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Abstract

Fine-grained image classification is limited by only con-
sidering a single view while in many cases, like surveil-
lance, a whole video exists which provides multiple per-
spectives. However, the potential of videos is mostly con-
sidered in the context of action recognition while fine-
grained object recognition is rarely considered as an ap-
plication for video classification. This leads to recent
video classification architectures being inappropriate for
the task of fine-grained object recognition. We propose a
novel, Transformer-based late-fusion mechanism for fine-
grained video classification. Our approach achieves su-
perior results to both early-fusion mechanisms, like the
Video Swin Transformer, and a simple consensus-based
late-fusion baseline with a modern Swin Transformer back-
bone. Additionally, we achieve improved efficiency, as our
results show a high increase in accuracy with only a slight
increase in computational complexity. Code is available at:
https://github.com/wolfstefan/tl1f.

1. Introduction

Fine-grained classification is an important task in the
context of surveillance since the identification of vehicles
by licence plate is limited due to criminals often using
stolen licence plates. Thus, fine-grained vehicle classifi-
cation can be applied in a security context to identify ve-
hicles by their make and model when an identification by
licence plate fails. In real-world surveillance scenarios, a
single image is limiting fine-grained vehicle classification
since motion blur can render important classification fea-
tures unrecognisable. This can be compensated by using
videos for classification which are typically available any-
way. Additionally, multiple views from different cameras
can be exploited to increase the accuracy by using a video

Figure 1: Example images from a video [12] which is part
of the YouTube-Cars [35] dataset. Besides the advantage of
multiple views, video classification enables the compensa-
tion of inappropriate images like the lower left one which
shows drastic motion blur.

instead of a single image.

Video data has been successfully used as a source for
various classification tasks. The most common example of
this is the field of action recognition, where videos are ad-
vantageous because they provide important temporal infor-
mation. However, the potential of using a frame sequence
as opposed to a single image is not limited to the additional
temporal component. As time progresses, a video usually
provides different views of the objects in the scene, yield-
ing additional features that can be exploited for classifica-
tion tasks other than action recognition. Fine-grained ob-
ject recognition is such a task that is likely to profit heavily
from multiple views. But the availability of multiple frames
is also helpful to compensate images inappropriate for clas-
sification because of e.g. blur. Nonetheless, only few works
consider video classification for typical fine-grained object
recognition tasks like vehicle model classification or bird
species classification [1, 10, 24, 35]. This leads to state-of-
the-art video classification models being tailored towards
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Figure 2: Comparing the computational complexity of our
TLF architecture to Swin Transformer [17] models of differ-
ent size with simple average fusion and the state-of-the-art
video classification models Video Swin Transformer [18]
and TimeSformer [3]. It shows the high efficiency of our
approach.

action recognition and ignoring the unique challenges of
fine-grained object recognition when processing videos.

The goal of fine-grained classification is to successfully
differentiate a set of highly detailed classes. For example,
in fine-grained vehicle classification Audi A5 Coupe 2012
could be such a class. In contrast, in regular coarse-grained
classification, cars usually share a single class and have to
be distinguished from e.g. humans. Due to this degree of
class specificity in fine-grained classification, two classes
might share the vast majority of features, leading to minor
differences being the deciding factor.

Video data can increase the number of visible differences
and thus, increase the classification accuracy. A major part
of using video data is the fusion mechanism used to com-
bine the input frames. Most state-of-the-art video classifi-
cation architectures like the Video Swin Transformer [18]
use an early-fusion approach which interrelates frames as
they pass through the backbone as this proved to be ad-
vantageous for action recognition. Earlier approaches, like
Temporal Segment Networks [31] use a simple late-fusion
consensus mechanism. We pick the concept of late-fusion
up again and combine it with a modern self-attention-based
Transformer [30]. This results in our Transformer-based
late-fusion mechanism (TLF).

In the following sections, we demonstrate superior re-
sults to both state-of-the-art early-fusion and strong base-
line late-fusion models by applying our more sophisticated
late-fusion approach. We achieve an improvement in ac-
curacy without a significant increase in computational over-
head, unlike the improvements resulting from a larger back-
bone network as can be seen in Figure 2.

