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Abstract

High Dynamic Range (HDR) video streaming has be-
come more popular because of the faithful color and bright-
ness presentation. However, the live streaming of HDR,
especially of sports content, has unique challenges, as it
was usually encoded and distributed in real-time without
the post-production workflow. A set of unique problems that
occurs only in live streaming, e.g. resolution and frame
rate crossover, intra-frame pulsing video quality defects,
complex relationship between rate-control mode and video
quality, are more salient when the videos are streamed in
HDR format. These issues are typically ignored by other
subjective databases, disregard the fact that they have a sig-
nificant impact on the perceived quality of the videos. In this
paper, we present a large-scale HDR video quality dataset
for sports content that includes the above mentioned impor-
tant issues in live streaming, and a method of merging multi-
ple datasets using anchor videos. We also benchmarked ex-
isting video quality metrics on the new dataset, particularly
over the novel scopes included in the database, to evaluate
the effectiveness and efficiency of the existing models. We
found that despite the strong overall performance over the
entire database, most of the tested models perform poorly
when predicting human preference for various encoding pa-
rameters, such as frame rate and adaptive quantization.

1. Introduction

High dynamic range (HDR) imaging is a set of technolo-
gies that expand the dynamic range of brightness and col-
orfulness conveyed in the digital video signal and allow the
artistic intent to be accurately rendered on different display
devices. HDR as next generation imaging technology has
prevailed among the streaming service provider and mobile
devices.

The efficiency of video compression and robustness of
the encoded video quality largely depends upon the qual-
ity metric used to perform optimal encoding parameters se-

lection. Subjective quality measurement is not practical at
scale, and hence, objective video quality metric (OVQM)
that are highly correlated with subjective quality become
critical. OVQMs help service providers ensure that deliv-
ered streams have a high perceived video quality, yet are
optimal from a delivery cost perspective. OVQMs devel-
oped for standard dynamic range (SDR) rarely work well
for HDR live sports video. Since the live sports HDR con-
tents have unique challenges as it was usually encoded in
single-pass fast encoding setting and distributed in real-time
without the Video on Demand (VoD) post-production work-
flow. To build such OVQMs and improve existing OVQMs
performance on sports contents, an HDR sports video qual-
ity metric dataset is necessary.

In this paper, we present a new HDR video quality
dataset named HDR-Sports. We benchmark existing HDR
and SDR video quality metrics on this dataset to evaluate
the performance and efficiency of those OVQMs for live
sports applications.

2. Related Work
Research on HDR video quality has increased during the

last few years [5, 18, 19, 20, 23]. The majority of research
is focused on VoD applications, but live sports broadcasting
with HDR is still an unexplored field. As a result, the HDR
quality metrics [18, 19, 20] do not generalize well with-
out retraining on the live sports video quality assessment
(VQA) dataset because of the following two reasons:

1. The live sports HDR workflow focused more on re-
flecting the high dynamic range true color instead of
made it visually pleasing with artistic intents in the
post-production workflow in VoD.

2. Live streaming sports video quality assessment also
has its unique challenges as the high-motion sports
content has to be encoded in small segments with faster
single-pass encoding setting to reduce the distribution
delay. Defects like intra-frame (I-frame) pulsing that
rarely exist in VoD 2-pass slow encoding setting will
affect the live video quality.
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On the other hand, the existing efforts in live streaming
VQA [9, 12, 17, 10, 25, 8, 29] are greatly biased towards
SDR video format. Thus, an HDR dataset containing sports
material is crucial for creating new video quality measure-
ments or optimizing those that already exist. Additionally,
a model may be trained for both VoD and live HDR appli-
cations by integrating the prior VoD HDR dataset [26] with
VoD contents using the anchor video method [21].

3. Scopes and Novelties

This dataset tried to include multiple scopes into a sin-
gle database design for the HDR live sports scenario. The
following points are the principles we followed when de-
signing this study.

