numerous of spores that are
easily transported by the wind. The ATF is fast growing
and outcompetes other plants, smothering the canopy and
affecting several native species, resulting in loss of biologi-
cal diversity.

Prior to the deployment of the automated pipeline, de-
tection of the tree ferns was accomplished by capturing im-
ages from fixed wing aircraft surveying the forest canopy.
The imagery is subsequently manually inspected by human
labelers, a process that takes significant effort and time, po-
tentially delaying the mitigation efforts by ground crews by
weeks or longer. One of the advantages of utilizing an CV
algorithm is the potential time savings as the inference time
requires only minutes to hours.

The goal of the AWS-TNC partnership was to evaluate
the potential of computer vision (CV) algorithms to reliably
detect and potentially classify tree ferns by species. A per-
formant CV can then form the basis of a fully automated
AWS cloud native solution that enhances the capacity of
TNC to efficiently and in a timely manner detect invasive
tree ferns and direct resources to highly affected areas.

The availability of labeled data is critical for the per-
formance of any CV algorithm. However, in many cases
such data is either not available, of insufficient volume, or
the presence of labeling errors hinders the performance of
the algorithm. We encounter and address these issues in
the present project, leveraging AWS tools such as Amazon
SageMaker [13]. At the inception of the project annota-
tion data on the tree fern species (ATF versus native) was
not available and furthermore it was questionable whether
a human expert could reliably distinguish between tree fern
species based solely on overhead images. We investigate the
classification problem by utilizing a hybrid semi-supervised
approach based on image embeddings and Principal Com-
ponent Analysis (PCA).

After model deployment, it is often necessary to monitor
both the distribution of the input data as well as the infer-
ence performance. A common issue encountered in many
practical applications has been described as ’data drift’, or
differences emerging between the distribution of the train-
ing data and the data utilized for inference. When TNC con-
ducts surveys in new forests and/or new islands, it can be
expected that there will be differences in the season, time of
day, cloud cover, presence of coastline, rivers or lakes, and
the density and image texture of the forest canopy. We mon-
itored inference performance on new images, detecting the
emergence of false positives in some instances. We propose
an automated monitoring and mitigation approach based on
examining the Haralick texture characteristics [10] of the
inference images.

The paper is organized as follows. In Section 2 we
present the data processing and analysis tools utilized and
their rationale. In Section 3 we present and discuss the re-
sults, and in Section 4 we summarize the conclusions.

2. Data processing and analysis

Aerial footage is acquired by TNC contractors (Resource
Mapping Hawaii) by flying fixed winged aircraft above af-
fected areas within the Hawaiian Islands. Heavy and per-
sistent cloud cover prevents use of satellite imagery. The
data available to TNC and AWS consists of raw images and
metadata allowing the geographical localization of the in-
ferred tree ferns.

2.1. Image and geographical coordinates

Images are available in the JP2 format in the range of
100K by 100K pixels. In addition to the raw footage,
the metadata associated with each JP2 also includes meta-
information that allows each pixel to be associated to spe-
cific Universal Transverse Mercator (UTM) geospatial co-
ordinates. The UTM coordinate system divides the world
into north-south zones, each 6 degrees of longitude wide.
The first UTM coordinate (northing) refers to the distance
between a geographical position and the equator, measured
with the north as the positive direction. The second coor-
dinated (easting) measures the distance, in meters, towards
east, starting from a central meridian that is uniquely as-
signed for each zone. By convention the central meridian in
each region has a value of 500,000, and a meter east of the
region central meridian has therefore the value of 500,001.
To convert between pixel coordinates and UTM coordinates
we utilize the affine transform as outlined in Equation 1 be-
low, where x’, y’ are UTM coordinates and x, y are pixel
coordinates. The parameters a, b, c, d, e, f of the affine
transform are provided as part of the JP2 file metadata. We
implemented these image operations utilizing the affine and
rasterio Python packages [18]
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For the purposes of labeling, training and inference the
raw JP2 files are divided into non-overlapping 512 by 512
pixels jpg files. The extraction of smaller subimages from
the original JP2 necessitates the creation of an individual
affine transform directly from each individual extracted jpg
file. These operations were performed utilizing the rasterio
and affine Python packages and facilitated the reporting of
the position of inferred tree ferns in UTM coordinates.

