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Method GTA5→CS SYNTHIA→CS

No Pseudo 40.6 36.3
Pseudo-Only 42.8 39.6
Ours (8) & (10) 43.1 40.0
Ours (9) & (10) 42.8 39.7
Ours only on Target (11) 42.6(8) 39.7(8)

Table A.1. Results of Ablation Studies. The numbers are mIoU
of 19 classes and 16 classes for GTA5→CS and SYNTHIA→CS
respectively.

A. Experiments on FCN-8s with VGG16 back-
bone

A.1. Training details

We also conduct experiments using a FCN-8s with
VGG16 backbone which is another segmentation network
that is widely used in unsupervised domain adaptation
for semantic segmentation. We train FCN-8s with VGG16
backbone by ADAM optimizer with an initial learning rate
of 1×10−5 and the momentums of 0.9 and 0.99. The learn-
ing rate is decayed by ‘step’ learning rate policy with a step
size of 50,000 and a decay rate of 0.1. The hyper-parameter
λ is set to 0.001 empirically. Other details are the same as
the DeepLabV2 with ResNet101 backbone. Different from
DeepLabV2, FCN-8s uses transposed convolution instead
of bilinear interpolation for upsampling z.

A.2. Ablation Study

Tab. A.1 shows our ablation study on FCN-8s with
VGG16 backbone. As shown in the table, applying our self-
attention loss improves the performance for both domains,
but its performance gain is somewhat lower than that of
DeepLabV2. Moreover, in contrast to DeepLabV2, using
(8) instead of (9) and applying our self-attention loss on
both domains rather than only on the target domain achieve
better performance when using FCN-8s. We conjecture this
difference comes from the different architecture of FCN-

GTA5→CS SYNTHIA→CS

Gen Pseudo-Only Ours Pseudo-Only Ours

Gen1 42.8 43.1 39.6 40.0
Gen2 43.0 43.9 40.7 41.5
Gen3 43.3 44.2 41.0 42.0
Gen4 44.1 44.7 42.1 42.2
Gen5 44.2 45.7 42.4 42.8
Gen6 44.3 45.7 42.3 43.1

Table A.2. Results of Iterative Training. The best results are in
bold. mIoU 19 and mIoU 16 are used for GTA5→CS and SYN-
THIA→CS respectively.

8s which uses transposed convolution for upsampling z in-
stead of bilinear interpolation used in DeepLabV2. Since
our proposed self-attention loss is computed on z and not
on U(z), it can not train the transposed convolutional layer
of FCN-8s. This could be the possible reason why ours
does not show as much performance gain as it shows in the
DeepLabV2 experiment.

A.3. Iterative Training

We also conduct iterative training analogous to
DeepLabV2. As it can be seen in the Tab. A.2, Both
‘Pseudo-Only’ and ‘Ours’ show improved performance as
the generation goes on. However, ‘Ours’ shows better per-
formance improvement than ‘Pseudo-Only’ between the
generations. The performance of ‘Pseudo-Only’ gets satu-
rated around a certain generation while ‘Ours’ keeps show-
ing noticeable performance gain even in the later genera-
tion.

A.4. Comparison with other methods

Tab. A.3 and Tab. A.4 show performance comparison
with other methods using FCN-8s with VGG16 backbone
on GTA5→Cityscapes and SYNTHIA→Cityscapes tasks
respectively. Some methods are not included in the table be-



Method road side. build. wall fence pole light sign vege. terrain sky person rider car truck bus train motor bike mIoU

CrDoCo [3] 89.1 33.2 80.1 26.9 25.0 18.3 23.4 12.8 77.0 29.1 72.4 55.1 20.2 79.9 22.3 19.5 1.0 20.1 18.7 38.1
CrCDA [5] 86.8 37.5 80.4 30.7 18.1 26.8 25.3 15.1 81.5 30.9 72.1 52.8 19.0 82.1 25.4 29.2 10.1 15.8 3.7 39.1
BDL [7] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
FDA-MBT [11] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
Kim et al. [6] 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
SIM [8] 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4
Label-driven[9] 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6
MaxCos [4] 90.3 42.6 82.2 29.7 22.2 18.5 32.8 26.8 84.3 37.1 80.2 55.2 26.4 83.0 30.3 35.1 7.0 29.6 28.9 44.3
CADA [10] 90.1 46.7 82.7 34.2 25.3 21.3 33.0 22.0 84.4 41.4 78.9 55.5 25.8 83.1 24.9 31.4 20.6 25.2 27.8 44.9

Ours 87.4 40.8 81.8 31.7 19.3 26.3 36.3 34.1 83.9 43.2 79.9 56.1 27.0 81.8 26.4 38.3 4.1 29.4 39.9 45.7

Table A.3. Comparison results with other methods on GTA5→Cityscapes. The numbers in bold are the best score for each column.