Our main contributions are:

* proposing a sophisticated Transformer-based late-

fusion mechanism that efficiently aggregates the fea-
tures of multiple input images of a video to enhance
the exploitation of the different views resulting in a
significantly higher accuracy.

* showing the advantage of a sparse sampling strategy
for fine-grained object recognition while this strategy
is mostly considered outdated in video classification
research.

 proving the effectiveness of video classification for
fine-grained object recognition compared to single im-
age classification.

2. Related work

In this section, we first discuss the existing literature
in terms of video classification. Since most research in
video classification is targeted towards action recognition,
we summarize the literature focused on fine-grained video
classification separately afterwards.

2.1. Video classification

Video classification is mostly researched in the context
of action recognition which would be heavily limited by us-
ing single images. Thus, multiple datasets have been pub-
lished for video-based action recognition [4, 9, 11, 14, 25,
27] and a large number of approaches has been proposed to
optimize the accuracy on these datasets.

Two-stream architectures. As the temporal data can be
conceptualized as another separate stream of information,
two-stream architectures have been introduced as a viable
option. Two-stream ConvNets [26] use both the RGB and
optical flow of the input frames for separate classification
tasks, the results of which are merged by a simple consensus
mechanism. This late-fusion allows for a clean separation
of two different backbone networks to extract the relevant
features, but does not interrelate spatial and temporal infor-
mation for the most part. If both domains are to be taken
into account simultaneously, the backbone needs to directly
work on a three-dimensional input.

Temporal Segment Networks [31] extend the two-stream
ConvNets by employing a sparse sampling strategy that ex-
tracts multiple snippets of a video to acquire more informa-
tion with each snippet containing a single RGB frame and a
stack of optical flows.

3D convolutions. Since 2D convolutions are a common
building block in classification architectures, convolutional
architectures extending this concept along the temporal
axis, like C3D [29], have followed accordingly. 3D convo-
lutions and two-stream architectures are not mutually exclu-
sive, leading to two-stream convolutional approaches like
I3D [4].
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Figure 3: Schematic illustration of our Transformer-based late-fusion approach for fine-grained video classification.

Temporal Transformer. The recent trend of using self-
attention for image recognition has also been picked
up for video classification. These architectures use the
Transformer mechanism to process sequences of images.
ViViT [2] extends the ViT [8] architecture to enable the pro-
cessing of image sequences. The authors propose multiple
model variants including early-fusion and late-fusion meth-
ods. Neimark et al. [21] also propose a late-fusion Trans-
former architecture. However, early-fusion approaches
have prevailed due to being advantageous for action recog-
nition as shown by Arnab et al. [2]. While these late-fusion
architectures are the most similar ones compared to our
Transformer-based late-fusion mechanism, we show that
fine-grained video classification has drastically different re-
quirements leading to different design decisions. Video
Swin Transformer [18] continues the trend of early-fusion
architectures with the extension of the shifted windows
mechanism of Swin Transformer [17] to the temporal di-
mension. The shifted windows reduce the computational
complexity while ensuring inter-token information shar-
ing. Bertasius et al. [3] propose TimeSformer as another
Transformer-based video classification architecture that di-
vides the spatial and temporal attention to reduce complex-
ity and increase accuracy while using an early-fusion ap-
proach due to being tailored towards action recogintion.

2.2. Fine-grained classification

This section is divided into fine-grained classification
based on images and videos. For the first, a large set of
datasets [13, 28, 33] has been published motivating a vari-
ety of algorithmic approaches. In contrast, the field of fine-
grained video classification is rather small. Most of the fine-
grained video classification datasets and research works are
about fine-grained action recognition [7, 14, 16, 23, 25]

while only few datasets [1, 10, 24, 35] exist for our applica-
tion of fine-grained object recogntion in videos limiting the
reserch progress.

Fine-grained image classification. While fine-grained
classification on single images can technically be real-
ized using conventional image classification methods, spe-
cialized architectures have emerged to improve their re-
sults [15, 22, 34]. Initial models focused on the explicit
identification of parts to distinguish the various classes, but
with the advent of these deep learning approaches, identify-
ing relevant features became both implicit and learnable.

Fine-grained video classification. In the context of fine-
grained video classification, the research is significantly
more narrow. Alsahafi et al. [1] use object detection to lo-
calize vehicles in videos and extract the relevant parts of
the images. Afterwards, an imagewise CNN and a simple
fusion mechanism are used for classification. Redundancy
Reduction Attention [35] uses spatial and temporal atten-
tion to suppress redundant information in a video in an iter-
ative manner.

