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Abstract

Occlusion is one of the most challenging problems in
single-view pedestrian detection. To alleviate the occlusion
problem, multi-view systems have been exploited to fully ac-
quire and recognize blocked targets. Most often, methods
from the literature exploit perspective transformation to ag-
gregate different sensing view angles of the scene, but pro-
jection distortion issues cause spatial structure break and
prevent these methods from fully exploring the projected
features. In this paper, we propose a novel approach, Multi-
view Target Transformation (MVTT), to address the distor-
tion problem inherent in multi-view aggregation by encod-
ing the full target features and limiting the area of interest
of the projected features. Experiment results show that the
performance of our proposed method compares favorably
against recent relevant methods on public datasets. The ab-
lation studies also confirm the effectiveness of the proposed
components.

1. Introduction
Despite the recent advances in object detection towards

more accurate localization and more robust performance in
various scenarios, occlusion is still one of the challenging
problems. When occlusions occur in a single-view system,
blocked objects cannot be fully acquired and recognized.
One of the mainstream solutions for handling occlusions is
introducing multiple perspectives to discover the occluded
targets. Compared to the single-view setup, the multi-view
system utilizes the information from different perspectives
to discover the objects and improve the robustness to occlu-
sions. In this paper, we focus on the multi-view pedestrian
detection problem, using images captured by multiple cam-
eras with various view angles as input to perform detection.

In previous multi-view solutions, perspective transfor-
mation was used to aggregate different sensing view angles
of a scene. Geometric information is provided by synchro-
nized and calibrated cameras. Hence, the targets in single-
view 2D images can be projected to the 3D world plane for
spatial aggregation. The existing methods overlap the pro-

Figure 1. Feature projection examples. The left column show
the original single-view images with selected pedestrian bounding
boxes and foot points. The right column show the corresponding
projected ground plane features and images. According to the dif-
ferent position of the pedestrians and cameras, the projected fea-
tures would be spread over a large area toward different directions
or compressed into a small grid of the ground plane. The pro-
jection distortion breaks the spatial structure and prevent the fully
exploration of the extracted features.

jected bird’s eye view (BEV) images to consider multiple
perspectives simultaneously [11, 10] and predict the pedes-
trian occupancy. In addition, various perspective transfor-
mation methods have also been explored to improve the us-
age of the projected features [23, 18, 12].

However, due to the required computational load, most
previous methods apply 2D projection to project the fea-
tures to the ground plane (i.e. BEV) images, which usually
introduces severe distortion issues. Depending on the posi-
tions of the pedestrians and cameras, the projected pedes-
trians could be rather different [10]. Various distortion pat-
terns may cause spatial structure break and prevent the ex-
isting methods from fully exploring the projected features.
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As shown in Fig. 1, some of the distorted targets are spread
over a large area and some of them are compressed into a
small grid of the ground plane. Hence, it is difficult for
the traditional convolution kernel or even the transformer-
based methods to effectively adapt to the features with such
a large variance. As a result, the detection performance up-
per bound would be limited.

In this paper, we propose a novel and straightforward
approach, Multi-view Target Transformation (MVTT), that
alleviates the distortion problem inherent in multi-view ag-
gregation by encoding the full target features and limiting
the area of interest of the projected features. In order to
enable the model to discover the projected features across
different perspectives without learning through various dis-
torted patterns, we utilize the single-view detection results
of each perspective to extract and encode the full features
of each pedestrian before the distortion happens. Next, we
rely on extracted features to build an auxiliary feature map
derived from the foot locations of the pedestrians. Because
of the limited spatial size of the encoded features, the distor-
tion of the projected auxiliary features would be also con-
strained. This auxiliary feature can be easily combined with
the original image features for assisting the model to sense
the entire targets by limited receptive fields.

