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Abstract

In this paper, we propose ThermalSynth, a novel ap-
proach for creating synthetic thermal images by mixing 3D
characters generated using the Unity game engine with real
thermal backgrounds. We use a shader based on the Stefan-
Boltzmann law [18] to approximate the appearance in the
thermal domain of the synthetic characters. Additionally,
we provide a post-processing pipeline to better blend the
high-fidelity synthetic data with the lower-resolution real
thermal surveillance one. The proposed approach is used to
create a dataset for people falling into water near a harbor
front. Diverse scenarios of such falls are generated with an
ample amount of data to enable the use of deep learning al-
gorithms. To demonstrate the effectiveness of the generated
data, we train two standard deep neural networks (AlexNet
and ResNet-18) on our synthetic thermal dataset using a
supervised learning approach. We test our system on small
datasets containing real video footage of actual falls. We
observe that training these simple classification networks
yields an accuracy of 98.70% at a sensitivity of 100% on
the real-world voluntary fall dataset. The code for Ther-
malSynth and the dataset is publically available at https:
//github.com/NeeluMadan/Thermal-Synth.

1. Introduction
Video surveillance systems mostly employ stationary

RGB cameras as they are cost-effective whilst yielding good
discrimination among objects. They are, however, not im-
mune to various quality-decreasing conditions such as oc-
clusions, changing weather, and low illumination. Thermal
cameras, on the other hand, measure the difference in heat
signatures returning high-contrast images. Consequently,
they are a reliable choice under diverse weather conditions
while preserving privacy [20] at the same time, which also

*Equal contribution.

(a) Background (b) Unity Scene

(c) Mixamo Characters (d) Fall Scene

Figure 1: ThermalSynth - Synthetic data generation pro-
posal 1a) An example background image from the Long-
term Thermal Drift (LTD) dataset [30], 1b) the same scene
synthesized in Unity, 1c) example fall animations of Mix-
amo characters, and 1d) a synthetically generated falling
person merged with 1a, with a yellow enclosure highlight-
ing the Region of Interest (RoI).

helps comply with the General Data Protection Regulation
(GDPR) [32, 2]. As a result, intelligent video surveillance
systems have started using a combination of RGB and ther-
mal cameras, recently.

In the RGB domain, there exist multiple instances of syn-
thetic datasets [12, 13, 35, 3, 6] which were generated using
a virtual environment. However, only a very limited amount
of research focuses on generating synthetic datasets in the
thermal domain. In this paper, we propose a pipeline to
generate synthetic thermal datasets. Generating such data
gives the possibility to address different scenarios with very
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few instances in real life that are hard to replicate through
physical testing setups. One such scenario is the depiction
of humans falling into bodies of water in an outdoor en-
vironment. As these instances occur rarely and often un-
der life-threatening conditions, it is very difficult to obtain
data of such scenarios. Only a few datasets for this problem
currently exist containing voluntary falls [7] and the use of
dummies [29]. The foremost drawback of generating such
data via intentional jumps [7] is that it might get intermit-
tently dangerous due to unpredictable circumstances. The
use of a dummy [29] on the other hand, requires a time-
consuming preparation process and also has only a limited
degree of freedom to add variations. As a consequence, it
is difficult to obtain a large and varied dataset using either
method, rendering deep neural networks and/or machine
learning models inapplicable to this problem domain. We
therefore propose an approach to generate a synthetic ther-
mal datasets, and apply it to the concrete use-case of human
fall detection at harbor fronts. It is important to mention,
that given the modular nature of our proposed data genera-
tion approach, it could be easily modified to create synthetic
thermal datasets for almost any application domain, with the
only requirement of providing initial real-life images of the
environment that can be used as background.

For demonstration purposes, we trained two classic Con-
volutional Neural Networks, AlexNet [24] and ResNet-18
[15], using supervised learning on our proposed synthetic
fall dataset and tested the model on real [7] and semi-real
(dummy) datasets [29]. The best model results in 98.70%
accuracy and a sensitivity rate of 100% on real data con-
stituting of intentional falls, indicating that our synthetic
dataset contains a good approximation of the distribution
of real-world human fall scenarios. The contribution of this
work to video surveillance in the thermal domain is two-
fold:

1. A synthetic data generation pipeline in which uniquely
generated foreground objects are combined with real
background footage

2. The application of our proposed pipeline to generate a
synthetic fall dataset for people falling into water

The rest of the paper is structured as follows: The next
section provides an overview of existing research in syn-
thetic datasets and the fall detection domain. Section 3 de-
scribes the data generation process and the standard clas-
sification models used in this research. Our experimental
setup is mentioned in Section 4, which is then followed by
results and discussion in Section 5. We finally conclude our
research with its possible future directions in Section 6.

