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Figure 1: Our proposed human-interpretable forensic iris recognition benefits from using a saliency-driven feature detector
trained with regions annotated by examiners solving previous forensic iris comparison tasks. Automatically-detected patches
are compared and both the overall comparison score, as well as matching feature pairs, are presented to a human examiner.

Abstract

Forensic iris recognition, as opposed to live iris recog-
nition, is an emerging research area that leverages the dis-
criminative power of iris biometrics to aid human examin-
ers in their efforts to identify deceased persons. As a ma-
chine learning-based technique in a predominantly human-
controlled task, forensic recognition serves as “back-up”
to human expertise in the task of post-mortem identifica-
tion. As such, the machine learning model must be (a)
interpretable, and (b) post-mortem-specific, to account for
changes in decaying eye tissue. In this work, we propose
a method that satisfies both requirements, and that ap-
proaches the creation of a post-mortem-specific feature ex-
tractor in a novel way employing human perception. We
first train a deep learning-based feature detector on post-
mortem iris images, using annotations of image regions
highlighted by humans as salient for their decision making.
In effect, the method learns interpretable features directly
from humans, rather than purely data-driven features. Sec-
ond, regional iris codes (again, with human-driven filtering
kernels) are used to pair detected iris patches, which are
translated into pairwise, patch-based comparison scores.
In this way, our method presents human examiners with
human-understandable visual cues in order to justify the
identification decision and corresponding confidence score.
When tested on a dataset of post-mortem iris images col-

lected from 259 deceased subjects, the proposed method
places among the three best iris comparison tools, demon-
strating better results than the commercial (non-human-
interpretable) VeriEye approach. We propose a unique
post-mortem iris recognition method trained with human
saliency to give fully-interpretable comparison outcomes
for use in the context of forensic examination, achieving
state-of-the-art recognition performance.

1. Introduction

The high entropy of iris texture patterns has allowed this
modality to rank among the most reliable means of bio-
metric identification of living individuals. Large-scale iris
biometric applications include the national person identifi-
cation and border security program Aadhaar in India (with
over 1.2 billion pairs of irises enrolled) [17], the Homeland
Advanced Recognition Technology (HART) in the US (up
to 500 million identities) [13], and the NEXUS system, de-
signed to speed up border crossings for pre-approved trav-
elers between Canada and the US [8].

It was recently demonstrated that comparison of live
irises with their post-mortem counterparts is feasible [31,
36, 37, 5], and — depending on environmental factors — can
be viable even several weeks after death. This discovery
opened new research areas in forensic iris recognition, with
applications that can have huge impact in the context of
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accidents, natural disasters and combat zones. While au-
tomatic image processing and comparison tools frequently
support forensic examiners, the final decision is made by
a human expert. This is why human interpretability of the
algorithm’s decisions is essential.

This paper proposes a human-interpretable iris recogni-
tion method designed specifically for post-mortem (foren-
sic) iris recognition. The core novel component is the fea-
ture detection model trained using image regions annotated
by human examiners as salient to their decision-making.
Instead of narrowing down the interpretable feature selec-
tions to several known anatomical iris features (such as
collarette, Fuchs’ crypts, contraction folds, or Kruckman-
Wolfflin bodies), we asked 283 humans to compare iris
image pairs and to annotate any visual features within the
iris annulus that support their decision on whether the im-
age pair is a match. The deep learning-model was trained
with human-annotated patches to locate iris image regions
similar to those selected by humans. Those automatically-
detected local regions are then compared using a modified
(regional) version of the human-driven binary statistical im-
age features descriptor [10]. Figure 1 illustrates the pro-
posed method’s pipeline.

