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Abstract

Multi-View Detection (MVD) is highly effective for oc-
clusion reasoning in a crowded environment. While re-
cent works using deep learning have made significant ad-
vances in the field, they have overlooked the generaliza-
tion aspect, which makes them impractical for real-world
deployment. The key novelty of our work is to formalize
three critical forms of generalization and propose experi-
ments to evaluate them: generalization with i) a varying
number of cameras, ii) varying camera positions, and fi-
nally, iii) to new scenes. We find that existing state-of-the-
art models show poor generalization by overfitting to a sin-
gle scene and camera configuration. To address the con-
cerns: (a) we propose a novel Generalized MVD (GMVD)
dataset, assimilating diverse scenes with changing daytime,
camera configurations, and a varying number of cameras,
and (b) we discuss the properties essential to bring gener-
alization to MVD and propose a barebones model incorpo-
rating them. We present comprehensive set of experiments
on WildTrack , MultiViewX and the GMVD datasets to moti-
vate the necessity to evaluate the generalization abilities of
MVD methods and to demonstrate the efficacy of the pro-
posed approach. The code and dataset are available at
https://github.com/jeetv/GMVD.

1. Introduction

“Essentially all models are wrong, but some are useful.”

— George E. P. Box
In this work, we pursue the problem of Multi-View De-

tection (MVD), a mainstream solution for dealing with oc-
clusions, especially when detecting humans/pedestrians in
crowded settings. The input to MVD methods is images
from multiple calibrated cameras observing the same area
from different viewpoints with an overlapping field of view.
The predicted output is an occupancy map [9] in the ground
plane (bird’s eye view). The solutions of MVD has evolved
from classical methods [9, 3, 1], to hybrid approaches [18]

Figure 1. Three forms of generalization required in MVD: (a) vary-
ing number of cameras, (b) different camera configurations, and
(c) generalizing to new scenes.

to end-to-end trainable deep learning architectures [13]. Ex-
pectedly, the current landscape of MVD is dominated by
end-to-end trainable deep learning methods [13, 12, 27].
We argue that by training and testing on homogeneous data,
current deep MVD methods have overlooked critical fun-
damental concerns, and to render them useful, the focus
should shift towards their generalization abilities.

Ideally, three forms of generalization abilities are essen-
tial for the practical scalability and deployment of MVD
methods, which is illustrated in Fig. 1:

1. Varying number of cameras: The model should adapt
to a varying number of cameras (a network trained on
six camera views, should work on a setup with five
cameras).

2. Varying configuration: The model should not overfit
to the specific camera configuration. The performance
should be similar even with altered camera positions,
as long as they span the dedicated area.

3. Varying scenes: Models trained on one scene should
work on another (model trained on a traffic signal
should work on a setup inside a university).

Surprisingly, the existing deep learning-based MVD meth-
ods are primarily trained and tested with the same camera
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Figure 2. The train and test sets of WildTrack (first row) and Mul-
tiViewX datasets (second row) have significant overlap. We show
the last image of the training set (left) and the first image of the test
set (right). In both datasets, the appearance of several pedestrians
is already seen in the training set. In WildTrack , there are many
static pedestrians as well.

configuration, on the same scene, using the same number of
cameras. Even the environmental conditions (time, weather,
etc.) are similar across train and test splits. For instance, the
most commonly used WildTrack dataset [6] includes a 200-
second recording from all cameras, where the first 3 min-
utes are used for training and the rest of the 20 seconds are
used for testing. We argue that the current state-of-the-art
(SOTA) methods are seriously hindered from the deploy-
ment perspective. The current models [13, 12, 27] break if
a camera malfunctions and is unavailable during inference.
Additionally, they require retraining if a camera needs to be
added to the setup. Furthermore, our experiments show that
the performance significantly drops if the camera positions
or the scene is varied. The SOTA models also overfit to the
order in which the cameras are sent to the model (i.e they
are not permutation-invariant).