2. Related Work
Synthetic Datasets in Thermal Domain. The enforce-
ment of the new GDPR [32, 2] law by the European Union

has turned the acquisition of large-scale personal visual data
into a challenging task. Under these circumstances, and
given the fact that deep learning networks are very data-
hungry, we have experienced a paradigm shift towards the
generation of synthetic datasets for sensitive data. In the
thermal spectrum domain, there exist two methods for gen-
erating synthetic data: (1) Mapping straight from the RGB
domain, and (2) using virtual environment engines.

In the domain of deep learning, the use of approach (1)
is commonly achieved by means of Generative Adversar-
ial Networks (GANs). This takes either place in a super-
vised (paired data) or an unsupervised (unpaired data) set-
ting [22, 39, 17, 40, 21]. Research [17, 22] shows, however,
that the usage of supervised GANs [17, 21] delivers better
results than its unsupervised counterpart [40] because of the
presence of RGB-thermal image pairs. Since we only have
thermal video footage at our disposal for the purpose of this
project though, the usage of supervised GANs is not appli-
cable.

With respect to approach (2), only a few instances gen-
erating thermal datasets synthetically using virtual environ-
ments [33, 6, 8] exist to date, even though there are numer-
ous such environments for generating synthetic data in the
visual spectrum: CARLA used for Advance Driver Assis-
tance System (ADAS) [11], VIVID [25] for indoor navi-
gation, Gazebo [23] for simulating multi-robot, and Habitat
2.0 [36] for home assistants. Apart from that, other research
[33, 6, 8] uses game engines such as Unity [14] and Unreal
[28] to generate photo-realistic synthetic data. Pramerdor-
fer et al. [33], for instance, generate synthetic depth and
thermal images showing human behavior captured in indoor
environments using Blender [10] while Blythman et al. [6]
generate synthetic thermal human heads placed in cars us-
ing Zephyr [1]. Bongini et al. [8] use Unity [14] to generate
synthetic thermal videos by combining 3D foreground ob-
jects with the real background images in autonomous driv-
ing scenarios. Following this trend of synthetic data gen-
eration in the thermal spectrum domain, we consequently
propose to generate a synthetic thermal dataset for human
fall detection using Unity [14]. Similarly to the work in
[8], the proposed approach generates our dataset images by
blending synthetic foreground objects with real background
scenes. These are obtained from the Long-term Thermal
Drift (LTD) dataset [30].

Fall Detection. Fall incidents in outdoor scenarios, like
people falling into water [7, 27, 29] or on the street [31, 26],
have only received little attention in recent years. There ex-
ists qualitative research [31, 26] addressing cases of falls in
outdoor scenarios such as sidewalks, streets, and garages,
but it still remains difficult to capture such moments using
surveillance cameras. One reason for this is that there is an
insufficient amount of samples available, especially when it
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Figure 2: Synthetic Data Generation and Fall Detection Pipeline: Our synthetic data is limited to three frames at t, t +
1, t+2. After merging each of them individually with the extracted background frames, they are stacked together in order to
encode temporal information.

comes to people falling into water. One of the first works to
address the problem was done by Bonderup et al. [7]. Here,
a pipeline consisting of person detection, person tracking,
fall prediction, and fall detection is proposed in the thermal
domain. Additionally, Bonderup et al. [7] generated a ther-
mal fall dataset asking people to perform intentional jumps
into water. A few years later, Nikolov et al. [29] proposed
a semi-real dataset for human fall detection simulating fall
scenarios in the thermal domain using a dummy. The au-
thors make use of calculated optical flow maps around a
specific area of interest in order to detect falls.