2.2. Data labeling

Visual identification of tree ferns in the aerial images is
complicated by several factors. Most of the information is
aggregated in the green channel and there is a high density
of foliage with frequent partial occlusion of tree ferns by
both nearby tree ferns and other vegetation, as illustrated in
Figure 1. The information of interest to TNC is the relative
density of tree ferns per acre and therefore it is important
to count each individual tree fern even in the presence of
occlusion. Given these goals and constraints, we chose to
utilize an object detection framework.

To label the data, we set up an Amazon SageMaker
GroundTruth [16] job. Each bounding box was intended to
be centered in the center of the tree fern, and to cover most
of the tree fern branches, while at the same time attempting
to minimize the inclusion of other vegetation. The labeling
was performed by the authors following consultation with
TNC domain experts; an example is provided in Figure 1.
The initial labeled dataset included 500 images, each typ-
ically containing several tree ferns. In this initial labeled
set we did not distinguish between native and invasive tree
ferns.

2.3. Model training

The labeled data was utilized to train an object detection
model by leveraging the Amazon SageMaker Object Detec-
tion algorithm [16]. We utilized the Single Shot Multibox
Detector (SSD) framework and base network ‘vgg-16’ [17].
In SageMaker this comes pre-trained on millions of images
and thousands of classes from the ImageNet dataset [3]. Af-
ter training the first iteration of the model, we utilized the
predictions from this model to expand the training set. All
predicted tree ferns with confidence greater than 0.3 were
aggregated into a new set of 3888 images, of which 3142
(80%) were used for training and the rest for validation. For
both the first and second iteration of the model the algorithm
reports mean absolute precision (mAP) [20]. This measure
is dependent on the overlap threshold and is related to the
area under the precision-recall curve.

Figure 1. Example of image with labeled (red) and predicted (pink)
tree ferns. Australian tree ferns have a characteristic radial shape
when viewed from above.

2.4. Model performance evaluation

The utilization of predictions from a first version of the
model as training data for a second version model greatly
expands the size of the training data without the need for
additional manual labeling. However, performance metrics
are difficult to interpret. It is conceivable that if the first
model produces numerous false positives, which are then
utilized as training data by the second model, spurious re-
sults could be generated even though the mAP performance
metric appears high. To preclude this possibility, we set up
a second SageMaker GroundTruth job, which examined the
prediction results of 300 images. Here we examined the im-
ages with the predicted tree fern bounding boxes overlayed
as in Figure 1, and we asked the labeler to decide whether
the number of tree ferns detected was correct, an undercount
or an overcount. This procedure was intended as an inde-
pendent and unbiased check on the final model prediction.

2.5. Classification of tree fern species

The object detection algorithm aims to identify all tree
ferns within an image, regardless of whether they are na-
tives or invasive. While the invasive tree ferns can have a
stereotypical appearance, there are several native tree fern
species with subtle differences in appearance. Distinguish-
ing between the tree fern species and obtaining a labeled
set of moderate size was considered difficult and time-
consuming by TNC.

To determine whether it is possible to distinguish be-
tween ATF and native tree ferns without the substantial ef-
fort of labeling a large set of images, we implemented an
unsupervised image analysis procedure. For each predicted
tree fern, we extracted the region inside the binding box
and saved it as a separate image. Next, these images were
embedded in a high dimensional vector space, generating a
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2048 long vector for each input image. These vectors were
analyzed by utilizing Principal Component Analysis (PCA).
We retained for further analysis the top three components,
which together accounted for more than 85% of the variance
in the vector data.

For each of the top three components, we extracted the
associated images with the highest and lowest scores along
the component. These images were visually inspected by
the authors and TNC domain experts, with the goal of
identifying whether the highest/lowest scores are associated
with native/invasive tree ferns. We further quantified the
classification power of each principal component by man-
ually labeling a small set of 100 tree fern images as either
invasive or native and computing metrics such as area un-
der the precision-recall curve for each of the top three PCA
components.