The absence of a diverse dataset is a major shortcoming.
The available datasets: WildTrack (real) and MultiViewX
(synthetic), comprise a single short sequence, where ini-
tial frames are used for training and later for testing. In
Fig. 2, we show that the evaluation strategy in both datasets
is unreliable and prone to overfitting. To this end, we pro-
pose a novel Generalized MVD (GMVD) dataset. Given
the privacy concerns, COVID restrictions, hardware setup
difficulties, the requirement of manual annotations, etc., we
believe curating a sizeable synthetic dataset is the right way
forward. Hence, we use Unity and the Grand Theft Auto
(GTA) game environment to capture the GMVD dataset. It
includes about 53 sequences captured in 7 different scenes
with significant variations in camera configuration, weather,
lighting conditions, pedestrian appearance, etc. The num-
ber of cameras also varies across scenes. We use 6 scenes
for training and 1 scene for testing. The proposed GMVD
dataset sets up a new benchmark for evaluating MVD with

generalization. It further allows reserving valuable real-
world footage [6] directly for testing.

Furthermore, we suggest design guidelines to ensure the
practical usability of Deep MVD methods. We demonstrate
that permutation invariance, transfer learning, and regular-
ization are vital for generalization. We improve the base-
line architecture [13] with appropriate changes and estab-
lish SOTA generalization for MVD. We want to emphasize
that our work pivots around the barebone baseline architec-
ture and does not claim any significant architectural novelty.
The focus of our work is to address the critical limitations of
Deep MVD models from an application perspective. Over-
all, our work makes the following contributions:

1. We conceptualize and emphasize the importance of
generalization in MVD and propose a novel GMVD
dataset for the same.

2. We highlight the shortcomings of the current evalua-
tion methodology and propose novel experimental se-
tups on existing datasets.

3. We adapt the baseline architecture to bring generaliza-
tion to deep MVD. We show that permutation invari-
ance is crucial for MVD and average pooling is one
minimal way to achieve it. We propose a novel drop
view regularization.

4. We back our claims using an extensive set of experi-
ments and ablation studies. We show staggering im-
provements in scene and configuration generalization,
paving the way for a practicable MVD.

2. Related Work
2.1. Classical Methods

Seminal work by Fleuret et al. [9] casts MVD as pre-
dicting occupancy probabilities over a discrete grid, an idea
which has stood the test of time. The classical methods in
MVD rely on background subtraction to compute likelihood
over a fixed set of anchor boxes derived using scene geom-
etry, project them on the top view and adopt conditional
random field (CRF) or mean-field inference for spatial ag-
gregation [9, 3, 1]. The classical methods, however, ob-
serve a gradual degradation in detection performance with
increased crowds, as the background subtraction becomes
less effective with an increase in crowds and clutter. Some
methods do away with background subtraction and rely on
handcrafted classifiers [26] instead.

2.2. Anchor-based MVD

Anchor-based MVD methods replace background sub-
traction with anchor-based deep pedestrian detectors like
Faster R-CNN [25], SSD [21] and YOLO [24]. Some of
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Figure 3. The proposed GMVD Dataset includes seven scenes. Each column illustrates frames from one of the views from two different
sequences of the same scene. The first six scenes are used for training, and the last scene with two configurations are reserved for testing.
Additionally, there are noticeable lighting and weather variations within each scene.

Table 1. Dataset Statistics for various MVD datasets. Our proposed GMVD dataset is the largest and most diverse dataset on a variety of
metrics. Avg. coverage refers to the average number of cameras that cover each point on the ground plane.

Dataset Track Labels IDs # Scenes # Training Frames # Testing Frames # Cameras # Sequences Avg. Coverage

WildTrack ✓ 313 1 360 40 7 1 3.74
MultiViewX ✓ 350 1 360 40 6 1 4.41
GMVD (Ours) ✓ 2800 7 4983 1012 3, 5, 6, 7, 8 53 2.76 - 6.4

these methods process each view separately [30] and some
process them simultaneously [2, 7]. The inaccuracies in
the pre-defined anchor boxes [18] limit the performance
of these methods. Even if the boxes are correct, locating
the exact ground point to project in each 2D bounding box
presents a challenge and leads to significant errors. More-
over, some of the anchor-based methods still rely on oper-
ations outside of Convolutional Neural Networks (CNNs),
requiring working out a balance between different potential
terms [2].