1. Two different encoding modes Quality-Defined Vari-
able Bitrate (QVBR) [3] and Constant Bitrate (CBR)
are included in our encoding settings to study the im-
pacts on video quality of the rate-control mode under
the same bitrates.

2. I-frame pulsing issue is a specific video defect for
live application which appears under fixed key-int [4]
length setting under low bitrates conditions. This
dataset includes different flicker adaptive quantization
settings which tried to reduce the I-frame quantization
difference with adjacent frames to alleviate the flicker
or “pop” on I-frames. [2].

3. The bitrate-resolution ladders are designed in a way
where some common bitrates existed across different
resolutions to help us construct a marginal model to
improve the resolution crossover prediction accuracy.

4. The chosen bitrates should cover a wide range of qual-
ity levels and are well separated with perceivable qual-
ity different within the same resolution.

5. Besides resolution crossover, frame rate crossover
is also considered. All sports source videos are
high frame rate (HFR). Because of the size limit
of the study, we only focus on finding the frame
rate crossover at 540p resolutions. At an estimated
crossover quality level based on the past study [26],
we include both HFR and standard frame rate (SFR).
Above those quality levels, we only include HFR
videos and vice versa.

6. Selected anchor videos from LIVE-HDR dataset [26]
were also included in this study to combine our previ-
ous datasets with this dataset for joint training on dif-
ferent types of content.

4. DETAILS OF SUBJECTIVE STUDY
This section explains the designing the subjective study,

the issue we are targeting to solve and the choices of encod-
ing parameters setting.

4.1. Source Sequences

As shown in Table 1, we obtained 4 different game match
source videos from content partners, including 15 videos
from English Premier League (EPL), 8 videos from UEFA
Champions League (UCL), 12 videos from National Foot-
ball League (NFL), and 7 videos from Association of Ten-
nis Professionals (ATP). The NFL videos are 10-bit SDR
videos with BT.709 color gamut, 1920x1080 resolution, and
the others are HDR10 videos, with PQ transfer function and
BT.2020 color primaries and 3840x2160 resolution. All the
videos are 50 frames per second. A total of 42 sports video
clips with a duration of 6 to 9 seconds are cut from the
sources with different scene types (close-up or long shots)
and different-level of motions.

4.2. Subjective Testing Design

We recruited 140 participants to rate the quality of the
video clips in a lab with living room ambient lighting.
207 30-minute sessions were conducted in parallel on 4
TVs following single-stimulus absolute category rating with
hidden reference (ACR-HR) method [22]. Each viewer
view 7 contents (including 1 anchor content from previous
HDR databases) with about 154 videos (including anchor).
The 42 sources are divided into 7 groups and each subject
viewed 2 out of 7 groups.

3 LED lights for each TV were used to produce 200 lux
incident illumination on the TV. The viewing distance is
1.5 times the height of the TV following the recommen-
dation [13]. The 4 55-inch UHD HDR TVs used are two
identical Samsung UN55RU8000F and two identical LG
OLED55C9PUA.

After a training session introducing the user interface,
the subjects would watch each short video clip and then rate
the quality of the video on a slider bar verbally marked by
“Bad”, “Poor”, “Fair”, “Good” and “Excellent” from lowest
to the highest quality. The scores were sampled as integers
from [0, 100] without showing to the subjects. Each video
was rated by around 30 subjects.

Over 32,000 human ratings from 140 subjects were col-
lected during this study. The final mean opinion score
(MOS) is generated using the SUREAL method [16] as de-
scribed in Section 5.2.