This approach may seem to be similar to a traditional
keypoint-based iris comparison, e.g. employing SIFT or
SUREF descriptors [3, 19], but the fundamental difference
from keypoint-based approaches lies in the human-driven
feature detector, which has several advantages. First, it de-
tects features that are closer to those which human experts
would choose. Since these features are more task-driven,
they may have better discrimination power and thus a lower
number of features is necessary for a high-confidence com-
parison (on the order of a dozen) compared to a general-
purpose keypoint-based solutions (which needs hundreds
of features to offer high-confidence comparison, as shown
through experimentation). This makes the visualization less
cluttered and more human-interpretable. Second, the pro-
posed method detects regions that have specific shapes, and
not just their central locations, which also aids human inter-
pretability. Last but not least, the comparison performance
of the proposed method obtained on a sequestered dataset
of post-mortem iris images compares very favorably with
state-of-the-art methods: it is slightly worse than one of the
non-human-interpretable methods [10], but beats the com-
mercial VeriEye comparison tool [28] as well as all human-
interpretable iris recognition methods known to us, and in-
cluded in these evaluations. In summary, the main contri-
butions of this work are:

(a) A novel human-driven, human-interpretable iris
regional-based comparison method, designed specifically
for forensic applications;

(b) A database of human-annotated iris features, along
with the human classification decisions for comparing pairs

of post-mortem iris samples; in addition to this paper’s re-
producibility purposes, this data can serve as a useful re-
source for studying human-machine pairing in the context
of forensic iris recognition;

(c) Trained models and source codes of the proposed
method, able to be applied in both forensic and live human-
interpretable iris recognition.

All resources (source codes, models, human annotations)
are available at https://github.com/CVRL/PBM.

2. Related Work

Forensic Iris Recognition. Forensic iris recognition was
long believed to be impossible, due to incorrect assump-
tions about the pupil dilation after death, the cornea becom-
ing cloudy [11], or even the entire iris decaying only min-
utes after death [35]. These assumptions were debunked
by Sansola [31], who demonstrated that perimortem (im-
age acquired just before death) to postmortem iris compar-
ison is possible, and who observed correct comparison re-
sults for at least 70% of cases when only postmortem im-
ages were compared (depending on time after death). Other
groups confirmed the feasibility of forensic iris recogni-
tion, with time period after demise ranging from a few days
[5] (outdoor conditions during summer) to several weeks
[37, 32] (mortuary or winter-time outdoor conditions). Sev-
eral post-mortem iris recognition datasets are available to
researchers, created by Trokielewicz et al. [36, 37]. These
datasets are accompanied by emerging, but non-human-
interpretable, post-mortem iris recognition methods, fol-
lowing the well-known iris code approach (with domain-
specific filtering kernels) [39, 38]. The existence of a survey
devoted to post-mortem iris recognition [7] suggests that
this research area has gained momentum, and results may
contribute to large-scale forensic applications such as the
FBI’s Next Generation Identification (NGI) service [14].

Explainable and Region-Based Approaches. Iris recog-
nition results have historically been opaque to human inter-
pretability. Daugman’s [12] mathematically-elegant expla-
nation of iris recognition’s high discriminative power does
not lead to intepretability in the context of intuitive features
easily recognized by humans. This has led to work on in-
terpretable approaches that point a human examiner to ele-
ments of the comparison results that aid in explaining their
decision of whether two images are from the same iris.
Active application of deep learning methods to iris
recognition changed this situation rather marginally.
Among various Convolutional Neural Network-based ap-
proaches known to us [22, 16, 25, 29, 43, 2, 41, 42, 6],
only one proposed a human-interpretable output. This is
in a form of Class Activation Map overlaid on post-mortem
iris images to suggest to the human examiner regions that
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were salient to the model [21]. There have been previ-
ous attempts that approach iris recognition via keypoint-
based comparison, which can be more interpretable than
iris codes. Important works include using Scale-Invariant
Feature Transform (SIFT) for iris image retrieval [34], com-
bining Speeded-Up Robust Features (SURF) with wavelet-
based texture descriptors [19], and leveraging anatomical
properties of the iris, such as crypts and anti-crypts [33].
None of the previous methods, however, were designed
specifically for forensic applications.