3. Method

Our method is based on three parts which are illus-
trated in Figure 3. First, we extract frames from the in-
put video by a sparse sampling strategy to cover the full
range of the video. Afterwards we extract features of the
frames with a modern Swin Transformer [17] backbone. As
the last step, we apply a sophisticated Transformer-based
late-fusion mechanism to derive a fine-grained classification
score for each input video. Since fusion mechanisms imple-
mented in the backbone might fail to find meaningful fea-
ture relationships early on, we postpone this operation to the
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classification head. Late-fusion approaches like this usu-
ally rely on simple consensus mechanisms like averaging
feature vectors, followed by a fully-connected, final classi-
fication layer. Temporal Segment Networks use this tech-
nique with great success [31], but have limited applicability
in fine-grained classification due to their lack of attention
across frame boundaries. Our approach prepends a Trans-
former encoder [30] to the consensus mechanism, which
applies self-attention across all frames simultaneously, em-
phasizing important features. This self-attention provides
an additional pathway to improving model accuracy in fine-
grained classification, as correctly distinguishing closely-
related classes might depend on very few features.

Sampling. In the first step of our approach, we apply a
sparse sampling strategy that splits the video into a specific
number of segments and selects a random frame from each
segment. The set of frames is called N. Each resulting frame
is augmented as described in Section 4. While the number
of images is multiplied during inference due to augmenta-
tion, all preprocessed images are handled as a single set of
input images S.

Sparse sampling is rarely used for video classification
due to dense sampling being advantageous for action recog-
nition which requires the extraction of short-term context.
While Wang et al. [31] propose the sparse sampling strat-
egy for action recognition by sampling the RGB frames
sparsely across the video, they still employ some form of
dense sampling by using stacks short-term optical flows
in a two-stream architecture. However, fine-grained object
recognition is profiting from using videos in a different way
and thus, the widely applied dense sampling is inferior to a
sparse sampling strategy as we show in our experiments.

Feature extraction. Each input image is fed separately into
the Swin Transformer [17] backbone. The result is a fea-
ture vector with the shape of 1024x7x7 for each augmented
image. Afterwards, each feature map is reduced to a fea-
ture vector of shape 1024x1x1 via adaptive average pooling.
The total set of feature vectors of all augmentations from all
frames is called E.

Self-attention. The self-attention mechanism central to our
late-fusion mechanism is part of the Transformer architec-
ture [30]. Specifically, self-attention is achieved via the
multi-head attention block. Usually, this block receives dif-
ferent query Q, key K and value V matrices. In the case of
self-attention, all these matrices are identical, meaning they
will equally be set to the input features.

Each head learns its own set of linear transformations
that are applied to the input data, followed by a scaled dot-
product attention mechanism. All head outputs are even-
tually concatenated and linearly transformed to the desired
output dimension. The scaled dot-product attention is im-

plemented by multiplying Q and K and scaling the result
in relation to their dimensionanilty, followed by a softmax.
Scaling is required to prevent the dot-product from growing
too large in magnitude.

The resulting matrix scores the importance of each input
element with a value between 0 and 1. This attention ma-
trix is then applied to V via matrix multiplication. Overall,
attention can be expressed concisely via Equation 1.

: QK™
Attention(Q, K = softmax
ttention(Q, K, V) = softma: (\/@
Once the multi-head attention is defined, building a full
Transformer encoder only requires two additional compo-
nents. First, a residual connection has to be inserted, fol-
lowed by an addition and normalization step that combines
the residual data with the results. Second, a feed-forward
network is appended to reduce the output dimension to the
desired shape.

oM

Transformer-based late-fusion. The feature vectors E are
all passed through the Transformer encoder simultaneously.
For our architecture, we use 8 heads within the multi-head
attention model and 1024 for both the input features and the
dimension of the feed-forward network. Hence, the result-
ing feature vectors still have the shape 1024x1x1. These
feature vectors are averaged to provide a single 1024x1x1
feature vector to the classification stage.

Compared to a simple average fusion without the Trans-
former encoder, our Transformer-based late-fusion mecha-
nism enables a more sophisticated aggregation. It can rep-
resent interdependencies between the views of images that
can not be represented by a simple linear aggregation of the
features.