Method road side. build. wall fence pole light sign vege. sky person rider car bus motor bike mIoU* mIoU

CrCDA [5] 74.5 30.5 78.6 6.6 0.7 21.2 2.3 8.4 77.4 79.1 45.9 16.5 73.1 24.1 9.6 14.2 41.1 35.2
ROAD-Net [2] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 41.7 36.2
GIO-Ada [1] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 43.0 37.3
Kim et al. [6] 89.8 48.6 78.9 — — — 0.0 4.7 80.6 81.7 36.2 13.0 74.4 22.5 6.5 32.8 43.8 —
CrDoCo [3] 84.9 32.8 80.1 4.3 0.4 29.4 14.2 21.0 79.2 78.3 50.2 15.9 69.8 23.4 11.0 15.6 44.3 38.2
BDL [7] 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 46.1 39.0
FDA-MBT [11] 84.2 35.1 78.0 6.1 0.44 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 47.3 40.5
CADA [10] 73.0 31.1 77.1 0.2 0.5 27.0 11.3 27.4 81.2 81.0 59.0 25.6 75.0 26.3 10.1 47.4 48.1 40.8
Label-driven[9] 73.7 29.6 77.6 1.0 0.4 26.0 14.7 26.6 80.6 81.8 57.2 24.5 76.1 27.6 13.6 46.6 48.5 41.1
MaxCos [4] 73.6 30.6 77.5 0.8 0.4 26.7 14.1 29.3 80.9 80.6 57.9 24.7 76.5 27.2 10.8 47.8 48.6 41.2

Ours 85.6 43.7 77.9 7.0 0.8 26.3 21.4 25.4 80.8 80.5 58.6 21.2 74.7 29.1 12.5 44.3 50.5 43.1

Table A.4. Comparison results with other methods on SYNTHIA→Cityscapes. The numbers in bold are the best score for each column.
mIoU* and mIoU denote mIoU of 13 classes and 16 classes respectively.

Loss function Layer

L1 50.7 Prediction 50.7
KL-Div 49.2 Feature map 50.4
Cosine 48.5 Both 50.2

Pseudo-Only 48.9

Table A.5. Experimental results of using different loss functions
and computing the loss at different layers of the segmentation net-
work.

cause they only conduct experiments using the DeepLabV2.
Our method achieves the highest performance compared to
other state-of-the-art methods.

B. Loss function and Layer Analysis
We conduct experiment of computing the proposed self-

attention loss utilizing different loss functions and at dif-
ferent layers of the segmentation network. The experiment
is done on GTA5→Cityscapes task using the DeepLabV2
with ResNet101 backbone. ‘L1’, ‘KL-Div’ and ‘Cosine’ re-

fer to L1 loss, Kullback-Leibler divergence loss and cosine
similarity loss respectively. ‘KL-Div’ and ‘Cosine’ are com-
puted between each logit (row) of z and z′′. The cosine sim-
ilarity is calculated between zi ∈ RC and z′′i ∈ RC which
are the logits of z and z′′ respectively. It trains the segmen-
tation network by maximizing the computed cosine simi-
larity or minimizing the negative cosine similarity equiv-
alently. ‘KL-Div’ loss function tries to minimize the KL-
divergence between zi and z′′i . We first apply softmax on zi
and z′′i and then calculate the KL-divergence between them,
DKL(σ(z

′′
i )||σ(zi)), here σ refers to the softmax. We train

the segmentation network with three different loss functions
independently and compare the results. As shown in the
Tab. A.5, we could observe thatL1 loss shows the best score
compared to other two loss functions while ‘Cosine’ shows
the worst score which is even lower than ‘Pseudo-Only’.

We also test about on which layer of the segmentation
network the self-attention loss would work the best. A seg-
mentation network mainly consists of two parts, a feature
extractor, F , and a classification head, H, hence G(x) =
H(F(x)). ’Prediction’ and ’Feature map’ in the Tab. A.5,
refer to applying our proposed self-attention loss on z and



the feature map, F(x) = f ∈ Rh×w×k, where k refers
to the number of channels. ‘Both’ is applying our method
on both z and f . We find that computing self-attention loss
only on the prediction z achieves the best performance. We
conjecture this result is due to the fact that applying our
method only on ‘Feature map’ can not train the classifica-
tion head and applying on both layers regularizes the net-
work excessively more than necessary. The layer analysis
experiments are done using the L1 loss.

C. Selecting the τ c for pseudo label generation
τ c is set differently for each class as mentioned in the

main paper. We basically follow the pseudo label genera-
tion process of [7]. Pseudo labels are generated using a pre-
trained segmentation network. The pre-trained network G
makes inference on all images in the training set of the tar-
get domain to obtain the prediction results. Then, for each
class, we collect all the pixels that are classified as the class
from the entire predicted results and add the confidence
score of each pixel to a list. Therefore, there is one list for
each class. We sort each list and choose the median value
of the list as the τ c for the corresponding class, hence τ c is
set by the confidence score of top 50% of each class. If the
chosen median value is higher than 0.9, τ c is set as 0.9.

