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This document contains the following material:

A) an evaluation measures and error dissection;

B) an overview of CRF loss;

C) additional error analyses;

D) ablation studies;

E) additional visual results;

F) details on the TS-CAM method.

A. Performance Measures and Error Dissec-

tion

A.1. Evaluation Measure for Error Dissection

In this section, we present the evaluation measures that

are used in [4] for error dissection over wrong predictions.

These measures are useful for deciding threshold values for

producing bounding boxes from localization maps. Specifi-

cally, localization part error (LPE) and localization more er-

ror (LME) help in deciding whether to increase or decrease

the threshold value for optimal results. More details on er-

ror measures are given below:

Localization Part Error (LPE): This measure identifies

that an object partially detected by the localization map with

a large margin has an intersection over the predicted bound-

ing box (IoP) > 0.5.

Localization More Error (LME): It indicates that the pre-

dicted bounding box is larger than the actual box and covers

other objects or background. This can be identified if inter-

section over annotated-bounding-box (IoA) > 0.7.

A.2. Additional Performance Measures

Top-1 Localization Accuracy (Top-1 Loc): A predic-

tion is considered true if the predicted class is the same as

the ground truth and the intersection over Union (IoU) is

greater than 0.5.

Top-5 Localization Accuracy (Top-5 Loc): A predic-

tion is considered true if the IoU is greater than 0.5 and

the actual class matches at least one of the top 5 predicted

classes.

B. Overview of CRF loss

Conditional random fields (CRF) loss, aligns the pre-

dicted localization map M with the boundaries of a con-

cerned object presented in input x. CRF loss [10] between

x and M can be defined as follows:

LCRF (A,M) =
i=1∑

i=0

Mi
TA(1−Mi) (S1)

where A represents an affinity measure that contains mutual

similarities between pixels, including proximity and color

information. For capturing affinities of pixels, we use a

Gaussian kernel [8] and employ permutohedral lattice [1]

to reduce the computation overhead.

C. Extended Error Analysis

Further error analysis (according to the error measures

defined in Section A.1) on the CUB datasets is presented

in Table S1. Our method localized the correct region of

the concerned object instead of overestimating or underes-

timating the region. It also shows that the maps generated

by DiPS are very robust and have much fewer errors com-

LPE ↓ LME ↓

VGG16 21.91 10.53

InceptionV3 23.09 5.52

TS-CAM [4] 6.30 2.85

DiPS (our) 0.05 0.07

Table S1. Extended error analysis on the CUB-200-2011 dataset

.



pared to the baseline methods. The statistics of the baseline

methods are from [4].

D. Additional Ablation Studies

The performance of DiPS with various loss function

combinations is shown in Table S2. It shows that all of

the auxiliary losses contribute significantly towards the fi-

nal performance. Also, training through arbitrary selec-

tion of pixels (pseudo-labels) rather than the classifier loss

or fixed pseudo-labels allows DL models to explore differ-

ent regions of an object and can provide accurate localiza-

tion. Adding CRF and classification terms at the same time

significantly improves the performance of our model. The

MaxBoxAcc of our model on TelDrone is presented in ta-

ble S3. Furthermore, the MaxBoxAcc, top-1 and top-5

localization accuracy for CUB dataset is presented in Table

S4. We achieved state-of-the-art performance on the Tel-

Drone and CUB dataset.

CUB TelDrone

(MaxBoxAcc) (MaxBoxAcc)

LCPA + LCRF 95.4 93.3

LCPA + LCLS 94.6 91.7

LCPA + LCRF + LCLS 97.0 96.2

Table S2. Localization performance of our DiPS method with dif-

ferent losses.

MaxBoxAcc

CAM [15] (cvpr,2016) 50.9

HaS [9] (iccv,2017) 60.4

ACoL [13] (cvpr,2018) 62.3

SPG [14] (eccv,2018) 67.9

ADL [3] (cvpr,2019) 73.5

CutMix [12] (eccv,2019) 54.7

DiPS (ours) 962

Table S3. MaxBoxAcc performance on the TelDrone dataset.

CUB

MaxBoxAcc top-1 Loc Acc top-5 Loc Acc

CAM [15] (cvpr,2016) 73.2 56.1 –

HaS [9] (iccv,2017) 78.1 60.7 –

ACoL [13] (cvpr,2018) 72.7 57.8 –

SPG [14] (eccv,2018) 63.7 51.5 –

ADL [3] (cvpr,2019) 75.7 41.1 –

CutMix [12] (eccv,2019) 71.9 54.5 –

ICL [6] (accv,2020) 57.5 – –

TS-CAM [4] (iccv,2021) 87.7 71.3 83.8

BR-CAM [16] (eccv,2022) – – –

CREAM [11] (cvpr,2022) 90.9 71.7 86.3

BGC [7] (cvpr,2022) 93.1 70.8 88.0

F-CAM [2] (wacv,2022) 92.4 59.3 82.7

DiPS (ours) 97.0 78.8 91.3

DiPS (ours) (w/ TransFG classifier [5]) 97.0 88.2 95.6

Table S4. MaxBoxAcc, top-1 and top-5 performance on the

CUB dataset.

E. Visual Results

Visual representation of our method compared to base-

line methods on CUB is illustrated in Fig.S2. Our method

generates a very smooth map instead of hot-spotting differ-

ent parts of the concerned object. Ultimately, the map gen-

erated by our method does not require an extensive thresh-

old search to find an optimal bounding box. Compared to

the class tokens of SST (used to harvest pseudo-labels),

our method is able to learn an effective localization map

from noisy pseudo-labels.

F. Details on Baseline Method: TS-CAM

By taking advantage of the attention mechanism, TS-

CAM [4] is capable of capturing long-range dependency

among different parts of an image. As a result, it can

efficiently separate background and foreground objects.

In other words, it first divides the images into a set of

patches for capturing long-range dependency information

and records its effects in class token. The attention of

class token is then fused with the semantic aware map

to produce the final attention/activation map. The flow di-

agram of TS-CAM is depicted in Fig.S1. Lastly, a detailed

visualization of the internal representation of the token TS-

CAM class is presented in Fig.S3. It shows that the av-

erage of all maps could potentially include noise and back-

ground regions in the final prediction.
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Figure S1. Illustration of the baseline Token Semantic Coupled

Attention Map (TS-CAM) model for WSOL.



Figure S2. Examples of visual results on the CUB-200-2011 dataset.



Figure S3. Attention map of each transformer head (class token) learned by TS-CAM. However, different parts of the object are accu-

mulated across the layers/blocks, and it must include semantic aware CAM to suppress noise and generate final results.
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