In this research, we address the human fall detection
problem using a supervised classification approach. The
related works described so far suffer from significant lim-
itations as the datasets are captured in controlled conditions
and hence contain only very limited variations. Our inten-
tion is to fill this gap and present a synthetic dataset that can
serve as an extensive source of diverse human fall scenarios.

3. ThermalSynth: Proposed Method
The main objective of this research is to present an ap-

proach to create a pipeline for synthetically generating ther-
mal datasets using a 3D environment. We also demonstrate
its application for creating synthetic human falls into water
regions at harbor fronts. This section contains the building
blocks of ThermalSynth, our thermal synthetic data gen-
eration process followed by its application for human fall
detection. The entire pipeline for our proposed method is
shown in Figure 2.

Images are generated by merging real thermal back-
grounds with synthetic people generated in Unity [14]. The
real videos are obtained from the LTD dataset [30], which

is very diverse in terms of different weather conditions as
it encapsulates video data for 8 months (January-August)
from a single camera view. Such single-scene recordings
are most common in video surveillance setups. The main
elements of our synthetic data generation pipeline are as
follows: (1) Background Extraction, (2) Foreground Gen-
eration, (3) Thermal Shader and (4) Post-Processing. Each
of these steps is explained in detail in the following subsec-
tions.

3.1. Background Extraction

All background scenes are extracted from the LTD
dataset [30]. It contains 298 hours of single-scene videos,
with a resolution of 384 × 288, and captures a single camera
view. Each video is 2 minutes long, and all are uniformly
spaced out throughout 24 hours of the day. In order to cre-
ate the backgrounds, a temporal median filter is applied to
the dataset. This is done as a two-step process: At first, the
videos are coarsely sampled at 1 frame per second (FPS) in
order to manage the computational complexity. Secondly,
the median value for each matching pixel across all frames
for each 2-minute video is computed. The temporal median
filter is solely applied to the harbor area, in order to retain
other movements caused by the water and other moving ob-
jects close to the camera due to wind like wires, ropes, and
masts. This is done by manually creating a mask of the parts
of the scene where the filter should be applied. To limit the
complexity of our dataset, we uniformly sample 69 hours of
video from the LTD dataset to extract the backgrounds. The
sequence of those extracted background frames is kept as
given in the original video in order to retain the fluency of
non-object motions such as clouds, waves, and wires. We
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stacked three consecutive frames together, which are later
blended with the synthetic foreground as also shown in Fig-
ure 2.

3.2. Foreground Generation

For the generation of our synthetic thermal foreground
videos the game engine Unity [14] was chosen. Depicting
different scenarios of people walking and falling into wa-
ter at the harbor, these synthetic videos are later merged
with the created background instances. Generating syn-
thetic videos is also a two-part process. First, the 3D mod-
els of people are selected together with a number of anima-
tions for walking, running, jumping, falling, etc. Mixamo
[5] is used to select these 3D models and animations, as it is
a free-to-use library of human-looking characters, together
with motion-captured animations. Examples of some of the
character models used are shown in Figure 1c. We choose a
total set of 79, 998 unique foreground video sequences de-
picting jumps and falls, each comprising three consecutive
frames.

As the next step, the parameters of the chosen thermal
camera for recording the LTD dataset (see [16] for details)
are transferred to the Unity camera. To do so, the Universal
Render Pipeline in Unity is used together with the phys-
ical camera settings. The parameters are given in Table
1. A synthetic scene is then modeled with primitive ob-
jects in Unity in places where real objects can obscure the
view of the camera of people walking on the street. Real-
world objects deemed necessary to be modeled are selected
heuristically after observing videos from the LTD dataset.
The Unity camera’s position and orientation are then set to
best match the position of the real-world one. The resulting
synthetic scene in Unity can be seen in Figure 1b, where
the modeled obscuring objects are shown in pink, the back-
ground from the real images in green, and the waterfront in
gray, together with a synthetic person falling. The real back-
ground is visualized on a rendered texture behind the syn-
thetic scene. We then use the Perception package [37] pro-
vided by Unity [14], to generate a large number of combi-
nations of 3D meshes, animations, and backgrounds. These
masks of rendered people are used in the post-processing
step to better blend the synthetic foreground with the back-
ground. The next step is to transform the generated syn-
thetic pedestrian footage from RGB to thermal domain us-
ing a custom shader. An overview of the steps for creating
the shader is given in the next section.