Our work is different from past efforts in the follow-
ing respects. One, our technique is designed specifically
for post-mortem iris recognition, using a large dataset of
images acquired from 430 deceased subjects. Two, our
feature detector is trained using features annotated by hu-
mans as salient for their decision on comparison, and so
it is guided toward detecting features salient for humans.
Human-interpretable results are essential if iris comparison
is to serve in forensic applications.

3. Features for Human Iris-Match Decisions

To understand what features are useful to human exam-
iners for post-mortem iris comparison, we collected anno-
tations from humans performing an iris-comparison task'.
Following a process similar to the ACE-V protocol used
in fingerprint comparison [40], data acquisition took place
in two steps. The first step is Match Evaluation, as in the
“evaluation” step in ACE-V, during which “the final deter-
mination as to whether a finding of individualization, or
same source of origin, can be made” (cf. Sec. 9.3.2 and
9.3.3 in [40]). In this step, the collection of annotation
data was made from subjects comparing iris images in the
absence of any prior knowledge about the source of sam-
ples. The second step is Match Verification, as in the ACE-
V “verification” stage, which is “independent examination
by another qualified examiner resulting in the same conclu-
sion” (cf. Sec. 9.3.5 in [40]). In this step, the annotations
collected in the first step were presented to new subjects for
them to either agree or disagree with, and to supply anno-
tations supporting their decisions. The annotation tool for
both step 1 and step 2 is shown in the supplementary mate-
rials.

Iris images used in our experiments are a combination
of a publicly-available post-mortem iris dataset [37], and
two datasets collected in a medical examiner’s office, of
which one has been submitted to the National Archive of
Criminal Justice Data (NACJD) archives [1] and can be re-
quested from the NACJD for research purposes. All the iris
images used in evaluating our work are available to other
researchers.

I All data collection was done under an approved IRB protocol that al-
lows for distribution of the data to the research community.

Step 1: Match Evaluation. Subjects were presented with
a pair of post-mortem iris images, and asked to decide
whether the images are from the same eye or different eyes.
Once this decision was made, they were asked to annotate
features salient to their decision. If the decision was that the
images are from the same eye, they were asked to annotate
at least 5 pairs of corresponding features between the im-
ages. These will be referred to as matching features. If the
decision was that the images are from different eyes, they
were asked to highlight at least 5 regions on either iris that
are present in one image but not the other. These are called
non-matching features. There is also a “Don’t Know” op-
tion to address inconclusive cases. When this option was
selected, they could then annotate either non-matching fea-
tures, matching features or combinations of both.

The step 1 data was collected from 152 human annota-
tors. All of the annotators are individuals associated with
the University of Notre Dame. Each annotator was pre-
sented with 20 image pairs: 10 from the same eye (“gen-
uine” pairs) and 10 from different eyes (“impostor” pairs).
The pairs were presented in an order randomized for each
annotator. Within the genuine/impostor categories, sam-
pling was performed based on the post-mortem interval
(PMI, time in hours since death). Pairs were curated such
that at least one of the eyes in the pair is from a low-PMI
range to make sure that the matching of artefacts such as
specular highlights and wrinkles is minimized as these ap-
pear less frequently in lower PMI samples. It is also a more
likely scenario in practice that lower PMI images are com-
pared to higher PMI images.

Step 2: Match Verification. In a verification trial, a new
annotator is presented with an image pair from a previous
(matching) trial, the previous annotator’s decision for that
image pair, and a random subset of the previous annota-
tions. Some data cleaning was performed prior to the ver-
ification trials, to remove incorrectly-completed annotated
pairs from the previous matching trial. These new annota-
tors were asked to make the same decision as in the match-
ing trial: do the two images come from the same eye, or
eyes of different persons? In the same manner as a matching
trial, annotators were also required to annotate five feature-
match pairs/non-matching features. The annotator on a ver-
ification trial could agree or disagree with the results from
the previous matching trial. The inclusion of the annota-
tions from the previous matching trial should serve to high-
light regions that lead to different decisions.