2.6. Creation of inference pipeline

The overall goal of the TNC-AWS partnership is the cre-
ation of an automated pipeline that takes as input the JP2
files and produces as output UTM coordinates of the pre-
dicted tree ferns. There are three main tasks. The first is the
ingestion of the large JP2 file and its division into smaller
512 by 512 jpg files, each of these with an associated affine
transform that can generate UTM coordinates from the pixel
coordinates. The second task is the actual inference and de-
tection of potential tree ferns and their locations. The final
task assembles the inference results into a single csv file
which is delivered to TNC. An outline of the pipeline is
presented in Figure 2.

Upon a user uploading a JP2 image to a specified S3 lo-
cation, an automated triggering is activated which starts the
AWS StepFunctions [7] workflow. As the JP2 image can
potentially be very large (100k by 100k pixels) and its con-
version can be time consuming; therefore, it was decided
that AWS LambdaFunctions [7] time and storage limita-
tions preclude its usage for image conversion and instead
this functionality is performed by StepFunctions.

For the inference procedure we utilized SageMaker
BatchTransform [16], which allows the allocation of com-
puting resources on an as-needed basis and importantly re-
duces costs because EC2 instances are only utilized and
charges incurred only during the inference process.

The report generation Lambda function is triggered upon
completion of the BatchTransform job. For each jpg image
the output consists of a json file which preserves the origi-
nal filename – for example img_a_b_c_d_e_f.jpg.json.out.
The affine transform associate with each jpg inference is
constructed by parsing the filename, and tree fern predic-
tion bounding box UTM coordinates are compiled into a
csv report. Upon completion SNS notifications are sent to
stakeholders. The stakeholders can upload the csv report
into their Geographic Information System and visualize the

predicted tree fern locations and densities on their map tiles.
The orchestration of the pipeline was implemented us-

ing StepFunctions. As is the case for the inference, this
choice automates many of the aspects of provisioning and
releasing computing resources on an as-needed basis. Addi-
tionally, the pipeline architecture can be visually inspected
which enhances dissemination to the customer. Finally, as
updated models potentially become available in the future,
they can be swapped in with little or no disruption to the
workflow.

3. Results and discussion
3.1. Model training and validation metrics

The first model training iteration utilized a set of 500 la-
beled images, of which 400 were in the train set and 100 in
the validation set. This model only achieved a mAP score
of 0.49. We next used this initial model to produce predic-
tions on a larger set of 3888 jpg images extracted from the
available JP2 data. Using this larger image set for training
achieved a mAP score of 0.87. This marked improvement
illustrates the value of automated labeling and model itera-
tion.

A set of 300 images were randomly selected for an ad-
ditional round of validation. As outlined in Section 2, we
set up a GroundTruth image classification labeling work-
flow. The labeler examined the images and their pre-
dicted tree ferns and decided whether the algorithm cor-
rectly counted the number of tree ferns, or whether there
were over/undercounts. This procedure revealed that when
utilizing a threshold of 0.3 for detection confidence, 84%
of the images were deemed by the labeler to have the cor-
rect number of predicted tree ferns, with 6.3% being over-
counts and 9.7% being undercounts. In most cases , the
over/undercounting was off by only one or two tree ferns
out of 5-6 present in an image and is not expected to signif-
icantly affect the overall estimation of tree fern density per
acre.

These results complement and confirm that the relatively
high mAP score of 0.87 achieved by the second model it-
eration is not a spurious or biased result. Based on these
metrics, taken together with the positive feedback received
from TNC regarding model performance, we conclude that
that CV algorithm can quantify tree fern density from aerial
imagery without major errors or biases.