3.3. Thermal Shader

Once the synthetic pedestrians (foreground) are gener-
ated, together with their segmentation masks, their RGB
representation needs to be transformed into a thermal one.
The thermal shader used in our approach is inspired by
Kane et al. [18]. It uses the Stefan-Boltzmann law to com-

Thermal Camera
Zoom Resolution Frame Rate Lens FOV
Fixed 384× 288 25/30 FPS 25mm 21.7◦

Emissivity Values
Human Skin Cotton Asphalt Water Snow

0.95 0.95 0.95 0.93 0.90

Table 1: Parameters of thermal camera used in the LTD
dataset [30], Emissivity coefficients of materials found in
our scenes, taken from [18]

pute the black body radiation (j∗) of an object given by
Equation 1, where T is the absolute temperature of the ob-
ject in Kelvins, ϵm represents the thermal emissivity of the
material, and σ is the Stefan-Boltzmann constant equalling
to 5.6704× 10−8 W

m2K4 .

j∗ = ϵm σ T 4 (1)

To translate this in the context of a shader we first find
the emissivity values of some of the materials that would be
part of the generated pedestrians. In our case, we simplify
this to human skin and clothes. Values for both of these
are given in the article written by Kane et al. [18]. We
have listed these together with the emissivity values of other
materials for comparison in Table 1. Next, for the absolute
temperature in Kelvin, we select an average value of 300.5
for simplifying the generation process.

Once we have these initial values, we follow the ap-
proach described by Kane et al.. The albedo texture color of
each pixel is transformed to luminance (L) using Equation
2, where R, G, and B, are the red, green, and blue color
channels, respectively.

L = 0.2126 ·R+ 0.7152 ·G+ 0.0722 ·B (2)

As presented in the article [18], the calculated lumi-
nance is then used to approximate color emissivity (ϵc) us-
ing Equation 3, by using the average color emissivity of a
white color surface of 0.84 and the percent difference be-
tween white and black object emissivity of 0.15.

ϵc = (1− L) · 0.15 + 0.84 (3)

The material and color emissivities are then blended us-
ing a blend factor of 0.31. The final blended value is fur-
ther used in the Stefan-Boltzmann equation shown in 1. Fi-
nally, the calculated thermal radiation value for each pixel is
mapped to an intensity range between [0, 1] so it can be dis-
played by Unity. A gain (G) and level (L) control are made
available for the final pixel value p using Equation 4, so
that manual adjustment can be possible. For the purpose of
this paper, these values were manually set to G = 0.05 and
L = 20 as these provided the blending with the extracted
backgrounds (this effect is visualized in Figure 5).
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Figure 3: Post-processing Pipeline: Starting from left the original image generated through applying a thermal shader on a
character taken from Mixamo [5], Gaussian filter with kernel size 3x3, random noise applied, and finally DCT compression
artifacts added based on Kane et. al. [18]. The final result is the sum of all single instances.

p = (j∗ ·G) + L (4)

Once the foreground pedestrian footage is transformed
into thermal, the next step is to blend it with the extracted
real backgrounds. To do this, a number of post-processing
steps are implemented which are discussed in the next sec-
tion.

3.4. Post-Processing

In practice, thermal camera sensors are susceptible to
capturing noise from the environment [18], which together
with compression artifacts from storing videos may degrade
the visual quality of captured footage. Bhatia et al. [4] pro-
pose a post-processing stack of image effects for simulat-
ing infra-red sensors and their specific characteristics. We
choose three prominent effects based on Kane et. al. [18]
from those - blurring, random noise, and compression ar-

(a) (b)

(c) (d)

Figure 4: Results of synthetic thermal frame generation
pipeline: Successful frames are shown in 4a and 4b where
foreground objects, i.e., humans can be distinguished from
background, and unsuccessful ones in 4c and 4d where fore-
ground can’t be discriminated from background.

tifacts. Together with the already implemented part of the
thermal shader with gain and level processing, these effects
help blending the real and synthetic parts of the image into
one coherent picture.

1. Gaussian blur: Rendered objects in Mixamo [5] con-
tain sharp or jagged edges in comparison to real ob-
jects. Blurring artifacts are therefore introduced to
the area around the synthetic humans using a (3 × 3)
Gaussian kernel.