Note that an annotator participating in a sequence of ver-
ification trials sees results of previous match trials by differ-
ent annotators. One research question behind the verifica-
tion trials is to find out if knowing the results of a previous
match trial for a particular pair of images leads to better an-
notations and more accurate classification.
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The step 2 annotations were collected from 131 new sub-
jects using Mechanical Turk (MTurk). Restrictions on the
MTurk workers include that the worker (a) be an MTurk
“Master”’, meaning they had an exceptional approval rating,
and (b) be located in a native-English-speaking country, to
reduce communication errors in the instructions or instruc-
tional video. The annotations were visually inspected to
remove blatantly erroneous samples, resulting from: tool
malfunction, obvious misunderstanding of the task, and ap-
parent “speed-runners”’, who gave minimal effort to move
through the task as quickly as possible. Of the 2620 pairs
shown in the second round, 89 (just over 3%) were deemed
unusable. For each matching-trial annotation, there is an
acceptable-quality verification-trial annotation.

Table 1: Accuracy of human subjects comparing and anno-
tating pairs of iris images in two steps of the experiment.

Step 1 Step 2
(evaluation) | (verification)
Overall 57.3% 60.9%
Genuine pairs 36.3% 34.9%
Impostor pairs 78.4% 86.9%
Inconclusive 8.9% 4.9%
Number of annotators 152 131

Annotation Results. As shown in Table 1, accuracy of
the verification trials is higher than that of the matching tri-
als, primarily due to impostor pairs of images being clas-
sified with higher accuracy in the verification step. Inter-
estingly, for genuine pairs the accuracy decreased slightly
from the step 1 (evaluation) trials to the step 2 (verification)
trials. Also, the number of inconclusive decisions decreased
greatly in the verification trials, from 8.9% to 4.9%.

The inclusion of the decision and annotations from a pre-
vious matching trial allowed annotators in a verification trial
to make better-informed decisions. Annotators could either
agree or disagree with the previous annotation, but the ad-
ditional context increased the overall accuracy. Because in-
valid matching-trial annotations were removed, the annota-
tions shown to verification-trial annotators were good ex-
amples of correct experimental procedure. Thus, with this
guidance the quality of annotations in verification trials in-
creased, as well as the overall accuracy.

4. Methodology

As the PMI of post-mortem samples increases, the iris
surface area usable for recognition diminishes. This a result
of the emergence of decomposition artifacts such as cloudi-
ness or wrinkles [7]. As well, the circularity of the iris

boundaries becomes compromised. Thus, to improve the
robustness of post-mortem iris comparison, the proposed
method does not use the traditional assumption of a circular
(or elliptical) iris boundary, or that all the iris that is not-
occluded by eyelids contains usable texture. These are fac-
tors that make post-mortem iris comparison different from
and harder than traditional iris recognition.

One of our approaches to circumvent post-mortem de-
formations is — in addition to forensic iris-specific image
segmentation — to try to detect features that are unaffected
by the decomposition process. Our method detects small
regions of usable iris texture in an image, similarly to what
humans would do, and then represents these feature patches
as unique feature descriptors. The set of feature descriptions
for two iris images is then used for comparison.

The proposed solution consists of three components: the
feature detector, the feature descriptor and the comparison
scheme. The goal of the feature detector is to find usable iris
texture regions as explained above. The goal of the feature
descriptor is to represent the detected regions of iris texture
such that they are easily discernible from each other. Given
the set of feature descriptions for two iris images, the com-
parison scheme outputs a score for the degree of similarity
of the irises. This proposed method is thus referred to as
Patch-Based Matching (PBM).

The over-arching design goal for our method is to be vi-
sually understandable to human examiners. The network we
use for feature detection returns a visual representation of
where the features are located, and then both the feature de-
scription and comparison scheme together can show which
features are being matched together. At the potential trade-
off of slightly lower accuracy, our approach is completely
transparent about the regions of the images that support the
match / non-match decision and presents these results in a
human-interpretable way to examiners.

4.1. Databases

The first publicly-available dataset for post-mortem iris
recognition is the Warsaw BioBase Postmortem Iris v2.0
(Warsaw v2.0) [37]. It consists of 1,200 near-infrared (NIR)
post-mortem images from 37 unique cadavers in a mortuary
environment. The PMI ranges from 5 to 800 hours.