4.3. Encoding Parameter Choices

To best represent live streaming application scenarios,
we used the AWS Elemental Media Live encoder L882AE
[1] with the software version 2.23.4 to generate the High
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Sports Number of clips Resolution Frame rate Color space Transfer function Bit-depth
EPL 15 3840x2160 50 Rec.2020 ST2084 (PQ) 10
UCL 8 3840x2160 50 Rec.2020 ST2084 (PQ) 10
APT 7 3840x2160 50 Rec.2020 ST2084 (PQ) 10
NFL 12 1920x1080 50 Rec.709 BT.1886 (Gamma) 10

Table 1: Source video clips format

Efficiency Video Coding (HEVC) HDR encoding in real-
time.

1002 processed video sequences (PVS) were generated
from the 42 source sequences with various encoding set-
ting under QVBR and CBR. With the additional 66 anchor
videos from LIVE-HDR [26] and HDR-AQ dataset, there
are 1068 total videos in HDR-Sports dataset, which is the
largest in-lab VQA dataset to the best of our knowledge.

Following the principles in Section 3, we designed the
following encoding parameter sets in Table 2 for CBR
rate control encoding mode and Table 3 for QVBR mode.
Among the 42 source videos, 7 are encoded with QVBR
mode and the remaining 35 are CBR mode.

In Table 2, each row represents different bitrates that
were used in Elemental CBR HEVC encoder. Each column
represents the resolutions. Each entry is the extra encoding
parameters that were applied to a specific bitrate resolution
combination. The first setting before in each entry is frame
rate, where for each video we could have HFR and SFR ver-
sions together or separately. HFR is used for bitrate higher
than 750 Kbps and resolution larger than 540p. SFR is ap-
plied to lower bitrates and smaller resolutions. The second
setting is the adaptive quantization (AQ) setting for I-frame
pulsing issue. For each resolution, we select a single bitrate
to have an extra PVS with flicker AQ enabled and study
its impact on I-frame pulsing defects. “S&T” means spatial
and temporal AQ is enabled, while “S&T/F” means an extra
PVS with flicker AQ enabled is added.

In Table 3, each row represents different quality level
settings in Elemental QVBR HEVC encoder. Each column
represents the resolutions. Each entry has 3 extra encoding
parameters. The 1st setting is the maximum bitrate setting
in terms of Mbps for elemental QVBR mode. The 2nd and
3rd setting is the same as CBR setting in Table 2.

5. Processing of Subjective Scores
5.1. Internal Consistency

The internal consistency of the collected score is a good
indicator of the quality of subjective scores as well as an up-
per limit of the possible best performance of a VQA model.
We studied the internal consistency of the subjective scores
as follows. The subjects were randomly divided into two
equal-sized groups and the mean score of each video was
obtained within the subjects in the group. The mean scores

are obtained from both groups and we calculated the corre-
lation between the two groups. We plotted the scatter plot
of one random split in Figure 1. We repeated this process
for 1000 splits and noted the Spearman correlation coeffi-
cient (SROCC) and Pearson correlation coefficient (PLCC)
for each time. The median SROCC is 0.9672 and the me-
dian PLCC is 0.9666.

To find the consistency of the ratings of certain testing
scopes, we further divide the videos into a few groups and
calculated the internal consistency of each group. First, we
consider the present of different frame rate. The first group
of videos consist of all videos at the resolution of 396p and
540p since a portion of the videos has multiple frame rates.
The second groups of video are the videos that have both
flicker AQ version and no flicker AQ version, i.e., the videos
of 2160p resolution at 2.6Mbps, the videos of 1080p, 720p,
540p and 396p resolution at 750kbps. The third group of
videos are the videos encoded using the QVBR mode. We
show the scatter plot of one split in Figure 1 and the me-
dian SROCC and PLCC in Table 4. As noticed, both the
internal consistency on all videos and the QVBR videos are
high and the rest two groups are lower, since both groups
include video that cover a wide quality range and the qual-
ity between each encoded video are perceptually separable.
On the other hand, the video from Group 1 and Group 2, are
dominantly videos of the same bitrate but encoded either at
different frame rate and resolution, or with different AQ op-
tions. The perceptual differences are significantly less ob-
vious than the average of the database, and it’s more chal-
lenging to distinguish these videos. However, the correla-
tion coefficients are still fairly high and this reflects the high
quality of the subjects ratings from this study. It can also
be noticed that the SROCC is lower than PLCC in Group
2. This reflects that the subjects don’t have a clear prefer-
ence within both AQ options. The quality scores are similar
but these scores still faithfully reflect the absolute quality of
these videos, so the SROCC is lower but the PLCC is still
high.