Classification. Once the consensus has been applied, the
resulting feature vector is fed into a dropout and a final
fully-connected layer to classify the video. Afterwards, a
softmax is applied to normalize the output scores.

4. Experiments

In the following paragraphs, the implementation, results
and evaluation of our experiments will be discussed.

4.1. Settings

Optimization. The AdamW [20] optimizer with a Cosine
Annealing [19] policy was consistently used during train-
ing. The learning rate was also kept consistent at a base
value of 10~* when combined with a batch size of 8. Due
to VRAM limitations, this batch size had to be halved to 4
in some experiments. In these instances, the learning rate
was also halved accordingly to 5 - 107°. All experiments
use a weight decay of 1072, These values are based on the
defaults used in mmaction2 [6].
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Video decoding. The Decord [5] video loader used by
mmaction2 provides two different modes of operation: effi-
cient and accurate. Choosing the efficient mode reduces the
time it takes to extract random frame samples, as Decord
then utilizes a fast, inexact random seek algorithm that only
returns Intra-Frames (or I-Frames). The drawback is the
possibility of receiving the same frame twice when two
samples are sufficiently close to each other. We chose to
employ the efficient mode only during training, if samples
are drawn in a sparse fashion. For dense sampling and
during testing, accurate sampling was used. This yielded
a compromise of lowered training times allowing possibly
duplicated frames and preventing frame duplications during
evaluations.

Sampling. Processing all images in a video is inappropriate
for classification due to limited compute resources and re-
dundancy of consecutive frames. Thus, a sampling strategy
has to be applied to select a number of images that can be re-
alistically handled and that are most appropriate for an accu-
rate classification. In video classification, sparse and dense
sampling are the common sampling strategies. In sparse
sampling, the video is divided into k parts and from each
part, a single image is selected randomly. In dense sam-
pling, the video is also divided in %k parts. However, from
each part, a contiguous sequence of images with length [
and stride s is chosen randomly. For experiments of dense
sampling, we report the parameters as [ x s X k.

Augmentations. During training, random horizontal flip is
used per video and each sampled input image is augmented
with a random crop. Afterwards, the frame is resized to
224x224 pixels. Each random crop has a random position
in the frame, with all possible positions being equally prob-
able. The dimension is calculated based on a given aspect
ratio and the total area covered, both of which are chosen
randomly within a given interval. In our case, the aspect
ratio is chosen randomly in the interval [%, %] and the area
in [0.08, 1], with the area being interpreted as a percentage
of the total frame size. For testing, each frame is cropped
5 times: once in each corner and once in the center of the
frame. This time, all crops have a static width and height of
224 pixels. Additionally, each augmentation is duplicated
and flipped along the vertical axis, yielding 10 augmenta-
tions in total. Once an input frame has been augmented and
resized to the input dimension of 224x224 pixels, the results
are passed into the backbone network.

For Video Swin Transformer [18] and TimeSformer [3],
we use a three crop strategy as intended by their authors.
However, preliminary experiments have shown that the dif-
ferences between three crop and ten crop are negligible.

4.2. Dataset

The YouTube-Cars dataset [35] is used to evaluate our
architecture, since it provides video data with fine-grained
labels. Additionally, the YouTube-Birds dataset provided
by the same authors is used for additional validation of the
model’s efficacy. Experiments are done on the YouTube-
Cars dataset if not mentioned otherwise. YouTube-Cars
provides video data for 196 classes and YouTube-Birds
for 200 classes, with the class selection being identical to
Stanford Cars [13] and CUB-200-2011 [32], respectively.
The full car dataset contains 10,238 videos for training and
4,855 videos for testing purposes while the bird dataset pro-
vides 12,666 training and 5,684 testing videos.

As YouTube is an inherently unreliable data source,
video availability is never guaranteed. Thus, some of the
videos of the datasets were not available anymore when we
feteched the dataset. Hence, any comparison of our work
to the results in the original paper is limited in its validity
and should be considered tentative. However, both datasets
were kept consistent during our experiments. While some
videos were not available anymore, most of the data could
still be fetched and no class had to be removed due to a lack
of footage.