2. Random noise: The degree of sensitivity of image
sensors used to capture real-life footage by means of
thermal cameras often introduces random noise. Miti-
gation of this effect is achieved through the application
of random noise to our rendered figures by generating
uniformly distributed random numbers, and through
linear interpolation between this value and the ren-
dered foreground one.

3. Compression artifacts: Mosquito Noise and Block
Artifacts appear to be the most common side-effects
caused by flawed compression algorithms that are im-
plemented in thermal cameras which make use of
block-based Discrete Cosine Transform (DCT) [19].
In order to account for this imperfection, additional
encoding and decoding of the foreground character be-
come necessary. Hence, the image is firstly converted
into JPEG format, which performs DCT compression
by default, setting the quality value to 5 (on a scale
from 0 to 100), and secondly it is decoded to retrieve
its compressed form.

4. Compositing: To blend the post-processed synthetic
person into the real background image, screen com-
positing mode is used. Being a compositing technique
that preserves the edges of the foreground mask, for
images that come in 8-bit integer precision the com-
posited image can be calculated using Equation 5:

C = 255− (255− F )× (255−B)

255
, (5)
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Figure 5: Illustrating the effect of different Gain (G) and Level (L) ranges on the appearance of the foreground. G=0.05 and
L=20 generate the most realistic thermal appearance.

with C equalling the composited image, B to the real
background, and F to the synthetic foreground. Example
final results from the synthetic thermal image generation
including post-processing that is visualized in Figure 3 can
be seen in Figure 4. Success and failure are determined
based on how well the synthetic foreground elements blend
visually into the real background scenery. In comparison,
decisive attributes encompass the level of visibility of the
foreground compared to the background, and differentiation
between different body parts, such as extremities, torso, and
head, for example.

3.5. ThermalSynth for Human Fall Detection

We use the pipeline explained earlier in this section to
generate a synthetic thermal dataset of humans falling into
water. This dataset is kept very simplistic by restricting
it to a limited number of human fall animations, as it is
primarily serving demonstration purposes. We further use
this dataset to train two classic Convolutional Neural Net-
works, AlexNet [24] and ResNet-18 [15], using supervised
learning in order to perform human fall detection. The fall
detection problem is modeled here as a binary classifica-
tion one with our two classes being defined as fall and no
fall, respectively. As mentioned earlier in this paper, Ther-
malSynth is not limited to this particular application area.
Thanks to the generic design, it is applicable to a wide range
of surveillance scenarios that take place in the thermal do-
main.
Besides privacy, another major advantage of using synthetic
datasets for training machine learning models is that annota-
tions can be generated automatically as part of the data cre-
ation process. These automatic labels are highly accurate
in comparison to manually annotated ones. The absence
of such noise during the training process of machine learn-
ing models results in more robust prediction performances.
Based on the achieved results described in the upcoming
section it can be observed that models trained on synthetic
data perform almost perfectly when tested on real-world
data.

4. Experiments
4.1. Datasets

We evaluate the performance of our models on two
datasets with real thermal surveillance footage: Intentional
Fall Dataset (real) [7] and Dummy Dataset (semi-real) [29].
Both of these datasets contain only a very limited number
of samples and thus would result in severe overfitting when
used to train a neural network. We therefore use our pro-
posed synthetic dataset for training the models instead, and
use the other two datasets for test purposes only.

Intentional Fall Dataset The Intentional Fall dataset was
collected by Bonderup et al. [7]. It was recorded in the ther-
mal domain and visualizes scenarios of a variety of jumps
into water performed by volunteers. Out of the manually
annotated thermal video footage (captured during Spring
2016) a subset was chosen that depicts the same harbor
scene as the LTD dataset [30]. On concatenation of three
consecutive frames into a single batch as an RGB image,
the test set ends up consisting of 77 samples in total, out of
which 18 are denoted as fall, and 59 as no fall.