D. Discussion about why different settings
work for different source domains

From the Tab. 1 of the main paper, we could observe that
different settings are suitable for different source domains.
It is difficult to prove why this tendency happens exactly,
but we can conjecture by analysis. Fig. D.1 is the same en-
tropy analysis figure from the main paper (Fig.4). We think
we can get a little hint from it. Ours (8) shows higher en-
tropy than Ours (9) generally on both UDA tasks. However,
for SYNTHIA→Cityscapses, Ours (8) show much higher
entropy than Ours (9) compared to GTA5→Cityscapses. We
can clearly observe the large gap between Ours (8) and Ours
(9) on SYNTHIA task. This gap is much larger than that of
GTA5 task, especially for incorrect pixels. Ours (8) is de-
fined as minimizing the L1 loss between z and z′′, where
z′′ = z + z′. On SYNTHIA task, adding the output of the
segmentation network, z to the output of the SAM, z′ some-
how brings noisy and incorrect information and eventually
make z′′ corrupted and under-perform.

We guess this is because of the larger domain gap
between SYNTHIA and Cityscapes than GTA5 and
Cityscapes. In fact, SYNTHIA has very different data distri-
bution from Cityscapses and GTA5. Cityscapses and GTA5
are both collected under driving scenario but SYNTHIA is
not, it has more images taken from higher position such
as traffic surveillance cameras. Also its number of classes
shared with Cityscapses (16 classes) is less than GTA5 (19

classes). Therefore, due to this larger domain gap, z itself
does not contain well-represented domain-invariant infor-
mation that can improve the performance but rather deteri-
orates performance when combined with z′. On the other
hand, z′ which is refined version of z with the help of the
SAM, contains domain-invariant information than can fur-
ther boost the performance. For this reason, we conjecture
that it is better to just follow z′ instead of z′′ for SYNTHIA
task.

We think the same reason applies to why using the self-
attention loss only on the target domain works better than
using it on both domains for SYNTHIA task. If the self-
attention loss is applied on both the source domain and
the target domain, the network could be more overfitted
and trained towards the source domain. This is not desir-
able especially when there is a large domain gap between
the source and the target domains, such as SYNTHIA and
Cityscapes.

E. More Qualitative Results
E.1. Attention and Prediction visualization

Fig. E.1-E.3 show more qualitative results of attention
and prediction visualization introduced in Sec 5.6. of main
paper. Each figure shows the attention and prediction visu-
alizations of an image on GTA5→Cityscapses and SYN-
THIA→Cityscapses tasks. Each row of attention visualiza-
tion refers to a different class.

E.2. Pixel-wise similarity visualization

In Fig. E.4, we show visualization of pixel-wise simi-
larity. We visualize how each logit of predicted pixel (z ∈
Rhw×C) is similar to other pixels. It is computed as follows:

M = ReLU(
z · zT

‖z‖2 · ‖z‖
T
2

) ∈ Rhw×hw (1)

It is basically an attention map of z itself. We take ReLU
on the attention map to visualize the difference in positive
correlation between pixels more prominently. We visual-
ize this for both ‘Ours’ and ‘Pseudo-Only’. For the ground
truth, we use the nearest interpolation to resize the ground
truth label to the spatial size of h× w from H ×W , hence
yt ∈ Rh×w×C where each pixel is a C dimensional one-hot
vector. We flatten yt in the spatial dimension (yt ∈ Rhw×C)
and compute M by inserting yt instead of z in (1).

The experiment is conducted using DeepLabV2 with
ResNet101 backbone segmentation network that is trained
on GTA5→Cityscapses task. We sample several images
from validation set of Cityscapses and visualize the pixel-
wise similarity described as above. In the figure, bluer
means higher similarity. Since ‘GT’ is visualized using the
one-hot vectors of yt, its each element is either 0 or 1 while
elements of ‘Ours’ and ‘Pseudo-Only’ are between 0 and 1.



Figure D.1. Entropy analysis of GTA5→Cityscapses (Left) and SYNTHIA→Cityscapses (right).

As shown in the figure, ‘Ours’ show much similar results
to ‘GT’ compared to ’Pseudo-Only’. Also, a clear differ-
ence can be observed between ‘Ours’ and ‘Pseudo-Only’. It
means that each pixel of z which is a C dimensional logit,
is more attended well with the correct pixels corresponding
to the same class and dissimilar to other pixels of different
classes. On the other hand, pixels of ‘Pseudo-Only’ are at-
tended with even irrelevant pixels showing high similarity.



Figure E.1. More attention and prediction visualization.



Figure E.2. More attention and prediction visualization.



Figure E.3. More attention and prediction visualization.



Figure E.4. Comparison of pixel-wise similarity between ‘Ours’ and ‘Pseudo-Only’.
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