5.2. SUREAL Score Calculation

In order to provide clean and reliable training data, we
use the SUREAL method to recover the quality score [15].
This method accounts for the noise and unreliability of hu-
man ratings and attributes the noise to subject bias, subject
inconsistency, content ambiguity and outliers. By jointly
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3840x2160 1920x1080 1280x720 960x540 704x396
60 Mbps HFR, S&Tˆ - - - -
30 Mbps - HFR, S&Tˆ - - -
12 Mbps HFR, S&T HFR, S&T - - -
6 Mbps HFR, S&T HFR, S&T HFR, S&T - -

2.6 Mbps HFR, S&T/F HFR, S&T HFR, S&T - -
1.8 Mbps - - - HFR/SFR, S&T SFR, S&T
750 Kbps - HFR, S&T/F HFR, S&T/F HFR/SFR, S&T/F* SFR, S&T/F
300 Kbps - - HFR, S&T SFR, S&T SFR, S&T

Table 2: CBR mode encoding parameter settings. The row header is the bitrate used in CBR mode. The cells marked by ˆ
means that the setting is used to generate visually lossless encoding pseudo reference videos for smooth playback and full
reference algorithm input. The cells marked by * means that the flicker AQ only applied to HFR setting but not the SFR one.

3840x2160 1920x1080 1280x720 960x540 704x396
9.00 60, HFR, S&Tˆ 30, HFR, S&Tˆ - - -
8.33 35, HFR, S&T 16, HFR, S&T 7.5, HFR, S&T 3, HFR/SFR, S&T 3, SFR, S&T
7.66 - 15, HFR, S&T - - -
6.33 - - 4, HFR, S&T 1.5, HFR/SFR, S&T 1.5, SFR, S&T
6.00 - 9, HFR, S&T - - -
5.33 12, HFR, S&T - - - -
4.33 - - 3, HFR, S&T - -
3.00 - 1.8, HFR, S&T/F 2, HFR, S&T/F 1, HFR/SFR, S&T/F* 1, SFR, S&T/F
2.00 5.6, HFR, S&T - - - -

Table 3: QVBR mode encoding parameter settings. The row header is the quality levels ranging from 1 to 10. The 1st number
in each cell is the maximum bitrate in Mbps for QVBR mode. The cells marked by ˆ means that the setting is used to generate
visually lossless encoding pseudo reference videos for smooth playback and full reference algorithm input. The cells marked
by * means that the flicker AQ only applied to HFR setting but not the SFR one.

0 20 40 60 80
First half average score

0

25

50

75

Se
co

nd
 h

al
f a

ve
ra

ge
 sc

or
e Internal consistency 

(a)

0 20 40 60 80
First half average score

0

25

50

75

Se
co

nd
 h

al
f a

ve
ra

ge
 sc

or
e Internal consistency 

(b)

20 40 60 80
First half average score

0

25

50

75

Se
co

nd
 h

al
f a

ve
ra

ge
 sc

or
e Internal consistency 

(c)

0 20 40 60 80
First half average score

0

25

50

75
Se

co
nd

 h
al

f a
ve

ra
ge

 sc
or

e Internal consistency 

(d)

Figure 1: The scatter plot of the average score from both half of subjects in one random split. (a) all the videos; (b)-(d) some
groups of videos. (b) Group 1: 540p and 396p videos; (c) Group 2: Videos with Flicker AQ options; (d) Group 3: Videos
encoded in QVBR mode.

