Multi-view Target Transformation for Pedestrian Detection

Wei-Yu Lee, Ljubomir Jovanov, and Wilfried Philips
TELIN-IPI, Ghent University-imec, Gent, Belgium

1. Implementation Details

As similar as [4], we downsample the input image \(I_s \) from 1080 \(\times \) 1920 to \(H = 720, W = 1280 \), and the extracted feature maps of the single-view images \(F_s \) are with downsampled size \(H_f = 90 \) and \(W_f = 160 \) from ResNet-18 [3]. After the ROI alignment [2], for each pedestrian, we get the pooled size \(s = 9 \) with the channel number \(C = 128 \). Then, the encoder is a single fully connected layer with output dimension \(128 \). Hence, the \(\hat{F}_{l, l} \in \mathbb{R}^{128} \). The projected ground plane size \(H_g = 120 \) and \(W_g = 250 \) for Wildtrack [1] dataset. For MultiviewX [4], \(H_g = 120 \) and \(W_g = 250 \). For better understanding, we show the pseudo-code of our proposed method in Alg. 1 to illustrate the whole process.

References

Algorithm 1: Multi-view Target Transformation

| Input | Input images from \(N \) cameras: \(I_s \), Single-view predicted bounding box \(B_s \) |
| Output | Estimated occupancy maps \(O \) |

Extract the features maps \(F_s \) from the feature extractor ResNet-18(\(I_s \))

// Step 1: Single-view detection
for \(i \)-th camera view do

\(B_i = \) DetectionHead(\(F_i \))

// Step 2: Pedestrian feature extraction
for \(i \)-th camera view do

Extract the pedestrian features \(F_{p,i} \) by using the predicted bounding boxes \(B_i \)

\(F_{p,i} = \) ROI_align(\(F_i, B_i \) \(\in \mathbb{R}^{s \times s \times C} \) for \(l \)-th pedestrian in \(F_{p,i} \) do

\(\hat{F}_{l, l} = \) Encoder(\(F_{l, l} \) \(\in \mathbb{R}^{1 \times 1 \times C} \))

end

// Step 3: Meta feature maps
Follow the size of \(F_p \) to create new tensors filled with zeros \(M_f \)
Insert each pedestrian features \(\hat{F}_{p,i} \) into the corresponding foot point

// Step 4: Perspective transformation
Concatenate extracted feature maps \(F_s \) and meta feature maps \(M_f \)
\(F_{sf} = \) concat(\(F_s, M_f \))
Apply Eq(1) to the concatenated feature maps to get the projected feature maps \(\tilde{F}_{sf} \)

// Step 5: Occupancy map
Overlap the projected feature maps \(\tilde{F}_{sf} \) from size \((N, H_g, W_g, 2C) \) to \((N \times 2C, H_g, W_g) \)
Predict the occupancy map by the ground plane heat map generator \(G_h \)
\(O = G_h(\tilde{F}_{sf}) \)