4.3. Comparison with state-of-the-art

To prove the effectiveness of TLF, we compare our ap-
proach against Swin Transformer [17] with a simple feature
average consensus as a strong baseline model and the state-
of-the-art video classification models Video Swin Trans-
former [18] and TimeSformer [3]. While we also include
published results on the YouTube-Cars dataset [35], the re-
sults are not directly comparable due to some videos not
being available anymore as described in Section 4.2. We
used the best of all evaluated sampling strategies and num-
ber of samples for each model. The impact of the sam-
pling strategy is described in Section 4.4. The results of the
comparison with the state-of-the-art are shown in Table 1
and indicate an advantage of the baseline Swin Transformer
model with a feature averaging fusion over the Video Swin
Transformer which is a state-of-the-art video classification
model. The Video Swin Transformer only performs well
for tasks requiring an analysis of short sequences like action
recognition but not for tasks covering long range correspon-
dences in videos. This highlights the different requirements
of action recognition as the prime task for video classifica-
tion research and fine-grained object recognition which has
not received the same attention in research yet. The TimeS-
former model can outperform our baseline slightly since it
can make appropriate use of sparse sampling. However, due
to the Transformer-based fusion being applied in an early-
fusion manner, the architecture still cannot make use of the
Transformer to ist full advantage. In comparison, our sim-
ple TLF mechanism combined with a Swin-Base backbone
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Architecture Top-1 Top-5 #parameters (106) FLOPs (109)
Swin Transformer Base [17] 76.1 93.7 86.9 969.0

Swin Transformer Large [17] 76.9 94.5 195.3 2178.5
VideoSwinTransformer Base [18] 71.9 90.6 87.8 485.1
TimeSformer [3] 77.9 94.6 121.5 807.2
Transformer-based Late-Fusion (Ours) 80.6 96.0 93.3 969.1
Inflated 3D Convolutional Neural Network (I3D)*  40.9

Batch-Normalized-Inception (BN-Inception)* 62.0

Temporal Segment Network (TSN)* 74.3

Redundancy Reduced Attention (RRA)* 77.6

* Original results by the authors of the YouTube-Cars dataset [35]. Results are not directly comparable since

not all videos are available anymore.

Table 1: Results of different classification architectures on the YouTube-Cars dataset [35]. The state-of-the-art video classifi-
cation Video Swin Transformer performs poorly for fine-grained vehicle recognition due to the early-fusion design optimized
for action recognition. A modern single image backbone with a simple late-fusion average consensus achieves better results.
In comparison, our Transformer-based late-fusion mechanism shows a significantly higher accuracy.
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Figure 4: A comparison of our TLF architecture to the Swin
Transformer [17], the Video Swin Transformer [18] and the
TimeSformer [3] models. Our model achieves a superior
top-1 accuracy to the other models with only a slight in-
crease in parameters.

shows a significant advantage over the baseline and TimeS-
former and even more over the Video Swin Transformer.
This is achieved by using a model design which is targeted
towards video-based fine-grained object recognition. The
advantage is particularly remarkable considering the small
increase in computational complexity compared to the in-
crease in accuracy as shown in Figure 2. This also holds
true when considering the number of parameters which is
shown in Figure 4. All FLOPs and number of parameters
are reported for the case of 64 input samples and ignoring
augmentations for a fair comparison.

4.4. Ablation studies

In this section, the impact of the improvements and de-
sign choices is evaluated.

Architecture and sampling. We found the sampling of the
video to be a deciding factor for the accuracy of the classifi-
cation. In Table 2, sparse and dense sampling with different
number of sampled images during training and testing are
compared for different models. For the Swin-Base model
without TLF and with sparse sampling, we see a significant
increase in accuracy with the number of testing samples in-
creased from 8 to 32 and a slight increase when the number
of training samles is increased from 8 to 16. Increasing the
number of testing samples further to 64 does not lead to
another performance improvment. This increase can be ex-
plained by the higher number of perspectives available with
a higher frame number. Additionally, more samples enable
the compensation of inappropriate samples with other sam-
ples.