Dummy Dataset The Dummy dataset, interchangeably
also called mannequin or rubber doll dataset by its au-
thors [29], was introduced in order to show that an air-filled
rubber doll presents a sufficient representation of humans
when generating thermal video footage that targets the de-
tection of human falls into water. The authors of [29] gener-
ated a thermal video dataset (captured during the months of
September - October 2021) that depicts artificially arranged
emergencies at a harbor front. For the sake of this work, the
videos are also parsed in a way that allows for the compres-
sion of three consecutive frames into a single batch in form
of an RGB image. This leads to a Dummy test set which
consists of 1, 626 frames out of which 580 were categorized
as fall, and 1, 046 as no fall.

4.2. Evaluation Metrics

All our models are evaluated in terms of sensitivity,
specificity, and accuracy. Accuracy describes correctly clas-
sified falls and no falls over all cases. Sensitivity describes

135



correctly detected falls over all fall cases. Specificity on the
other hand concerns correctly classified no falls over all no
fall. For the purpose of solving fall detection tasks, those
systems with high sensitivity are preferable as it is crucial
to detect as many fall cases as possible even at the expense
of falsely classifying few no fall cases. Not achieving this,
i.e., missing falls, may possibly result in a person drowning.

4.3. Implementation Details

Since fall detection in water regions can be considered
as a special scenario of binary classification, we employ
two standard classification networks, i.e., AlexNet [24] and
ResNet-18 [15], which are trained solely on the proposed
synthetic thermal data. Due to the simplicity of the problem,
we refrain from proceeding with more complex architec-
tures at this leads to overfitting, and a significant decrease
of the system’s performance.

Training. Before launching the training of the networks,
the generated synthetic images are pre-processed by crop-
ping only the water area. Since this results in a trapezoidal
image, it is further warped using warpPerspective function
from OpenCV to convert it into a rectangular shape. After-
wards, three consecutive frames are concatenated to gener-
ate a single tensor of size 185× 115× 3. An equal number
of fall and no fall images (69,000) are used for training the
baseline models. For the validation of our classification net-
works, 34,596 images (with 17,298 fall and 17,298 no fall)
are sampled, and the model with the best validation accu-
racy is saved for further evaluation. The used architectures
converged at epoch 20 using a batch size of 32. Stochastic
Gradient Descent (SGD) [34] with a learning rate of 10−3

is used for optimizing the neural network. PyTorch imple-
mentations of our baseline models were chosen and trained
using a single NVIDIA RTX 2080 Ti series GPU.

Testing. The performance of our models is evaluated on
three test sets coming from three different sources [7, 29] in-
cluding ours, described in Subsection 4.1. Both datasets for
people fall detection, i.e., Intentional Fall [7] and Dummy
[29], do not contain any annotations for fall classification.
These were created by means of manual frame-level anno-
tations categorizing them as fall or no fall, respectively.

5. Results and Discussion
The evaluation of our fall detection approach leads to the

results recorded in Tables 2 and 3. These numbers prove
that our synthetically generated data provide a good ap-
proximation of the distribution of fall scenarios in the ex-
isting datasets and hence constitute a justified choice for
training deep neural networks. Significant growth in clas-
sification accuracy is observed when we use the synthetic

Accuracy (↑)

Network Synthetic
Dataset

Intentional
Fall Dataset

Dummy
Dataset

AlexNet 99.52 98.70 75.00
ResNet-18 98.75 89.61 75.00

Table 2: Comparing accuracy in % of the two baseline clas-
sification networks. The networks are trained on our pro-
posed Synthetic dataset and tested on a different subset of
the Synthetic dataset, together with the full Intentional Fall,
and Dummy datasets.

Intentional Fall Dummy
Network Sens.(↑) Spec.(↑) Sens.(↑) Spec.(↑)
AlexNet 100.00 98.00 41.00 98.00
ResNet-18 94.00 88.00 57.00 88.00

Table 3: Comparing Sensitivity (Sens.) and Specificity
(Spec.) in % of the two baseline classification networks
trained on our proposed synthetic dataset and tested on In-
tentional Fall and Dummy dataset, respectively. Higher val-
ues indicate better systems.

thermal dataset for training and testing. We are, however,
unable to reach a similar performance when testing on the
Dummy dataset, where both network models reached a 75%
classification accuracy. The assumption is that the dummy
constitutes a very limited representation of a human when
falling/thrown into water. This is additionally supported
by the results which are given in Table 3. It can be seen
that both networks achieve high specificity on both the In-
tentional Fall and Dummy datasets. This, however, comes