It is worth of noting that, instead of proposing unique
network architectures or loss functions, the main idea lies
in the proposed novel feature transformation, which im-
proves the capability of learning and recognizing the dis-
torted features to existing multi-view detection solutions.
In our experiments, we apply our proposed MVTT on three
different previous models, and conduct the experiments on
the benchmark datasets of Wildtrack [2] and MultiviewX
[11]. We show that our method clearly improves the per-
formance of existing multi-view detection models for rec-
ognizing pedestrians across multiple perspectives.

Our contributions can be summarized as follows:

• We introduce a novel transformation scheme, Multi-
view Target Transformation (MVTT), that effectively
tackles the projection distortion problems and enables
the full utilization of the projected pedestrian features.

• Instead of proposing new network architectures or
learning methods, our MVTT is a novel transformation
module, applicable to most existing multi-view detec-
tion approaches that leverage the spatial aggregation
on the same projection plane.

• In our experiments, we qualitatively and quantitatively
verify the effectiveness of our method against recent
relevant methods and achieve comparable or better de-
tection results on the benchmark datasets of Wildtrack
and MultiviewX.

2. Related Work

Single-view detection Single-view setup is the most
commonly used scenario for object detection in computer
vision. Previous research could be roughly separated
into two branches: anchor-based and anchor-free meth-
ods. Anchor-based methods such as Faster R-CNN [20],
YOLOv3 [19], and SSD [14] have achieved accurate de-
tection results. On the other hand, in recent years, anchor-
free approaches are also coming up with the simplified de-
tection processes to breakthrough the performance limita-
tion caused by the pre-defined anchors [30, 26, 28, 13, 5].
Different from the general object detection, pedestrian de-
tection methods are developed to explore the physical at-
tributes of the human body. For instance, the head-foot or
center point detection were proposed to find the bounding
box in [24, 15]. In addition, occlusion is also an important
issue in pedestrian detection. Some researchers develop the
part-based solutions to solve the partial occlusion problem
[16, 17, 25, 29]. Nevertheless, even though the partial oc-
clusion problem can be handled, crowded scenes or severe
occlusion of pedestrians are still a challenging problem for
the single-view setting due to the lack of essential informa-
tion captured by the camera.

Multi-view detection Multiple camera setup is one of the
mainstream solutions for the heavy occlusion. Synchro-
nized and calibrated cameras with different perspectives are
used to capture the same area and the multi-view detec-
tion system aggregates the images with overlapping field-
of-view to perform pedestrian detection. Before the recent
advances made by deep learning, researchers were focused
on probabilistic modeling of objects [4, 22]. Then, for ag-
gregating the information from multiple views, researchers
have been using mean-field inference [6, 1] and conditional
random field (CRF) [21, 1] to combine the single-view de-
tection results. However, these methods usually require ad-
ditional calculations or specific designs outside deep learn-
ing models. Hou et al. [10] propose a convolution-based
end-to-end trainable method to consider the neighboring lo-
cation for aggregating the information from multiple per-
spectives, which achieves significant improvement. Never-
theless, the limited receptive field and translation-invariant
calculation still cannot suit to the projected feature maps
well. In [10] a method was presented which relies on the
improved deformable transformer to adapt to the different
distortion patterns across multiple view features. Neverthe-
less, the spatial structure break caused by 2D projection still
cannot be properly addressed.

Feature projection for spatial aggregation In order to
utilize the neighboring information across different view-
points, projecting the single-view feature maps onto the
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ground plane is one of the mainstream solutions. Song et
al. [23] introduce the stacked homography transformation
to approximate 3D point detection. Feature maps are pro-
jected onto different height levels depending on different
body parts of the pedestrian and then fused by relyuing on
the soft selection to achieve a homography with higher ac-
curacy. Furthermore, Qiu et al. [18] also propose a similar
solution to project the feature map of each view to mul-
tiple parallel planes. However, most previous research on
perspective projection has assumed that all pixels are on a
certain height or on the ground plane (z = 0). In other
words, the greater the distance between the projected pixel
and the foot point, the greater the number of errors it con-
tains [7]. Hence, overlapping the projected features from
multiple perspectives might cause the ambiguity problem.
Furthermore, various distortion patterns also make it dif-
ficult for the model to sense all features belonging to the
pedestrians. In this paper, we propose a novel transfor-
mation to tackle this problem. Instead of approximating
3D projection for higher accuracy, we compress and en-
code pedestrian features before severe distortions happen,
and build an auxiliary feature map as the complementary
information for the detection.