Two additional datasets were used in this work, both ac-
quired in an operational medical examiner’s setting. The
first of these, DCMEQI, collected by the Dutchess County
Medical Examiner’s Office (DCMEO), NY, contains 621
NIR images from 134 cadavers (254 distinct irises). Images
were acquired in sessions of varying PMI, up to a maxi-
mum of 9 sessions and 284 hours after death. The second
dataset, DCMEQ?2, collected also by the DCMEO, consists
of 5,770 NIR images from 259 subjects. The longest PMI
in this dataset is 1,674 hours (69 days), captured at 53 differ-
ent PMI sessions. Warsaw v2.0, DCMEQOI and DCMEO?2

704



are entirely subject-disjoint. Warsaw v2.0 is combined with
DCMEOI to create what is referred to as the “combined
dataset” used for training and validation, and to collect
human decisions and annotations, as described in Sec. 3.
DCMEQ? is held out during training and validation and acts
as a subject-disjoint test set. While the DCMEOL is not
publicly availble, the DCMEQO?2 set will be available at the
NACID [1].

4.2. Data Preprocessing

Annotation Data Preprocessing. For this training, only
annotations from correct decisions about genuine pairs are
shown to the network. Because each image was annotated
multiple times in different pairs, bountiful human-derived
ground truth is collected. It was decided that supplying the
same image to the network with different annotations from
each annotator that saw the image could hinder effective
learning. Conversely, simply using all feature annotations
for an image would be too much redundant information, as
many people may have annotated the same feature. Thus, to
conserve resources for training and remove redundant anno-
tations, a method of aggregating to one ground truth set of
annotations was applied. This was achieved by first col-
lecting all sets of annotations for a given image. Next, we
take all overlapping annotations and if there is an overlap of
greater than 50% area, we remove the smaller feature anno-
tation. This leaves us with the minimum feature set where
the overlap between any two annotations is no greater than
50%. The resulting set of iris images with associated correct
annotations contains 716 images, split in a subject-disjoint
manner to end up with 518 images in the train set and 198
images in the validation set (70%/30% proportion).

Image Preprocessing. Using a post-mortem-iris-specific
application of SegNet [39], the iris images are first seg-
mented and cropped to 256 x 256 pixels around the de-
tected iris. The segmentation mask is used to set all regions
not corresponding to the iris texture to zero (black in the
image). Contrast-limited adaptive histogram equalization
(CLAHE) is applied to the cropped image to accentuate the
iris texture, as reported in [27] to be an effective image en-
hancement means in case of forensic iris recognition.

4.3. Feature Detection

The MaskRCNN instance segmentation architecture
with a ResNet50 [18] backbone is trained to detect indi-
vidual features present in the iris. In addition, a confidence
score is also returned and can be used to rank the detected
features. Two examples of iris images with detected fea-
tures can be seen in Fig. 2. For each image, a maximum of
10 individual features are detected.

A noteworthy point is that the data is annotated in a
pair setup, whereas only individual images are used for the

(b) Impostor Iris Pair

Figure 2: Output of the human-guided MaskRCNN-based
feature detector for a genuine pair (a) and an impostor pair
(b). Cyan patches are automatically-detected features.

MaskRCNN model training. The rationale is that if pairs are
annotated rather than individual images, only features that
can be used for comparison will be annotated. If all features
were annotated, some might not be useful for recognition.
The goal from this network is to determine regions with all
good features for comparison.

Experimental Parameters. Due to the limited size of the
dataset, extensive augmentation is performed. The augmen-
tations used include left-right flip, up-down flip, 430 de-
grees rotation and Gaussian blurring. This set of augmen-
tations makes sense in the post-mortem iris recognition do-
main (for instance, up-down flips or severe rotations may
happen when a deceased person is approached by an op-
erator from different angles; this is almost not observed in
case of live iris recognition, where subjects’ eyes are usu-
ally positioned horizontally and aligned with the sensor).
All layers in the model were trained for 10 epochs using a
learning rate of 0.001. After 10 epochs, the learning rate
is divided by 10 and the network head layers are fine-tuned
for a further 10 epochs. The optimizer for the network was
Stochastic Gradient Descent (SGD). To enable experimen-
tal replication, the MaskRCNN specific parameters used to
train the model are included in the supplementary materials.
The trained model weights are also released with this work.
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Figure 3: Visualizations of local iris patches encoded with
a modified human-driven BSIF method.