2.3. End-to-end Deep MVD

MVDet [13] is a recent anchor-free approach that aggre-
gates multi-view information by perspective transformation
and concatenating multi-view feature map onto the ground
plane and then performs large kernel convolution for spa-
tial aggregation. It overcomes limitations of manual tuning
of CRF potentials, reliance on pre-defined 3D anchor boxes
and projection errors from monocular detectors. It aggre-
gates projected features from a ResNet [11] backbone us-
ing three convolutional layers to predict the final occupancy
map. MVDet achieves notable improvement over the pre-
ceding anchor-based methods (over 14% improvement on
the WildTrack dataset [6]). The idea from [13] was further
enhanced by using deformable transformers [32] to improve
the feature aggregation in MVDeTr [12]. More recently,
SHOT [27] introduced a combination of homographies at
multiple heights to improve the quality of the projections.

3. Proposed Dataset
We propose a new MVD dataset incorporating the three

forms of generalization discussed above (Fig. 1). Some ex-
ample frames from the proposed Generalized Multi-View
Detection (GMVD) dataset are illustrated in Fig. 3. The

GMVD dataset contains diverse non-overlapping scenes
within and across training and test sets. In contrast, the ex-
isting MVD datasets WildTrack and MultiViewX include
noticeable overlap across train and test splits (single scene,
pedestrians appearance, and location), encouraging exist-
ing MVD methods to overfit the dataset-specific aspects and
thus hindering their practicality. The GMVD dataset, by its
design, prevents overfitting from happening by keeping a
clear separation in train and test splits.

Capturing a real-world MVD dataset is difficult, primar-
ily because of privacy concerns. The COVID restrictions
also restrict crowded human capture. Moreover, such a
dataset requires significant manual annotation effort. Con-
sequently, we curate the GMVD dataset using synthetic en-
vironments. The GMVD dataset is curated using Grand
Theft Auto V (GTAV) and Unity Game Engine. We em-
ploy two different environments to avoid overfitting to a
single synthetic data generation source. This reasoning
is aligned with recent works [10, 31] which utilize multi-
source datasets to improve generalization performance. The
GMVD dataset includes seven different scenes, one indoor
(subway) and six outdoors. One of the scenes are reserved
for the test split. We vary the number of total cameras
in each scene and provide different camera configurations
within a scene.

Additional salient features of GMVD include daytime
variations (morning, afternoon, evening, night) and weather
variations (sunny, cloudy, rainy, snowy). We generate mul-
tiple short sequences for each scene while randomly varying
the daytime and the weather. The generation of multiple
random sequences ensures diversity, as different pedestri-
ans (with different clothing and appearance) are picked in
each case. The dataset also includes significant variations in
lighting conditions. Local illumination sources come into
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Figure 4. Our proposed architecture: ResNet features are extracted from the input views, which are then projected to the top view. Following
this, the projected features across views are pooled and then the final occupancy map is predicted. The use of average pooling across views
is crucial in ensuring that our proposed architecture can work for an arbitrary number of views.

play due to the presence of indoor and night scenes. We
compare our dataset with the existing ones in Table 1. avg.
coverage represents the average amount of cameras observ-
ing each location. For GMVD, avg. coverage varies from
2.76-6.4 cameras depending on the scene. In addition to
the discussed variations, GMVD is advantageous due to the
dataset size, especially in terms of the total number of indi-
vidual sequences.

We further encourage future methods to train on the
GMVD dataset and test their performance on sparsely avail-
able, difficult to capture real-world datasets like WildTrack
.

Dataset Generation: We used Script Hook V [4] li-
brary to interface with the GTAV environment. For each
scene, camera positioning and orientation were determined
manually so as to increase the camera coverage. All the
cameras were positioned above the humans’ average height.
Due to hardware limitation, it is commonplace to have a
small synchronization delay in real-world multi-camera se-
tups. To emulate such realistic scenario, we induce a small
synchronization error (20-100 ms) between different cam-
era views [17]. A ground plane was defined for each loca-
tion, partially overlapping with each camera’s field of view.
Only pedestrians inside the ground plane were considered
for multi-view detection. We relied on the GTA’s naviga-
tional AI engine to avoid collision and to obtain realistic
pedestrian behavior.