3. Methodology
Instead of focusing on approximation of more accurate

projection [23, 18] or better usage of projected features
[10], we propose a novel feature transformation approach
to leverage single-view detection results to alleviate the pro-
jection distortion issue and fully explore the pedestrian fea-
tures in multi-view aggregation for better localization.

The objective of our proposed transformation method is
to build an auxiliary feature map, named meta, for assisting
spatial aggregation and detection on the ground plane. The
proposed multi-view detection system consists of (1) single-
view feature extractor, (2) perspective transformation, and
(3) ground plane heat map estimation. As illustrated in Fig.
2, our proposed Multi-view Target Transformation (MVTT)
uses the single-view image features Fs as an input and gen-
erates the transformed meta feature map Mf . Afterwards,
Fs and Mf are concatenated to the corresponding camera
view for the perspective transformation. Then, we can get
the projected features maps F̃sf . We overlap the N views
and use the ground plane heat map generator Gh to esti-
mate the occupancy heat map. Finally, the post-processing
is applied to find the detected targets. In the following sub-
sections, we will briefly describe multi-view aggregation al-
gorithm and then focus on the proposed MVTT module and
explain the details of each contribution.

3.1. Brief Review of Multi-view Aggregation

Multi-view feature projection A great deal of feature ag-
gregation in multi-view detection problem focus on project-

ing feature maps from different single-views to the ground
plane. We denote the set of input images from N camera
views as Is = {I1, I2, ..., IN} with H × W size and the
corresponding extracted feature maps of the single-view im-
ages from the feature extractor as Fs = {F1, F2, ..., FN}
with downsampled size Hf × Wf × C. Given the image
plane coordinate (u, v) and ith camera view, we rely on
the intrinsic parameters Ai ∈ R3×3 and the extrinsic pa-
rameters Ei = [Ri|ti] ∈ R3×4 to calculate the perspective
transformation matrix Pi. Similarly as in [11, 10], we as-
sume the objects in the scene are with height z = 0. The
extracted feature maps Fs with image coordinate (u, v) can
be projected to the ground plane (x, y) as F̃s using:

γ

u
v
1

 = Pi


x
y
z
1

 = Ai[Ri|ti]


x
y
z
1

 (1)

where γ is the scale factor, and Ri and ti are the rotation
and translation matrix respectively.

After retrieving the projected feature maps, one can eas-
ily explore the features of a certain location across different
perspectives on the same grid of the ground plane feature
maps. Subsequently, the ground plane heat map generator
Gh is able to consider the neighboring locations and esti-
mates the occupancy heat map for detection results.

Projection distortion Although the feature projection al-
lows the spatial aggregation across different perspectives,
various distortion patterns caused by the perspective trans-
formation also limit the upper bound of discrimination abil-
ity. Specifically, according to the position of the pedestrians
and cameras, the projected features could be spread or com-
pressed into different shapes and break the spatial structure,
which prevents the extracted features to be fully exploited.

3.2. Multi-view Target Transformation

In this paper, we propose a novel feature transformation,
Multi-view Target Transformation (MVTT), to tackle the
distortion problem. Instead of focusing on approximating
more accurate projection, our MVTT relies on the single-
view predicted bounding boxes to build a auxiliary feature
map for assisting the multi-view spatial aggregation.