estimating the subjective quality, bias, consistency of sub-
jects and ambiguity of video contents, this method is able to
fully exploit the subject information, and handles the prob-
lem of outliers without subject rejection using any heuristic
methods. The SUREAL method finds a Maximum Likeli-
hood (ML) estimate of the scores. Using this method, we
represent the opinion scores sikj as random variables Sikr

as the summation of three parts

Sij = ψj +∆i + νiX, (1)

where ψj is the true quality of video j, ∆i represents the
bias of subject i, the non-negative term νik represents the
inconsistency of subject i, andX ∼ N(0, 1) are i.i.d. Gaus-
sian random variables. These unknown parameters are ob-
tained using maximum likelihood estimation. We plotted
the estimated subject biases and their inconsistencies in Fig-
ure 2. It may be observed that both the subject biases and
inconsistencies are quite dispersed. Thus, by accounting
for the noise and unreliability of each subject, the underline
quality score is recovered. The histogram of the recovered
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Video group SROCC PLCC
All videos 0.9672 0.9666
Group 1 0.9304 0.9332
Group 2 0.8677 0.9020
Group 3 0.9707 0.9732

Table 4: The internal correlation of each group of videos.
Group 1: 540p and 396p videos; Group 2: Videos with
Flicker AQ options; Group 3: Videos encoded in QVBR
mode.

score is shown in Figure 3. The scores cover a wide range
from 0 to 100, and a large portion of video scores fall in
the range of 30-50. This is consistent with the design of the
database.

5.3. Subjective Score Analysis

We plotted the average score of the videos having reso-
lutions of 540p and 396p in Figure 4. This plot reveals that
human viewers have a mixed preference between 540p and
396p, but this trend changes at 750 Kbps and starting from
750 Kbps the human scores of 540p videos are significantly
higher than those of 396p. This is because the 300 Kbps is a
very tight bitrate budget, so some 396p videos are preferred
by viewers, especially when some contents are not severely
affected by scaling artifact, such as smooth areas. How-
ever, as the bitrate increase, compression artifact is reduced
and viewers prefer compression over more scaling. Similar
trend is observed in frame rate. As the bitrate budget gets
larger, the quality scores of high frame rate videos have a
higher slope than standard frame rate, reflecting viewers’
preference of smooth motion over less compression artifact.

As shown in Figure 5 and Figure 6, different videos have
very different spatial information (SI), temporal informa-
tion (TI) and rate quality characteristics. Taking 4 videos as
examples, the video “epl2” and “UCL6” with the presence
of high motion indicated by high TI, viewer prefer videos
with lower resolution with less compression artifacts under
similar bitrates. While for clips with lower TI, e.g. “epl18”
and “tennis1”, the scaling artifacts contributes more to the
quality as bitrate increase and clear crossovers are present.

5.4. Combining Multiple Datasets Using Anchor
Videos

Different VQA datasets are conducted under different
environments. The MOS score collected can be affected
by different ambient lights condition [26] and displays with
different pixel densities [11]. What’s more, the relative
video quality in a subjective rating session also affects the
rating due to short-term memory effect. Therefore directly
combine the MOS scores from different VQA datasets is
not a good practice. Therefore we followed the anchor

video method in [21] to combine our previous HDR VQA
datasets.

66 anchor videos including reference videos and the cor-
responding compressed videos from our previous datasets
HDR-LIVE [26] and HDR-AQ (not publicly available) are
included in this study. The set of anchor video includes a
few clips with different coding complexity and all its encod-
ing variants to cover a wide range of quality levels. Without
losing generality, we mapped the subjective scores s of the
anchor videos from the HDR-LIVE database and HDR-AQ
database to the scores of these anchor videos in the new
database o using the non-linear transform [24] in Equation
(2). The parameters βi(i = 1, 2, 3, 4) of the non-linear map-
ping are obtained by minimizing the MSE between the orig-
inal scores and mapped scores. The non-linear transform is
given by

f(s) =
β1 − β2

1 + e
− s−β3

|β4|

+ β2 (2)

where The parameters are initialized with β1 = max(o),
β2 = min(o), β3 = mean(s), β4 = std(s)/4 during the
minimization. The non-linear mapping is then applied to all
videos to map all the MOS from the HDR-LIVE and HDR-
AQ dataset.