In the Unity environment, scenes are manually curated
by putting together 3D models of street, buildings and other
props. We used the PersonX [29] 3D human models to cre-

ate the pedestrians. To avoid collision errors (which are
present in MultiViewX dataset), for each frame, pedestri-
ans were spawned at random locations within the region of
interest.

Since both the environments are synthetic, the 3D-2D
correspondences were directly available from the game en-
gines. We use similar procedure as [13] for camera calibra-
tion.

Track Labels: Our work focuses on a comprehensive
analysis of the problem of Multi-View Detection. However,
the proposed dataset can also be useful for the task of multi-
view pedestrian tracking. To this end, for the sequences
generated from the GTAV environment, we collect the track
labels while capturing the data. While we do not use track
labels in this work, we provide them with the dataset, which
will be beneficial for the community in the future. We pro-
vide a total of 125000 frames with track labels. The GTAV
frames for the GMVD dataset are regularly sampled from
these densely annotated sequences.

4. Proposed Method

We propose an anchor-free deep MVD method along the
lines of [13, 12, 27] specifically tailored to improve the gen-
eralization abilities by modifying the training objective and
making use of an average pooling strategy on the projected
feature maps. The overall architecture is shown in Fig. 4.
The input to our pipeline are multiple calibrated RGB cam-
eras with overlapping fields of view, and the expected out-
put is the occupancy map for pedestrians.
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4.1. Feature Extraction and Perspective Transfor-
mation

Feature Extractor: We use a ResNet18 [11] backbone
as a feature extractor replacing last three strided convolu-
tions with dilated convolutions to have a high spatial reso-
lution of the feature maps. Given N camera views of image
size (3, Hi,Wi), where Hi and Wi corresponds to height
and width of images, C-channel features are extracted for N
camera views which corresponds to size (N,C,Hf ,Wf ),
where Hf and Wf represents the height and width of the
extracted features.

Perspective Transformation: The extracted features
from the feature extractor are then projected onto the ground
plane using a perspective transformation, where (Hg,Wg)
corresponds to the height and width of the ground plane
grid. Considering the calibrated cameras, K represents the
intrinsic camera parameters and [R|t] represents the extrin-
sic camera parameters (R is the rotation matrix and t is the
translation vector).

In the world coordinate system, the ground plane corre-
sponds to Z = 0, i.e., W = (X,Y, 0, 1)T . A pixel of an
image I = (x, y)T is transformed to the ground plane as
follows:

I = s

x
y
1

 = K[R|t]


X
Y
Z
1

 = P


X
Y
Z
1

 (1)

where s is a scaling factor and P is a perspective transfor-
mation matrix.

4.2. Spatial Aggregation

Average Pooling: We first project the ResNet feature
maps from each viewpoint on to the bird’s eye view using
the perspective transformation to obtain the projected fea-
ture maps fmi (where, i = 1, 2, ..., N). Following this,
we average pool the projected feature maps fmi to obtain
the final bird’s eye view feature representation F of size
(C,Hg,Wg), which is written as,

F =

∑N
i=1 fmi

N
. (2)

While there can be many other alternatives to average
pooling, we opt for this solution, primarily because it is
permutation-invariant. Unlike existing methods [13, 12,
27], where the camera views ideally need to be input in the
same order as training during inference, our proposed solu-
tion can accept arbitrary number of views in an arbitrary or-
der. Furthermore, the average pooling solution is free from
any learnable parameters which ensures that there is no
overfitting introduced due to this operation. The projected
feature maps for N cameras of size (N,C,Hg,Wg) after

Figure 5. An illustration of our proposed DropView regularization

average pooling, reduces to (C,Hg,Wg), thus removing the
dependency over the number of camera views thereby al-
lowing the model to take an arbitrary number of views as
input.

DropView Regularization: Inspired by Dropout [28] as
well as work on self-supervised learning which drops color
channels to prevent the model from memorization [15, 19],
we propose the DropView regularization technique. For
each sample, we randomly select one view to discard during
training iterations, as illustrated in Fig. 5. The occupancy
map prediction step is done with all the remaining views.
We provide a detailed analysis of the effect of this regular-
ization strategy in our experiments.