Single-view meta feature representation Given the ex-
tracted feature maps of the single-view images Fs and
the single-view predicted bounding boxes of each per-
spective Bs = {B1, B2, ..., BN}, we first utilize ROI
alignment [8] to extract the pedestrian features Fp =
{Fp,1, Fp,2, ..., Fp,N}. For i-th camera view, we can col-
lect Fp,i = ROIalign(Fi, Bi). Specifically, for d-th de-
tected pedestrian in a single-view image, we can get the fea-
ture with size (Hd,Wd, C), where (Hd,Wd) represents the
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Figure 2. Overview of the proposed Multi-view Target Transformation (MVTT) module and the system pipeline. Given the input images
from N camera views and the extracted single-view feature maps, our MVTT module leverage the single-view detection results to build a
meta feature map, providing the auxiliary information for spatial aggregation after the perspective transformation.

height and width of the bounding box and C is the channel
number. Next, we leverage the ROI alignment to downsam-
ple and unify the various bounding box sizes into (s, s, C),
where s is the pooled size. The reason why we downsample
the size is to make sure all the pedestrian features can have
the same size for further process then.

After we extract the pooled features, we apply a fully
connected layer as an encoder for each pedestrian feature
F l
p,i ∈ Rs×s×C , where l indicate the l-th pedestrian in i-

th view. Subsequently, the pedestrian feature would be en-
coded into a one dimension vector F̂ l

p,i ∈ R1×1×C . In other
words, for each pedestrian, we can use a single vector to de-
scribe the attributes without the location information.

In order to fully explore the pedestrian features, we ex-
ploit the encoded features to build a meta feature map Mf as
the auxiliary information to the image features Fs. First, we
follow the size of Fs to create new tensors (N,Hf ,Wf , C)
filled with zeros. According to the bounding boxes of each
single-view Bs, the foot points can be localized at the cen-
ter of the bounding box bottom. As illustrated in Fig. 2, we
insert the encoded pedestrian features F̂ l

p,i into the corre-
sponding foot points to complete the meta feature maps for
all the perspectives to clearly indicate the location of each
pedestrian. The reason why we use the foot point to insert
the encoded features is because we assume that the objects
in the scene are with zero height, and the foot points, in
most cases, on the images should intersect with the ground

(z = 0). Hence, we choose the foot point as the representa-
tive of the pedestrian to associate the encoded features.

Multi-view aggregation For multi-view aggregation, we
first concatenate the meta feature maps with the correspond-
ing single-view feature maps. Then, similarly as in [11]
we project the features to the ground plane by applying the
perspective transformation. Afterwards, projected feature
maps F̃sf are fed into the ground plane heat map generator
Gh for aggregating the information from spatial neighbors.
Previously, convention convolution and deformable trans-
former are adopted [11, 10] as the generator, the limited
receptive field and the spatial structure break prevent the
existing methods to fully exploit the extracted features. In
contrast to the existing methods, our proposed meta feature
maps can preserve the full ROI features from the single-
view detection results and limit the distortion in a relative
small area (Fig. 3). Specifically, the foot point location
can be clearly highlighted for the ground plane heat map
generator with full pedestrian features, which significantly
improves the detection performance.

4. Experiments
In this section, we evaluate the proposed method by con-

ducting several experiments on the public Wildtrack [2] and
MultiviewX [11] datasets to compare with the other multi-
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view detection methods. Moreover, we also conduct abla-
tion studies to demonstrate the impact of the proposed com-
ponents. In all comparisons, we use the recomended default
settings presented in [11, 10, 23] as well as the original im-
plementation to conduct all the experiments.

4.1. Dataset and Implementation Details

We evaluate the proposed method on two public multi-
view datasets, as shown in Table 1. The following sections
provide the dataset and our implementation details.

Wildtrack dataset Wildtrack [2] is a real-world dataset
captured using 7 synchronized and calibrated cameras with
the overlapping field-of-view. The pedestrians within the
are of 12 meters by 36 meters are captured and annotated at
a ground plane with the resolution of 480×1440 grid, where
each grid division represents a 2.5 centimeter square. The
average number of pedestrians per frame is 20, and each
location is covered by 3.74 cameras. For each single-view
image, the resolution is 1080×1920, and there are total 400
frames in this dataset, where 360 frames are for training and
the remaining 40 frames are used for evaluation.