4.4. Feature Description

Based on the performance of post-mortem comparison
tools in the recent survey by Boyd er al. [7], the best cur-
rent performing method is using human-driven BSIF [10].
However, this approach performs iris comparison in a non-
interpretable manner such that it is unclear what features
present in both irises lead to a match. The proposed feature
description for our work aims to leverage the proven perfor-
mance of the human-driven BSIF method and combine it
with our human-interpretable feature detection. In a tradi-
tional deep-learning based approach, input images need to
be of a specific size, so either features must be extracted of
that size only or resized. This ignores both the shape and
scale of the feature and can lead to false matching. As the
human-driven BSIF approach is not deep learning based,
there is no size constraint on features and thus structural in-
tegrity of detected features is preserved.

To achieve this integration to our method, the cropped
images are encoded in the same BSIF format as was found
to be optimal by [10]. That is, we apply five filtering ker-
nels of size 17 x 17 pixels, learned using eye-tracking data.
Using the feature set detected with the MaskRCNN model,
the feature description is the extracted region of that feature
on the BSIF encoded image, as shown in Fig. 3.

4.5. Matching Scheme

Given two sets of detected features, the first step is to
determine the set of all valid matches. For a pair of fea-
tures (one on each image) to be considered, they must be
within +20 degrees of rotation of one another. This is de-
termined by establishing the center point of both irises using
the segmentation mask. Using the relative position of these
iris centers to the center point of the detected features, the
angle can be determined.

The distance metric used to determine the closeness of
two features is the Hamming distance (HD) between the two
feature descriptions (binary iris codes obtained for each fil-
ter). Because five filters are used to get the iris code, the
final distance is the mean of the HDs calculated for each of
the iris codes. For this distance calculation to work, fea-
tures need to be the same size. Thus, the largest possible

(b) Impostor Iris Pair — Non-match

Figure 4: Output of Patch-Based Matching. Pairs of fea-
tures that are matched as being the most similar are linked
by the dark blue lines. The genuine pair (a) shows paral-
lel lines linking features resulting in a match, whereas the
impostor pair (b) has crossing lines and a non-match result.
The human examiner can quickly verify the algorithm’s re-
sult by examining the proposed matching features.

overlap between the two features is calculated and a full it-
eration of all possible combinations of overlapped features
is performed. The smallest distance found in any iteration is
accepted as the score for that pair. To insulate against edge
cases, the area of the maximum possible overlap must be
greater than 50% the area of the smaller feature.

Once the list of all valid matching features is established,
it is reduced to ensure that each feature can only be used in
one match. This is done by ranking all valid matches based
on their increasing distance apart. Once a feature has been
used in a pair, neither of those features can be used again in
other pairings. The initial sorting ensures only the strongest
pairings are maintained. The final comparison score for the
two sets of detected features is the average distance of the
five most similar feature pairs, or however many there are if
less than five. Thus, the closer the score to zero, the more
similar the feature pairs in the images and the more likely it
is a genuine match. An example of the output of the tool can
be seen in Fig. 4. Matching features are clearly articulated
in a human-interpretable manner.
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Figure 5: Results for all baselines plus our proposed method
(PBM). Dashed lines represent non-interpretable methods,
solid lines represent human-interpretable methods, thicker
solid line is our PBM method.

5. Evaluation

Table 2: Equal Error Rates and decidability (d’) scores.
The proposed method compares favorably to the commer-
cial (non-human-interpretable) VeriEye, and is best in terms
of the d’ score among all human-interpretable methods).