Occupancy Map Prediction: Similar to MVDet [13],
we use 3 dilated convolutional layers to predict the occu-
pancy map of size (Hg,Wg).

4.3. Loss Function

The loss function compares the output probabilistic oc-
cupancy map (p) with the ground-truth (g). Inspired by
the work on saliency estimation in images and videos [5,
23, 14], we use the combination of Kullback–Leibler Diver-
gence (KLDiv) and Pearson Cross-Correlation (CC) metrics
as a loss function. The final loss function can be written as:

L(p, g) =
σ(p, g)

σ(p)× σ(g)
−

∑
i

gi log

(
gi
pi

)
, (3)

where σ(p, g) is the covariance of p and g, σ(p) is the stan-
dard deviation of p and σ(g) is the standard deviation of g.
The loss function was selected empirically using the scene
generalization experiment, i.e. training on MultiViewX and
testing on WildTrack , where using KLDiv+CC gave best
results (compared with MSE, CC or KLDiv alone).

5. Experiments
5.1. Experimental setup

Datasets: In addition to our proposed GMVD dataset,
we use the WildTrack and MultiViewX datasets. The Wild-
Track dataset consists of 7 static calibrated cameras with
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Table 2. Comparison against the state-of-the-art methods. Our method refers to the proposed model in Section 4. We made five runs for
some of the experiments and the variances are presented in the bracket.

Method ImageNet
(pre-train)

WildTrack MultiViewX

MODA MODP Prec Recall MODA MODP Prec Recall

RCNN Clustering [30] × 11.3 18.4 68.0 43.0 18.7 46.4 63.5 43.9
POM-CNN [9] × 23.2 30.5 75.0 55.0 - - - -
Lopez-Cifuentes et al. [22] × 39.0 55.0 - - - - - -
Lima et al. [20] × 56.9 67.3 80.8 74.6 - - - -
DeepMCD [7] × 67.8 64.2 85.0 82.0 70.0 73.0 85.7 83.3
Deep-Occlusion [2] × 74.1 53.8 95.0 80.0 75.2 54.7 97.8 80.2
MVDet [13] × 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
MVDeTr [12] ✓ 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
SHOT [27] × 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
Ours × 87.2(±0.6) 74.5(±0.4) 93.8(±1.6) 93.4(±1.8) 78.6(±0.9) 78.1(±0.4) 96.8(±0.5) 81.3(±0.9)
Ours ✓ 85.4(±0.4) 76.7(±0.2) 95.2(±0.4) 89.9(±0.8) 86.9(±0.2) 79.8(±0.1) 97.2(±0.2) 89.6(±0.2)
Ours (DropView) ✓ 86.7(±0.4) 76.2(±0.2) 95.1(±0.3) 91.4(±0.6) 88.2(±0.1) 79.9(±0.0) 96.8(±0.2) 91.2(±0.1)

overlapping fields of view, covering an area of 12× 36m2.
The dataset comprises a single 200 second sequence anno-
tated at 2 fps. The image resolution is 1080 × 1920 pix-
els. The ground plane grid is discretized into a 480× 1440
grid, where each grid cell is 2.5 cm square. On average, the
dataset captures 23.8 persons per frame. The MultiViewX
dataset is a synthetic dataset which has similar configura-
tions as the WildTrack dataset. However, it consists of
6 static calibrated cameras with overlapping fields of view
and 400 synchronized frames of resolution 1080 × 1920 an-
notated at 2 fps for ground-truth covering an area of 16×25
m2. The ground plane grid is discretized into a 640× 1000
grid, where each grid cell is 2.5 cm square. On average, the
dataset captures 40 persons per frame. For both datasets, we
use the first 90% frames in training and the last 10% frames
for testing, as done in previous work [13, 6].

Evaluation metrics: We use the standard evaluation
metrics proposed in [6]. Multiple Object Detection Accu-
racy (MODA) is the primary performance indicator that ac-
counts for normalized missed detections and false positives,
i.e., it considers both false negatives and false positives.
Multiple Object Detection Precision (MODP) assesses the
localization precision [16]. Precision and Recall is calcu-
lated by Precision = TP/(TP+FP) and Recall = TP/(TP+FN)
respectively; where TP, FP and FN are True Positives, False
Positives, False Negatives. A threshold of 0.5 meters is used
to determine the true positives.