MultiviewX dataset MultiviewX [11] is a synthetic
dataset generated by the Unity engine. It contains view
generated by 6 virtual cameras with overlapping field-of-
view. The captured area is 16 meters by 25 meters, which
is smaller than the Wildtrack dataset. For annotation, the
ground plane is quantized into a grid containing 640×1000
fields, where each grid represents the same 2.5 centimeter
square. The average number of pedestrians per frame is 40,
while each location is covered by 4.41 cameras. For each
single-view image, the resolution is 1080× 1920, and there
are 400 frames in total, same as in the Wildtrack dataset.

Implementation details As a transformation module that
is applicable to the existing methods, we follow their
network architectures to implement the feature extractor,
ground plane heatmap generator, and the post-processing
method to make a fair comparison. Subsequently, we plug
our proposed Multi-view Target Transformation (MVTT)
module after the feature extractor ResNet-18 [9]. We
use ROI align module proposed in [8] to downsample the
bounding box content into a 9 × 9 feature map with 128
channels, and the encoder is a single fully connected layer
with output length 128. The non-maximum suppression
threshold K = 0.3 for the single-view detection. For train-
ing, we use SGD optimizer with learning rate 0.1 and 0.15,
momentum 0.5 and 0.9 for MVDet [11] and SHOT [23].
For MVDeTr [10], the optimizer is Adam with the learning
rate 5e−4. In our experiments, all models are trained with
batch size 1 on a single NVIDIA TITAN RTX. Please refer
to the Supplementary Materials for more details.

4.2. Evaluation Metric

During evaluation, we use the same data split in [11] and
follow the metrics used in [11, 10, 23], including Multiple
Object Detection Accuracy (MODA), Multiple Object De-
tection Precision (MODP), precision, and recall rate. We
evaluate the predicted ground plane occupancy map instead
of considering intersection-over-union (IoU) of the bound-
ing box. The distance between the predicted target location
and the ground truth is used to determine true positives. As
in [11, 10, 23], we use a threshold 0.5 meter in all the exper-
iments. We use MODA as the primary metric because the
false positives and false negatives are both considered [11].

4.3. Experiment Results

Evaluation on Wildtrack dataset As shown in Table 2,
we evaluate our method by introducing the proposed mod-
ule into the existing models to evaluate the performance and
compare it with the original methods. Our method can im-
prove the MODA performance 2.1% for MVDet [11], 2.9%
for SHOT [23], and 2.6% for MVDetr [10]. The results
clearly demonstrate that our proposed module can improve
the detection performance of the existing methods.

Evaluation on MultiviewX dataset As illustrated in Ta-
ble 2, we also conduct the same experiment on the Multi-
viewX dataset. Our method can improve the MODA per-
formance 10.1% for MVDet [11], 5.9% for SHOT [23],
and 1.3% for MVDetr [10]. This table not only shows that
our proposed MVTT can significantly improve the detection
performance but also demonstrates that our module is appli-
cable to the existing methods that utilize spatial aggregation
on the same projection plane.

Visual comparisons of projected features For validating
the effectiveness of our proposed transformation, we com-
pare the projected feature maps with the previous methods
to see if the distortion problem has been addressed in Fig. 3.
We observe that the distortion area can be effectively lim-
ited by our proposed MVTT module. When combined with
the images features, meta features can clearly strengthen
the location of the foot point, which would improve the
ground plane heatmap generator in localizing the pedestri-
ans. Furthermore, encoded meta features with limited pro-
jected area contain the full features from the single-view de-
tection ROIs, which means that the ground plane heatmap
generator do not have to adapt to the long-term dependency
of the distorted images.

4.4. Ablation Study

In order to investigate the effect of our proposed com-
ponents, we use MVDeTr [10] and our MVTT to conduct
several experiments on the public Wildtrack [2] dataset.
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Table 1. Comparisons of the two public multi-view pedestrian detection datasets.