(a) AlexNet (D) (b) AlexNet (IF)

(c) ResNet-18 (D) (d) ResNet-18 (IF)

Figure 6: Confusion Matrices for AlexNet and ResNet-18
during tests on the Dummy (D) and the Intentional Fall (IF)
Datasets.
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with the caveat that both datasets can be described in a bi-
nary way and consist of only frames of either people and
dummies falling or not falling into water. The datasets do
not contain the third category of objects being in the water
without being classified as a person falling into water. In
real-world use cases, this category has a very strong possi-
bility of emerging - for example birds landing in the water,
boats passing in front of the camera, people throwing ob-
jects into water, etc. From this perspective, the high speci-
ficity and accuracy of our results should be viewed as ideal
cases. Automated emergency detection systems need to be
robust against false positive detections, as a high number of
these can result in diverting resources and drowning out real
ones in noise.

Figure 6 illustrates the confusion matrices determining
correct and incorrect classifications in case of fall and non-
fall events for both Dummy and Intentional Fall datasets.
Looking at these values proves that both our models have
great difficulties when having to correctly classify actual
fall images as fall when tested on the Dummy dataset. In
other words, out of 41 falls given in this dataset, AlexNet
is capable of correctly classifying only 17 of them as fall
whilst ResNet-18 is performing slightly better with a to-
tal of 23 falls. Comparing qualitative classification perfor-
mance on the Intentional Fall dataset, however, indicates
that AlexNet would be the ideal candidate leaving no falls
undetected.

Last but not least, we would like to address the choices
made with respect to emissivity values during this research.
In contrast to the source of values reported in Table 1, i.e.,
[18], previous works [38, 9] have shown that these values
can be taken from a great range of possibilities: Cotton,
wool, and PET, for instance, lay between 0.7 and 0.83, as
shown by [38]. In this work, we choose a consistent value
of 0.972 to make the proposed synthetic dataset appear vi-
sually closest to the thermal domain. Additionally, we ap-
ply this emissivity value uniformly to the entire foreground
image for simplification purposes.

In addition to the implicit judging of the quality of our
dataset by training deep neural networks on it and testing on
real-world surveillance footage, we also verify the quality-
level of our data implicitly via visual inspection. Some ex-
amples of synthetic humans and real humans as foreground
objects are shown in Figure 7. The synthetic humans in
Figure 7 (left) contain the same overall texture from head
to toe, whereas real humans shown in Figure 7 (right) show
variations in appearance based on the types of clothes and
additional accessories, e.g., bags. We plan to extend this
work by applying a part-based thermal shader, where dif-
ferent emissivity values to different parts of the foreground
are applied. The example of different parts when we con-
sider humans as our foreground objects are head, torso, and
legs etc.

Real ImagesSynthetic Images

Figure 7: Real vs. Synthetic Left: Final synthetic images;
Right: Real frames taken from the LTD dataset [30]

.

6. Conclusion and Future Work
In this paper we introduced ThermalSynth, a pipeline for

creating synthetic thermal images showcasing one possible
application of people falling into water. For generating the
foregrounds we use Unity together with rigged, animated
3D models and a custom thermal shader based on the black
body radiation equations along with the Stefan-Boltzmann
law. To mimic CCTV camera footage, we implemented
a four-stage post-processing pipeline which introduces ad-
ditional image distortion and finally blends the foreground
and background parts. We use this pipeline to create a syn-
thetic thermal dataset of people falling into water and fur-
ther train two standard classification models, AlexNet and
ResNet-18, to detect fall cases. We test the models on a
combination of synthetic 3D model falls, real-person falls,
and simulated falls using a dummy. We show that the stan-
dard models achieve very good results in the given context
proving the usability and potential of ThermalSynth for cre-
ating rarely observed emergency scenarios and enriching
existing real thermal datasets with synthetic data.

A possible negative societal impact of this dataset is that
it reveals different jumping and falling behavior patterns of
humans. At the same time, however, this study could save
many human lives. We plan to extend this research by intro-
ducing additional 3D models to the generation pipeline like
vehicles, boats, birds, moving parts of the foreground, etc.
in order to possibly use the dataset for multi-class classifica-
tion tasks and more robust emergency detection in real-life
production scenarios.
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