Using dense sampling with the Swin-Base model leads
to a drastic drop in accuracy due to the lack of variance
of continuously sampled images. Increasing the number of
sampled clips to four during testing for a total number of
64 frames, the accuracy increases again but is still lower
than using 8 frames with a sparse sampling strategy. In
contrast to these results, VideoSwin-Base does not perform
well with sparse sampling showing a large drop compared
to the baseline model. Dense sampling with an increased
number of clips closes the gap but the performance is still
worse than the baseline. VideoSwin-Base performs an early
fusion which requires a high similarity of the images. This
is only sensible with a dense sampling strategy explaining
the lower accuracy with sparse sampling. However, for fine-
grained object recognition, a dense sampling strategy is not
appropriate due to a high variety of perspectives being the
most important factor for efficiently exploiting videos.

TimeSformer shows a low accuracy with its default
dense sampling strategy. However, it can profit signifi-
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Model Sampling Strategy  Training Samples Testing Samples Top-1  Top-5
Swin-Base Sparse 8 8 73.2 92.1
Swin-Base Sparse 8 32 75.6 94.0
Swin-Base Sparse 16 32 76.1 93.9
Swin-Base Sparse 16 64 76.1 93.7
Swin-Base Dense 16x2x1 16x2x1 55.0 78.0
Swin-Base Dense 16x2x1 16x2x4 72.5 922
VideoSwin-Base Sparse 16 64 70.0 91.2
VideoSwin-Base Dense 16x2x1 16x2x1 46.5 71.6
VideoSwin-Base Dense 16x2x1 16x2x4 71.9 90.6
TimeSformer Sparse 16 32 76.7 94.0
TimeSformer Sparse 16 64 77.9 94.6
TimeSformer Dense 8x32x1 8x32x1 583 80.7
TimeSformer Dense 8x32x1 8x32x4 45.1 69.5
Swin-Base + TLF (Ours)  Sparse 16 32 80.5 96.0
Swin-Base + TLF (Ours) Sparse 16 64 80.6 96.0

Table 2: Comparison of sample type and sample sizes during training and testing. Swin-Base with a simple average feature
fusion performs best with sparse sampling and a high number of samples during testing while the number of samples during
training has only a small impact. Dense sampling performs worse for Swin-Base while it is advantageous for VideoSwin-
Base which relies on a high similarity of images in a single clip due to its early-fusion approach. Our TLF performs best
since it combines the strategy of a sophisticated fusion and a late-fusion.

cantly from using a sparse sampling strategy and with using
the sparse sampling, it is slightly superior compared to our
baseline.

Since our TLF approach performs a late-fusion, we ap-
ply sparse sampling for it. Even with only 32 images during
testing, it outperforms all other evaluated models by a sig-
nificant margin. Increasing the number of testing samples
from 32 to 64 shows a slight increase in terms of accuracy.

Positional encoding. Transformer architectures usually ap-
ply a positional encoding to provide the information about
the sequence of the inputs to the model. Since the origi-
nal proposal of the transformer architecture [30], it is the
default setting to use a positional encoding. Thus, we also
evaluate the application of a positional encoding. For the
experiment, we use the original fixed sine-based positional
encoding as proposed by Vaswani et al. [30]. The results
are shown in Table 3. The positional encoding is a signifi-
cant disadvantage for this task with the architecture without
a positional encoding achieving a higher accuracy. Thus,
we drop the positional encoding for our TLF approach.

The reason for the negative impact of the positional en-
coding is likely an overfitting of the network when it is able
to identify the ordering of the frames and thus expects the
same order during inference. Moreover, for fine-grained ob-
ject recognition the ordering of the frames is rarely impor-
tant since most frames are of different scenes anyway due
to cuts occurring in the videos.

Positional encoding Top-1  Top-5

Yes 76.2 93.6
No 80.5 96.0

Table 3: Evaluation of positional encoding. We applied a
fixed sine-based positional encoding as it is common for
transformer architectures. However, a positional encoding
has shown a significant drop in accuracy for our use case.