Dataset Resolution Frames Camera Area
Ground Plane
Grid Size Crowdedness Scene Type

Wildtrack 1080× 1920 400 7 12× 36m2 120× 360 20 person/frame Real-world
MultiviewX 1080× 1920 400 6 16× 25m2 120× 250 40 person/frame Synthetic scene

Table 2. Comparisons with the state-of-the-art methods on the Wildtrack and MultiviewX datasets. We plugged our proposed MVTT
module into the existing methods to demonstrate the effectiveness of our method. * indicates the results are not including the additional
data augmentations for fair comparisons.

Method Wildtrack MultiviewX

MODA MODP Precision Recall MODA MODP Precision Recall

RCNN-2D/3D [27] 0.113 0.184 0.68 0.43 0.187 0.464 0.635 0.439
DeepMCD [3] 0.678 0.642 0.85 0.82 0.700 0.730 0.857 0.833
Deep Occlusion [1] 0.741 0.538 0.95 0.80 0.752 0.547 0.978 0.802
3DROM* [18] 0.912 0.769 0.959 0.953 0.900 0.837 0.975 0.924
MVDet [11] 0.882 0.757 0.947 0.936 0.839 0.796 0.968 0.867
SHOT [23] 0.902 0.765 0.961 0.940 0.883 0.820 0.966 0.915
MVDeTr [10] 0.915 0.821 0.974 0.940 0.937 0.913 0.995 0.942

MVDet + ours 0.903 0.819 0.979 0.917 0.940 0.926 0.994 0.946
SHOT + ours 0.931 0.805 0.967 0.951 0.942 0.922 0.989 0.924
MVDeTr + ours 0.941 0.813 0.976 0.965 0.950 0.928 0.994 0.956

Table 3. Comparisons with different size of extracted meta fea-
tures. We change the dimension of the encoded pedestrian features
to increase the spatial region on the image plane for comparisons.

Setting MODA MODP Precision Recall

MVDeTr + ours
1x1xC 0.941 0.813 0.976 0.965

MVDeTr + ours
3x3xC 0.924 0.805 0.968 0.956

MVDeTr + ours
5x5xC 0.907 0.805 0.980 0.925

MVDeTr + ours
7x7xC 0.892 0.801 0.980 0.921

Effects of the extracted meta feature size on the ground
plane For further analysis of the effect of our proposed
transformation method, we conduct an experiment to com-
pare the performance between different extracted meta fea-
ture sizes. Our default setting is using a one dimension
vector with length C = 128. We keep the length con-
stant and change the dimension of the encoded pedestrian
features to increase the spatial region on the image plane
(u, v) for comparisons. In Fig. 5, we visualize the differ-
ent size of meta features on the image plane. We observe
that the distortion area would be enlarged significantly if
we increase the size of extracted meta features. Moreover,
in Table 3, we also find that in the case when the size is in-
creased, the detection performance would be also degraded.

Table 4. Comparisons with different combination methods be-
tween image and meta features. We conduct this experiment with
three different combination methods and also compare the perfor-
mance without combination.
Setting MODA MODP Precision Recall

MVDeTr
w/o meta feat. 0.915 0.821 0.974 0.940

MVDeTr + ours
w/o image feat. 0.741 0.712 0.991 0.727

MVDeTr + ours
Concatenate 0.941 0.813 0.976 0.965

MVDeTr + ours
Addition 0.891 0.804 0.961 0.934

MVDeTr + ours
Multiplication 0.881 0.794 0.957 0.915

This observation leads to the same conclusion mentioned in
[7], which states that farther the distance, the greater errors,
which would cause the ambiguity problem during the de-
tection. Hence, we choose to encode the meta feature into
one dimensional vector and embed it in a single location to
limit the distortion area, for a better performance.