3.2. Tree fern classification

To distinguish between invasive and native tree fern
species, we implemented the unsupervised procedure out-
lined in Section 2.5. This procedure was tested against a
manually labeled set of 100 images. When the PC scores
were used as inputs to a binary classifier, we found that
PC2 was the most discriminative, followed by PC3, with
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Figure 2. High level architecture of the labeling and training workflow. Bottom: refinement of model utilizing Amazon SageMaker Ground
Truth. Middle: inference pipeline upon object upload, processing within the AWS cloud, and success notification.

Figure 3. Performance of top 3 PCs as binary classifier inputs. AP:
average precision.

PC1 displaying only modest performance in distinguishing
between native and invasive tree ferns (Figure 3).

3.3. Inference performance

When the inference pipeline was used in batch mode on
a source image of 10K by 10K pixels, and allocating an
m4.large instance to the SageMaker BatchTransform, the
whole inference workflow executed within 25 minutes. Of
these, 10 minutes was taken by the BatchTransform and the
rest by Step and Lambda functions execution time. TNC
expects sets of up to 24 JP2 images at one time, about twice
a year. By adjusting the size and number of instances to
be used by the BatchTransform, the inference pipeline can
complete the inference in a time that we estimate to be be-
tween 30 minutes to 2 hours.

3.4. Evaluation on novel images

The model was built utilizing training data which was
collected in 2017 from the Wainiha Valley on the island of
Kaua’i. TNC subsequently utilized the algorithm on im-
ages collected at later times from additional locations within
the Hawaiian archipelago. In the course of evaluating the
inference results, we detected spatially clustered patterns
of false positives, which upon closer inspection turned out
to be originating from very steep slopes and from river-
banks. Visual examination revealed that the images con-
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Figure 4. Example of streaked and blurred image collected from
steep mountain slope, together with false positive tree ferns (red
dots).

tained streaking and blurring patterns (Figure 4) for which,
at moderate thresholds (0.3), the object detection algorithm
incorrectly identified the presence of tree ferns. To evalu-
ate whether the inference pipeline could automatically de-
tect blurred/streaked images without the need for manual in-
spection, we selected 100 images from the blurred/streaked
regions and a similar number from the original training
dataset. For both image sets we computed the 13 Har-
alick texture features [10]. These features are based on
second-order statistics calculated from the Gray Level Co-
occurrence Matrix (GLCM). First, the image is converted
to grayscale, and subsequently the gray values are digi-
tized into N distinct values. Computing the Haralick fea-
tures consists of counting the co-occurences of gray levels
in neighboring pixels and results in an N by N square matrix.

While in principle is possible to associate individual Har-
alick features with specific types of image alterations such
as streaking, at present we do not pursue this and we utilize
the features simply as means to detect images that are out-
liers in reference to the training set. To compute the features
we utilized the mahotas Python package [2]; each feature
value was averaged over the 4 directions. The results of the
comparison are displayed in Figure 5.

4. Conclusions and future directions

4.1. Benefits to TNC

The major benefits to TNC from adopting the inference
pipeline proposed here are twofold. First, there is the pos-
sibility to almost completely eliminate manual labeling ef-
forts because the performance of the model is comparable
or better to that of the human labelers, as determined by

TNC. However, we do expect a small amount of manual
effort in the future in case we observe model drift and the
need for additional labeling and model retraining. Second,
there are substantial time savings. Currently manual label-
ing for a dozen large JP2 files take several weeks to com-
plete, whereas the inference pipeline is expected to take in
the order of hours, depending on the number and size of in-
ference instances allocated. A faster turnaround time would
impact the capacity of TNC to plan routes for the crews
responsible for treating the invasive tree ferns in a timely
manner, and potentially find appropriate treatment windows
considering the seasonality and weather patterns on the is-
lands.

4.2. Potential model enhancements

At the present time the pipeline includes an object de-
tection model that does not distinguish between natives and
invasive tree ferns. This is also the case for the manual la-
beling efforts. Whether based on human labeling or model
inference, TNC uses the predicted position of the tree ferns
to direct resources based on tree fern density per acre. Upon
arrival, ground crews determine whether the tree fern clus-
ters are invasive and require treatment. The results from
the PCA procedure are very encouraging and we have plans
for further testing to quantify reliability. In the near future
TNC still intends to direct ground crews to examine and po-
tentially treat all regions with high tree fern density.