Method | EER (%) | d’ score
SIFT-RSIFT-128 104 1.39
SIFT-RSIFT-10 35.4 0.98

Crypts [9] 23.2 0.94
HDBSIF [10] 6.4 2.54
TLPIM [21] 19.5 1.51
USIT v3.0 [30] 35.8 0.82
VeriEye [28] 11.1 1.29
PBM (proposed) | 128 | 2.08

5.1. Algorithms Compared To

To compare the performance of the proposed method
with state-of-the-art iris recognition, a set of baseline exper-
iments were conducted with a variety of methods: human-
interpretable and non-human-interpretable, deep learning
and handcrafted, as well as commercial and open-source.

TLPIM (Triplet Loss Postmortem Iris Model) [21] is a
deep-learning based post-mortem iris comparison approach
that uses Class Activation Mapping to visualize important
regions for post-mortem iris recognition.

VeriEye [28] is a popular commercial iris recognition tool
produced by Neurotechnology. VeriEye uses Taylor expan-

sion to extract image features that are then compared using
a metric called “elastic similarity” in which impostor pair-
ings produce results near zero.

USIT v3.0 [30] is an open-source academic tool that im-
plements Daugman-style iris recognition, using iris codes
to calculate the Hamming distance between images. The
configuration as suggested by the USIT authors was used:
segmentation using CAHT, feature extraction from Ma et
al. [24] and comparison using Hamming distance.

HDBSIF (Human-Driven BSIF) [10] uses the ICA-trained
filters, as in the original BSIF pipeline [20], for extracting
iris features. Two core differences with an original BSIF
pipeline are (a) filters trained on iris image patches extracted
from an eye-tracking device for people comparing iris sam-
ples, and (b) using binarized filter responses directly as iris
codes, instead of comparing histograms of BSIF codes.

Keypoint-based. SIFT-RSIFT is a combination of general-
purpose SIFT [23] and a more accurate variation of its 128-
dimensional feature descriptor, a.k.a. Root SIFT [4]. This
solution leverages geometrically consistent content compar-
ison [26] to find pairs of keypoints across two compared
irises that present small feature-wise Lo distances and high
position equivalence (a.k.a. matches). Inspired by finger-
print minutiae comparison [15], the number of matches is
used to express the similarity between the two irises. Gen-
uine pairs are expected to present large numbers of matches,
while impostors are expected to present small numbers. To
obtain robustness to the post-mortem collapse, keypoints
are extracted from normalized irises. In the experiments,
we explore two numbers of extracted keypoints, 128 (SIFT-
RSIFT-128) and ten (SIFT-RSIFT-10).

Crypts [9] method implements detection and automatic
comparison of the iris crypts — features that can be easily
interpreted by humans. The designed comparison scheme
is able to handle potential topological changes in the detec-
tion of the same crypt in different images.

5.2. Results

From the ROC curves in Fig. 5, the best performing
method on the held-out testing set (DCMEQ?2) is HDBSIF.
This is consistent with the results in [7] for post-mortem iris
recognition. However, HDBSIF is not human-interpretable,
as it gives no indication of what features were important in
the comparison. Instead, it uses the entire available iris sur-
face for the comparison. Thus, it is not directly applicable
to a forensic scenario in which human examiner’s assess-
ment is needed and the explanation as to why the pair of
irises match, or not, is critically important.