Effects of the combination of image features and meta
features Another effect we would like to analysis is the
method for combining the image and meta features. We
compare three different methods to find the best way to use
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(a) input images (b) projected images (c) projected meta features (d) projected image features

Figure 3. Visualization comparisons of projected features. (a) original single-view images from cameras. (b) projected single-view images.
(c) projected proposed meta feature maps. (d) projected extracted image features. Compared to the distorted image features, our MVTT
can effectively encode the full pedestrian features with limited the distortion area.

the auxiliary information from our meta features. In Table
4, the concatenation shows the superior performance than
the others. Pixel-wised addition or multiplication cannot ef-
fectively enhance the original image features for detection.
It is worth noting that when we remove the original image
features and only use meta features for detection, the perfor-
mance would be degraded significantly. This is because the
limitation from the single-view detection results. Due to the
occlusion or lighting condition issues, the predicted bound-
ing boxes might not perfectly discover all the pedestrians in
the single-view image. Therefore, the features of the undis-
covered targets would not be projected to the ground plane,
and therefore the essential features would be lost, which in
turn leads to the limited detection performance.

Effects of the single-view detection bounding box As
the previous paragraph mentioned, the predicted bounding
boxes of the single-view detection directly affect the usage
of the meta features and the detection performance. Hence,

Table 5. Comparisons with different number of bounding box from
single-view detection. We use the NMS threshold K to control the
bounding box number. Higher K represents more bounding boxes
are involved.
Setting MODA MODP Precision Recall

MVDeTr + ours
K = 0.1

0.933 0.811 0.975 0.957

MVDeTr + ours
K = 0.3

0.941 0.813 0.976 0.965

MVDeTr + ours
K = 0.5

0.930 0.812 0.960 0.965

MVDeTr + ours
K = 0.7

0.925 0.810 0.974 0.960

we conduct another experiment to analyze the effect of in-
creasing the number of the predicted bounding boxes. We
adjust the threshold of the non-maximum suppression K to
involve more candidates in a single-view image. When K
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(a) MVDeTr (b) MVDeTr + ours (c) ground truth

Figure 4. Estimated occupancy maps comparison. We use MVDeTr [10] as baseline to see the improvement of our proposed method. The
highlighted regions show that the proposed MVTT assist the model to output the occupancy map with higher quality.

(a) 1 × 1 × 𝐶 (b) 3 × 3 × 𝐶 (c) 5 × 5 × 𝐶 (d) 7 × 7 × 𝐶

Figure 5. Visualization of different size of meta features. We increase the spatial size of the encoded pedestrian features to visualize the
distortion problem. Larger spatial sizes bring more overlapping areas between the independent features and cause ambiguity problem
during spatial aggregation.

is increased, more bounding boxes would be involved. As
we can see in Table 5, excessive number of bounding boxes
cause possible ambiguity problem and degrade the detec-
tion performance. On the other hand, extreme less bounding
boxes would also have lower performance because the high
NMS threshold would easily make the bounding boxes be
merged to the other one. Therefore, the targets with small
bounding boxes would be lost during the ground plane de-
tection. As a conclusion, a moderate number of candidates
in a single-view image would be preferable.

5. Conclusions
In this paper, we propose a novel, low complexity ap-

proach that tackles the distortion problem caused by feature
projection on multi-view pedestrian detection task. We in-
troduce Multi-view Target Transformation (MVTT) module
to leverage the single-view detection results to build a aux-
iliary feature map for assisting the system to localize the

pedestrians. Our module successfully limits the spatial size
of the pedestrian features, which prevents the spatial struc-
ture break and enables the spatial aggregation in a limited
receptive field. Moreover, instead of proposing new net-
work architectures or learning methods, our MVTT is ap-
plicable to most existing multi-view detection approaches
that leverage the spatial aggregation on the same projec-
tion plane. The experiment results on the public Wild-
track and MultiviewX datasets confirm that our method per-
forms favourably against recent relevant methods, and sup-
port the use of our proposed transformation for improved
multi-view pedestrian detection. The ablation studies con-
firm the effectiveness of the proposed components.
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