As shown in Figure 7, the same anchor videos don’t have
the same scores when the subjective tests are conducted un-
der their unique environments. The non-linear fitting could
help reduce this bias among different datasets.

6. Evaluation of Objective VQA Algorithms
We evaluated several objective VQA algorithms on this

database. As in [27], we use the SROCC, the PLCC, and
the Root Mean Square Error (RMSE) as metrics to evaluate
the performance of the objective VQA algorithms. Here
we present the results of a few popular FR VQA models:
peak signal-to-noise ratio (PSNR), SSIM, MS-SSIM [30],
SpEEDQA [6], ST-RRED [28] and VMAF [7]. To account
for the difference in resolution and frame rate, we upscaled
all the videos to 4K using bicubic interpolation and 50 fps
by duplicating the frames. The results of the objective VQA
algorithms are obtained from the altered videos. The result
is shown in Table 5.

6.1. Prediction Accuracy of frame rate crossover

We test whether the objective models are accurate on the
frame rate crossovers using 540p videos. We used those
videos encoded at 540p and both 750 kbps and 1800 kbps
to determine whether the objective quality models are able
to correctly predict human’s preference between the videos
of different frame rate. On these videos, we evaluate the
percentage of the videos that the prediction aligns with hu-
man preference. For example, if both SUREAL score and
VMAF prediction agrees video “epl2” at 540p, 750 kbps
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Figure 2: Histograms showing distributions of MOS, ZMOS, and SUREAL scores.
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Figure 3: Histograms of recovered SUREAL scores.
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Figure 4: Scores of videos at 540p and 396p resolutions, by
frame rate.

obtains a higher score at 50 fps than at 25 fps, VMAF gets
one pair of videos correct. We show the results in Table 6.
Both VMAF and VMAF 4K have the highest correction
rate. Note SpEED-QA and PSNR, VMAF and VMAF 4K
have the same percentage of correction due to the same
number of correct judgement.

Model SROCC PLCC
SSIM 0.6062 0.7282
MS-SSIM 0.6205 0.7397
ST-RRED 0.8374 0.8330
SpEED-QA 0.6453 0.2978
PSNR 0.5943 0.6946
VMAF 0.8742 0.8828
VMAF 4K 0.8703 0.8555

Table 5: The correlation of the predicted score using eval-
uated VQA models against human score on the entire
database. The top performing model is boldfaced.

Model Percentage of correction
SSIM 54.28%
MS-SSIM 57.14%
ST-RRED 67.14%
SpEED-QA 58.57%
PSNR 58.57%
VMAF 85.71%
VMAF 4k 85.71%

Table 6: The percentage of contents of which the model
prediction is aligned with human judgement for the frame
rate crossover test.

6.2. Preference Prediction Accuracy on AQ Videos

We take the part of the videos that have two AQ options
and evaluated the performance of the objective models us-
ing SROCC, PLCC. We also evaluated the prediction ac-
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Figure 5: Some example quality-bitrate curves for CBR
mode HFR videos in HDR-Sports dataset. Y-axis is the
Sureal MOS and X-axis is the bitrates in CBR mode.

curacy of human preference on the videos that have scores
are significantly difference between MAX AQ strength and
low AQ strength. We report the accuracy of each algorithm
in Table 7. Similarly, we also calculated the percentage of

Figure 6: Average spatial information (SI) and temporal in-
formation (TI) of HDR-Sports dataset using method from
ITU-P.910 [14]

Figure 7: Non-linear fitting using anchor videos to com-
bine different datasets. x axis is the score before alignment
and y axis is the score after alignment. The cross markers
represent the anchor videos, while the small dots represent
non-anchor videos.

contents that the model correctly predicted the human pref-
erence over different AQ mode. The results are reported in
Table 8. All the compared algorithms have really low per-
centage of correction, and in fact, a lot of the algorithms
predicted the same small number of pairs of videos right
and resulted in the same percentage shown in Table 8.