SOTA comparisons: We compare against nine different
methods. The set includes one monocular object detection
baseline (referred to as RCNN clustering [30]); a classical
probabilistic occupancy map method [9]; four anchor-based
methods [20, 2, 7, 22] and three recent end-to-end trainable
deep MVD approaches [13, 12, 27]. For generalization ex-
periments, we only compare against the recent state-of-the-
art methods MVDet [13], MVDeTr [12] and SHOT [27].

5.2. Implementation Details

Down sampled images of 720×1, 280 pixels serve as an
input to the model. The feature extracted from ResNet-18
has C = 512 channel features, which is bilinearly inter-
polated to get the shape of 270 × 480. These (N,C =
512, Hf = 270,Wf = 480) extracted features are pro-
jected onto top view to obtain (N, 512, Hg,Wg) sized fea-
tures for N viewpoints, which are average pooled to obtain
the ground plane grid shape of (512, Hg,Wg). Hg and Wg

vary from scene-to-scene, depending on the area of ground
plane.

The spatial aggregation has three layers of dilated con-
volution with a 3× 3 kernel size and dilation factor of 1, 2,
and 4. Training is done for ten epochs with early stopping;
we set batch size as 1, SGD optimizer with momentum =
0.9 has been used with one-cycle learning rate scheduler. A
probability of τ or more on the occupancy grid is considered
a detection. For GMVD experiments, τ is determined using
MultiViewX as a validation set, and for other experiments,
we use τ = 0.4 in alignment with the previous works. Non-
Maximal Suppression (NMS) is applied with a spatial reso-
lution of 0.5m. All training and testing have been performed
on a single Nvidia GTX 1080 Ti GPU. Unless specifically
mentioned, we always use pre-trained ImageNet [8] weights
while training our proposed model.

5.3. Results

Like prior works, we evaluate our approach on the Wild-
Track and MultiViewX datasets in Table 2. We find that
our proposed models attains satisfactory performance on the
test sets of both WildTrack (best MODA score of 87.2) and
MultiViewX (best MODA score of 88.2). This is slightly
worse than the recently proposed methods [12, 27], but is far
superior to the performance of the classical and the anchor-
based MVD methods. However, we would like to highlight
that the traditional evaluation protocol is highly misleading
since the train and test sets have significant overlap, thereby
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Table 3. Results for evaluating with a varying number of cameras. The model is trained on all 7 cameras on WildTrack , and is tested on 2
different sets of 4 cameras each.

Inference on {1,3,5,7} Inference on {2,4,5,6}
Method MODA MODP Prec Recall MODA MODP Prec Recall

MVDet 38.9 71.5 93.8 41.6 16.2 47.6 80.3 21.4
MVDeTr 55.8 76.7 80.8 73.2 34.6 69.2 68.6 63.8
SHOT 66.6 75.1 91.0 73.9 46.3 67.8 88.2 53.5
Ours 76.5 74.0 91.7 84.0 79.3 71.4 91.1 87.9
Ours (DropView) 77.0 74.5 90.3 86.2 79.2 72.5 88.6 90.9

Table 4. Experiments on the WildTrack dataset with changing camera configurations
Inference on {2,4,5,6} Inference on {1,3,5,7}

Method MODA MODP Prec Recall MODA MODP Prec Recall

Tr
ai

ne
d

on
ca

m
er

a
se

t

{2
,4

,5
,6
}

MVDet 85.2 72.2 92.6 92.5 43.2 68.2 94.6 45.8
MVDeTr 75.4 79.5 96.9 77.9 41.7 73.7 92 45.7
SHOT 81.9 74.1 94.1 87.4 51.4 72.5 94.4 54.6
Ours 81.8 73.5 93.5 87.9 66.5 71.4 94.3 70.8
Ours (DropView) 84.0 72.9 92.4 91.6 75.1 71.1 94.3 79.9

{1
,3

,5
,7
}

MVDet 27.8 68.7 90.8 31.0 78.2 73.6 89.5 88.6
MVDeTr 5.6 65.5 62.4 14.0 72.5 78.9 95 76.5
SHOT 15.3 62.9 89.2 17.4 79.7 76.4 95.7 83.5
Ours 52.4 67.4 81 68.5 76.4 74.6 91.5 84.1
Ours (DropView) 62.6 67.4 86.7 73.9 80.8 74.0 94.2 86

encouraging overfitting. Therefore, we emphasize the eval-
uation across a varying number of cameras, changing cam-
era configurations, and on new scenes.