There are two possibilities for integrating the tree fern
classification into the inference workflow. The first is to
train a linear classifier based on the values of the PC1 and
PC2, which as we demonstrated in Section 3 have predicted
value. In this case, the architecture of the workflow would
be altered as follows. After the SageMaker BatchTransform
completes, bounding boxes for predicted tree ferns are ex-
tracted and embedded into a vector space [9], followed by
a PCA SageMakerBatchTransform. The resulting PC1 and
PC2 values are in turn fed into a LinearClassifier Batch-
Transform, resulting in a probability, for each predicted tree
fern, of being native or invasive. The main advantage of this
approach is that the requirements for manual labeling are
low.

The second approach would require more labeling effort,
but it would have the benefit of leaving the current inference
pipeline in place. The object detection model would simply
be expanded to include two classes, for native and invasive
tree ferns respectively. Being based on a deep neural net
architecture, this solution likely requires more labeled data.
To acquire this data, TNC could leverage services such as
AmazonMechanicalTurk [15]. The second possibility is to
create a labeling pipeline utilizing AugmentedAI [8]. We
are currently evaluating these options.

A second enhancement to the model regards increasing
the robustness in the face of likely changes to the image
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Figure 5. Comparison of Haralick features computed from images from the training set (left) compared to features computed from the
streaked/blurred images in the inference set (right).

characteristics in future aerial data collection. The streak-
ing and blurring observed on steep slopes is just one exam-
ple of surprising changes to imagery collected; additional
potential alteration could be generated from changes in the
altitude of the aircraft, or changes in season or time of day
of image collection that affect the coloring and saturation
of the forest canopy images. To prevent performance de-
creases stemming from these issues, we are considering
three complementary strategies.

The first and most readily available pipeline alteration is
simply to examine the values of the Haralick textural fea-
ture for each new inference image and flag as outliers the
images sufficiently distinct from the training set. Subse-
quently, the end user can examine the geographical distri-
bution of flagged images and visually examine the imagery
collected from the affected areas. The second strategy is to
utilize image augmentation and to artifically add alterations
to the training set, such as changes in luminance, changes in
viewing angle and the introduction of some blurring. Next,
the model could be retrained using the augmented dataset
and performance re-evaluated. Third and most laborious
process would involve additional labeling and subsequent
model retraining.

One potential strategy to reduce the labeling load is to

focus the effort in specific regions rich in ’novel’ images
as detected by examining the Haralick features through an
outlier detection algorithm. As illustrated in Figure 5, some
textural features are highly distinct in the novel versus train-
ing dataset images. In this scenario, the end user would
pay particular attention to the emergence of spatially clus-
tered patterns of ’novel’ images. If the potential tree fern
detections flagged as questionable because they originate
from novel images are relatively uniformly distributed over
the entire area surveyed, then this is likely a typical false-
positive issue which might require a simple revision upward
of the detection threshold. If, on the other hand, the spatial
patterns of questionable predictions are clustered as specific
locations, then a more careful visual inspection of the af-
fected images is warranted. In these areas the false pos-
itives will be corrected and the false negatives missed by
the algorithm correctly labeled. We expect that this proce-
dure would greatly reduce the load of labeling new imagery
data, as it would not be necessary to manually inspect de
novo the entire area newly surveyed. Instead, the operator
can just focus on the much smaller subset of images that are
both atypical of previous surveys and have candidate tree
ferns detected.
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4.3. Conclusions

The partnership between AWS and TNC has resulted in
a working pipeline that automates the process of tree fern
detection and adds efficiency to the process of eliminating
invasive tree ferns from the Hawaiian Islands. Our pipeline
has features that could be of interest to other conservation
efforts or more generally to agricultural or landscape sur-
vey data. Importantly, we demonstrate that ML technolo-
gies not only automate and scale the process of inference,
but also allow the creation of high-quality training datasets
with minimal human labeling effort that is coupled with an
iterative ML based data annotation pipeline.
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