The best performing method that supplies justification of
the decision is SIFT-RSIFT-128. This method returns pairs
of matching keypoints and singular non-matching keypoints
from the two sets of 128 keypoints. The AUC achieved by
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this method is 0.951, narrowly outperforming our approach
that attains an AUC of 0.939. However, because SIFT-
RSIFT-128 uses 128 keypoints on each iris, the comparison
visualization may become cluttered and the interpretabil-
ity is reduced due to the large number of extracted regions.
Moreover, as in typical SIFT-like approaches, keypoints are
represented by their central locations and compulsorily reg-
ular neighborhoods (usually circular or rectangular, thus ig-
noring the shapes of the compared regions during compar-
ison), making them not anatomy-driven and less human-
interpretable. The characteristics of being general-purpose
and describing regular neighborhoods also reduce the ro-
bustness of keypoint-based approaches to the pupil dynam-
icity and post-mortem collapse of the irises (which are both
visually non-linear and complex phenomena). As a con-
sequence, keypoint-based solutions must be applied over
normalized irises, again hindering human-interpretability.
When the number of keypoints in the SIFT-RSIFT approach
is reduced to be the same as for PBM, and thus its results
are less cluttered, the performance decreases significantly
to an AUC of 0.715 (see SIFT-RSIFT-10). Lastly, SIFT-
RSIFT keypoints are not iris inspired and thus may not ap-
pear salient to a human examiner.

In our proposed PBM method, the feature extractor is
trained from human-annotated iris patches used in compar-
ison. In addition to generating more human-understandable
features, this apparently brings a set of very discriminative
features. Surprisingly, the PBM approach outperforms deep
learning-based method (TLPIM), commercial (VeriEye) and
Daugman-like approaches (USITv3.0), while also display-
ing interpretablity. The closest method in terms of inter-
pretability to PBM is Crypts. However, as seen in Fig. 5
the performance of Crypts is significantly worse than PBM
in the post-morterm iris recognition regime (note that the
Crypts method was desined for live, not cadaver irises,
hence its lower performance is understandable). Addition-
ally, the top-performing baselines (HDBSIF & SIFT-RSIFT)
use iris normalization, which reduces interpretability as the
iris texture is transformed to polar coordinate system. Our
patch-based comparison works with original images as if it
were performed by a forensic examiner.

Tab. 2 shows the d-prime values for all methods. The d-
prime metric measures the separability between the mean of
the genuine comparisons and impostor comparisons, with a
higher value indicating better separation and thus better per-
formance. A higher d-prime also means more consistency
across matches and more reliability. The best-performing
method with regards to d-prime is again HDBSIF. The best-
performing interpretable method and second best overall
is the proposed Patch-Based Matching. This shows that
although there is a sacrifice in performance compared to
HDBSIF, the PBM approach adds human interpretability
yet still performs reliably and predictably.

6. Conclusions

This work introduces a new algorithm for post-
mortem iris recognition, designed to (1) produce human-
interpretable results and (2) achieve high accuracy in post-
mortem iris comparison. Our foundation for producing
human-interpretable results is a two-stage experimental
data collection in which human examiners decide if a pair of
iris images is from the same eye or not, and annotate image
regions that support their decision. We find that the deci-
sions of the verification stage are more accurate than those
of the initial matching stage, with the improvement coming
from more accurate classification of impostor pairs. The
decisions of the verification stage also have a much lower
frequency of “unsure” results. This implies that some large
fraction of “unsure” judgements are examiner-dependent
rather than a general result of available image features.

This experiment produces important and useful conclu-
sions on its own concerning how to achieve high accuracy
in human evaluation of pairs of iris images. And the iris
image annotations collected in this experiment enable the
training of the deep CNN to detect iris image features that
are natural to human interpretation. Our proposed algo-
rithm for automated comparison of post-mortem iris im-
ages is evaluated against various state-of-the-art methods,
some traditional, some designed for human interpretability,
and some designed for post-mortem iris comparison. Com-
paring algorithms on a publicly-available dataset of post-
mortem iris images, our proposed algorithm achieves the
second-highest d-prime among the algorithms evaluated.
However, the algorithm with the highest d-prime uses a
much larger number of features, and the features are not
as directly human-interpretable.

Achieving a useful level of human interpretability al-
most always involves some tradeoff with accuracy. In foren-
sic post-mortem iris comparison, human interpretability is
essential. Our proposed approach demonstrates minimal
tradeoff with accuracy in the context of post-mortem iris
recognition, while being designed from ground-up to dis-
play human-interpretable feature regions and comparison.
Source codes of the proposed method and trained models
are being made available with this paper to contribute to the
biometric community with human-interpretable, forensic-
specific open-source iris recognition methods.
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