Generalization to Varying Number of Cameras: An
interesting scenario that can potentially occur in practical
scenarios is the loss of some camera feeds due to various
issues. In this case, a model trained with 7 cameras, may
need to be able to perform inference with just 4 cameras.
To simulate this setting, we train all the models (MVDet,
MVDeTr, SHOT and Ours) on all 7 cameras and test them
on 2 different sets of 4 cameras ({1,3,5,7},{2,4,5,6})
in Table 3. Our proposed model is able to naturally work
in this setting without any issues. For MVDet, MVDeTr,
and SHOT, we randomly duplicate 3 of these views to en-
sure that 7 views are available. We observe that the per-
formance of MVDet, MVDeTr, and SHOT degrades dras-
tically when evaluated in this setting. When trained with
the DropView regularization, our proposed model outper-
forms these methods by a huge margin (MODA of 77.0 vs
66.6 and 79.2 vs 46.3). This experiment clearly illustrates
the need for the architectures to automatically work with
an arbitrary number of views. Furthermore, since MVDet,
MVDeTr, and SHOT learn a separate spatial aggregation
module for each view, the spatial aggregation module over-
fits to the order of input cameras (indicated by the signif-
icant performance variations across the two sets). Future
works should ensure that the model has permutation invari-
ance to the order of input views in addition to working with
an arbitrary number of views.

Generalization to New Camera Configurations: An-

Table 5. Scene Generalization : Evaluation of our method while
training on synthetic dataset (MultiViewX ) and testing on real
dataset (WildTrack ). Camera 7 of the WildTrack dataset was dis-
carded for the experiments in the first five rows.

Method
Inference on
total cameras

ImageNet
(pre-train) MODA MODP Prec Recall

MVDet 6 × 17.0 65.8 60.5 48.8
MVDeTr 6 ✓ 50.2 69.1 74.0 77.3
SHOT 6 × 53.6 72.0 75.2 79.8

Ours 6 ✓ 60.1 72.1 75.6 88.7
Ours (DropView) 6 ✓ 66.1 72.2 82.0 84.7
Ours 7 ✓ 69.4 72.96 83.7 86.14
Ours (DropView) 7 ✓ 70.7 73.8 89.1 80.6

Table 6. Changing configuration and scene generalization experi-
ment on the setting introduced in [27]

Method MODA MODP Prec Recall

MVDet 33.0 76.5 64.5 73.4
MVDeTr 56.5 70.8 85.0 68.6
SHOT 49.1 77.0 73.3 77.1
Ours 57.8 76.5 88.7 66.3
Ours (DropView) 66.1 75.8 89.3 75.2

other practical scenario that we explore is when the camera
positions are varied between the train and test sets. We train
all the models on two sets of camera views and then test
the trained models on both sets. The results are provided
in Table 4. When the models are evaluated on the same
camera configuration, all the models have satisfactory per-
formance. However, when evaluated on the different cam-
era configuration, MVDet, MVDeTr, and SHOT see a huge
degradation in performance. Our model is fairly robust to
the changing camera configuration. Especially when trained
with DropView regularization, the resulting model outper-
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Table 7. Comparison and evaluation of our method when trained on GMVD training set: first column shows the result on GMVD test set
and second column is when tested on WildTrack dataset.