6.3. Prediction Accuracy of the QVBR Mode

We further evaluated the performance of the objective
models on the videos that are encoded with the QVBR mode
and the CBR model separately, shown in Table 9 and Ta-
ble 10.

562



Model SROCC PLCC
SSIM 0.2785 0.5666
MS-SSIM 0.2474 0.5113
ST-RRED 0.4489 0.4271
SpEED-QA 0.2128 -0.0314
PSNR 0.2816 0.5365
VMAF 0.7258 0.7469
VMAF 4k 0.7153 0.7015

Table 7: The correlation of the predicted score using eval-
uated VQA models against human score obtained from the
part of the videos that have two AQ options. The top per-
forming model is boldfaced.

Model Percentage of correction
SSIM 23.07%
MS-SSIM 23.07%
ST-RRED 21.53%
SpEED-QA 22.30%
PSNR 21.53%
VMAF 21.53%
VMAF 4k 21.53%

Table 8: The percentage of contents of which the model
prediction is aligned with human judgement for the AQ test.

Model SROCC PLCC
SSIM 0.6549 0.7432
MS-SSIM 0.6837 0.6777
ST-RRED 0.9231 0.4360
SpEED-QA 0.6888 0.3355
PSNR 0.6535 0.7363
VMAF 0.9452 0.7767
VMAF 4K 0.9441 0.7767

Table 9: The correlation of the predicted score using eval-
uated VQA models against human score obtained from the
part of the videos that encoded using the QVBR mode. The
top performing model is boldfaced.

6.4. Results Analysis

From Table 5, it’s easy to notice that the tested OVQMs
obtained reasonably good results on the new database, with
VMAF and ST-RRED leading the performance. On the
other hand, VMAF performs significantly better than any
other compared models. It prediction over the trade-off
between better spatial quality versus smoother motion is
mostly accurate. However, all the tested OVQMs were
not accurate in predicting the preference over different AQ

Model SROCC PLCC
SSIM 0.5949 0.7284
MS-SSIM 0.6038 0.7328
ST-RRED 0.8261 0.8300
SpEED-QA 0.6341 0.2729
PSNR 0.5845 0.6961
VMAF 0.8700 0.8785
VMAF 4K 0.8663 0.8408

Table 10: The correlation of the predicted score using eval-
uated VQA models against human score obtained from the
part of the videos that encoded using the CBR mode. The
top performing model is boldfaced.

mode. One reason is that the predicting the preference over
AQ model is a much more difficult question because it’s not
only about predicting an overall quality, but it involves the
understanding of the complex relationship between scene
types and local quality. Lastly, the correlation obtained
from the QVBR encoded videos are higher than the correla-
tions from the entire database, while VMAF is still leading
the performance.

7. Conclusion

We studied different HDR live streaming scenarios and
determined the most important encoding parameters that are
typically overlooked by other subjective quality studies. We
created the database that includes faithful representation of
the selected scopes and conducted the largest in-lab sub-
jective VQA study. Using gathered data, we identified the
effect of each encoding parameters as well as encoding op-
tions. We also demonstrated the performance of the state-
of-the-art OVQMs, on the entire new database, as well as
on each specific portion of the data. This subjective and
objective quality study reveals the most overlooked but crit-
ical problems in HDR video streaming. We anticipate this
knowledge to be relevant for the design of new subjective
VQA studies and objective VQA models.
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