4.5. Effectiveness of video classification

In Table 4, we compare the use of videos to the use of
single images for fine-grained classification of cars. For
the comparison, we use a Swin-Base model with an av-
erage consensus fusion for the video classification and a
plain Swin-Base model for the image classification. In both
cases, sparse sampling with 8 frames in training and 32
frames in testing is used. For the per-frame evaluation, each
frame is evaluated individually and the average accuracy
over all frames is calculated. Since the number of sampled
frames per video is constant, the results are comparable to
the per-video evaluation results. As can be seen, the use of
per-video evaluation provides a drastic increase in accuracy.
This shows the advantage of video classification compared
to single image classification for fine-grained object recog-
nition and should motivate future research in this direction.
The expressiveness of these results might be limited due to
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Evaluation Top-1 Top-5

Per-frame  64.9 86.5
Per-video 73.9 92.6

Table 4: Comparison of a per-frame evaluation and a per-
video evaluation. In case of the per-frame evaluation, the
sampling is unchanged but no average is calculated over the
images. Instead, each image is evaluated separately. For
the per-video evaluation, a simple feature average fusion is
used. The comparison shows that using videos has a clear
advantage over using only frames since the combination of
multiple frames provides additional information useful for
classification.

Architecture Top-1 Top-5
Swin Transformer Base [17] 76.9 91.1
VideoSwinTransformer [18] 72.8 88.2

TimeSformer [3] 77.6 90.9
TLF (Ours) 78.9 91.3
I13D* 40.7
BN-Inception* 60.1
TSN* 72.4
RRA* 73.2

* Original results by the authors of the YouTube-
Birds dataset [35]. Results are not directly com-
parable since not all videos are available any-
more.

Table 5: Results of different classification architectures on
the YouTube-Birds dataset [35]. Our transformer-based late
fusion mechanism outperforms the baseline by a significant
margin due to the more sophisticated fusion of frames.

some frames showing irrelevant information and being use-
less for classification. However, for practical applications
like surveillance, a single frame can also be suboptimal for
object recognition due to e.g. being blurred. In this case,
video classification can compensate single blurred images
by ignoring the frame and using information from other
frames.

4.6. Results on YouTube-Birds

To show the general effectiveness of our approach for
fine-grained video classification, we compare our TLF to
a strong baseline on YouTube-Birds [35]. The results are
shown in Table 5. We sample 64 frames in total per video
with the best sampling strategy chosen per model. Similar
to the results on YouTube-Cars, our model shows a signif-
icant increase in terms of classification accuracy compared
to the baseline and state-of-the-art models.

4.7. Discussion of results

While our approach outperforms the competitive archi-
tectures presented, the influential effect of how the videos
are sampled deserves to be emphasized again. Switching
between dense and sparse sampling can significantly affect
the final accuracy of the model, with no sampling strat-
egy being blatantly superior. As an example, the Video
Swin Transformer thrives on dense sampling, while the
Swin Transformer performs better when sparsely sampling
the video. This indicates that the model architecture might
dictate the sampling strategy, with dense sampling being
preferably used with early-fusion and sparse sampling with
late-fusion approaches. Nonetheless, overall the results
show that a sparse sampling strategy with a late-fusion ap-
proach is superior. Furthermore, models tend to benefit
from higher sample counts, both during training and testing.
A fair comparison therefore requires two models to receive
an identical amount of frames. However, while the frame
count might be identical, the frames themselves might not
be. This can cause issues due to the high variance in frame
quality, which we define as the volume of useful informa-
tion a frame provides. Additionally, frames might have a
low information content regardless of the sampling mode.
Exemplary causes of this in the YouTube-Cars dataset are
transitions within the video, scenes showing the car interior
or frames where the car is occluded by people or other cars.
These issues are mitigated in some cases by sampling a suf-
ficient amount of frames, but due to the inherent random-
ness of the sampling and the varying information density of
the video data, this can not be guaranteed.

5. Conclusion

We propose a sophisticated late-fusion approach for fine-
grained object recognition using video data. By adding self-
attention through a transformer encoder, a simple average
consensus mechanism can be extended to achieve results
superior to both a state-of-the-art video classification archi-
tecture and the basic consensus mechanism with a larger
backbone network. The transformer encoder applied in the
late stages of the network enables the fusion of semanti-
cally high-level features and thus, better exploits the multi-
ple views offered by video data. Since the presented mecha-
nism comes with low additional cost in terms of FLOPs and
parameters, it is more applicable in a real-time setting than
a larger model with comparable accuracy.

Finally, we show that proper sampling is a central fac-
tor in classification accuracy, both in terms of sample count
and sample distribution across the input video. Making the
sampling strategy more intelligent and focused on yielding
frames containing useful information instead of relying on
randomness is an important area of future work that could
drastically improve results.
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