Method
GMVD WildTrack

MODA MODP Prec Recall MODA MODP Prec Recall

MVDet 50.5 72.8 83.6 64.7 69.0 71.1 88.4 79.5
Ours 68.2 76.3 91.5 75.5 80.1 75.6 90.9 89.1

forms all other models by over 20 percentage points.
Scene Generalization: Finally, an important concern

with the practical utility of MVD methods is that since
real-world data is scarce, a trained model should be able
to generalize to new scenes. We first evaluate the scene
generalization abilities of the MVD methods by training
them on MultiViewX and evaluating them on WildTrack
in Table 5. Our proposed model is able to utilize the ex-
tra camera present in the WildTrack dataset and achieves a
MODA score of 70.7. This further highlights the benefits of
an architecture that works with arbitrary number of views,
since the performance during inference can be enhanced by
adding more view. However, even without the additional
view, our model achieves a MODA score of 66.1, which
is much higher than SHOT which only achieves a MODA
score of 53.6.

In addition to this, we perform the scene generalization
experiment proposed in [27] where the MultiViewX scene
is split into two halves, and each half is covered using 3
cameras each. In this setting as well (Table 6), our proposed
approach with DropView regularization has a MODA score
of 66.1, which is significantly higher than both SHOT (49.1)
and MVDeTr (56.5).

GMVD Benchmark: Having shown that our proposed
model is capable of comprehensive generalization abili-
ties, we benchmark our proposed approach on the GMVD
dataset (Table 7). We train our model on the training set of
the GMVD dataset and use MultiViewX dataset for valida-
tion. Since each sequence in the training set has a different
number of cameras, none of the existing methods can be ap-
plied to this setting, since they can be trained only on a fixed
set of cameras. However, to have a comparison with prior
work, we adapt MVDet to work in this setting by duplicat-
ing frames. When evaluated on WildTrack , our model is
able to achieve a MODA score of 80.1, which is a signif-
icant improvement over the results from training on Mul-
tiViewX (70.7). This is only marginally less than our best
result on the WildTrack dataset (87.2), despite the Wild-
Track train set heavily overlapping with the test set. This
indicates that training on synthetic data alone might be suf-
ficient for this task when coupled with unsupervised domain
adaptation techniques. When evaluated on GMVD test set,
our model achieves a MODA score of 68.2. This highlights
the difficulty of the GMVD test set, compared to WildTrack
and MultiViewX , resulting from a distinct train-test split
and the presence of extensive variations. We believe that

our dataset can serve two important purposes. The first is
as a diverse, synthetic dataset from which a model can be
adapted to real-world data. The second is that the GMVD
dataset itself can be a challenging benchmark to evaluate the
generalization capabilities of MVD methods. In this setting,
MultiViewX being used for validation is ideal, since this en-
sures that no information from the test set is leaked during
training.

6. Discussion and Future work
The biggest limitation in the field of Multi-View Detec-

tion is that real-world capture of data is extremely challeng-
ing due to the difficulty in collecting a dataset with people
in addition to the challenges involved in the hardware setup
and annotations. The absence of a large, diverse benchmark
significantly hampers the progress of this topic. Therefore,
the existing WildTrack dataset is extremely valuable for the
community. However, due to its limited size and variety,
it is not suitable for training and should only be used to
evaluate the generalization abilities of the models. In this
regard, we hope that our proposed dataset and our barebone
model serves as a useful tool in bridging the gap between
the theory and real-world application of MVD methods. In
our work, we have not explored the use of unsupervised do-
main adaptation techniques to bridge the gap between the
feature distributions of the synthetic and real datasets and
the direction is left for exploration in the future work.

7. Conclusion
We find the current Multi-View Detection setup severely

limited and encouraging models to overfit the training con-
figuration. Therefore, we conceptualize and propose novel
experimental setups to evaluate the generalization capabil-
ities of MVD models in a more practical setting. We find
the state-of-the-art models to have poor generalization capa-
bilities on our proposed setups. To alleviate this issue, we
introduce changes to the feature aggregation strategy, loss
function, as well as a novel regularization strategy. With
the help of comprehensive experiments, we demonstrate the
benefits of our proposed architecture. In addition to this, we
propose a diverse, synthetic, but realistic dataset which can
be used both as an evaluation benchmark, as well as a train-
ing dataset for various MVD methods. Overall, we hope our
work plays a crucial role in steering the community towards
more practical Multi-View Detection solutions.
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