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Abstract

This paper proposes an explicit method for single face
image morphing attack detection, using an RGB decompo-
sition based on Principal Component Analysis from texture
patterns. Handcrafted detection algorithms can be advan-
tageous over deep learning-based methods as they consti-
tute increased explainability, showcased in this work by vi-
sualizing relevant face areas for morphing attack detection.
Such information can be relevant for deployed systems in
real-world scenarios with humans in the loop. The morph-
ing detection capability of the proposed method is evaluated
extensively across three datasets and six morphing algo-
rithms in single, cross-dataset and cross-morphed scenar-
ios and compared to a fine-tuned MobileNetV2 architecture.
The results show how single image morphing attack detec-
tion remains challenging, especially in cross-domain sce-
narios involving realistic diversity of morphing algorithms,
including StyleGAN-based approaches. In such conditions,
the proposed method can be as good or even better than the
evaluated MobileNetV2 approach.

1. Introduction

Biometric systems observe biological or physiological
characteristics to recognize individuals. Such systems are
used in various security applications by governmental, in-
dustrial and private institutions. Face recognition systems
are often deployed among the different types of biomet-
ric systems due to their high convenience and security.
Many countries have, for instance, adopted Automatic Bor-
der Control (ABC) gates in combination with electronic
Machine Readable Travel Documents (eMRTD), which use

face recognition technologies for automatic face verifica-
tion. However, despite the popularity of face recognition
systems, it has been shown that they are vulnerable to digital
manipulations and physical presentation attacks [20, 9, 28].
A specific type of digital attack is based on the use of mor-
phed images, in which the facial images of two or more
individuals are merged into a single image. In [7], the au-
thors were the first to show that if a morphed image is stored
in a passport, it can potentially be used by all the individ-
uals contributing to the morphed image for circumventing
the security of an automated face recognition system. To
mitigate the vulnerability of face recognition systems with
regard to morphing attacks, several algorithms for auto-
mated face Morphing Attack Detection (MAD) have been
proposed [28]. However, it remains a challenging prob-
lem, as MAD has not yet achieved acceptable biometric
performance at operationally-relevant false detection error
rates [16].

There are two scenarios for detecting morphed images
in an operational system: single image morphing attack de-
tection (S-MAD) and differential morphing attack detection
(D-MAD). In S-MAD, a single suspected image of the sub-
ject is analysed by the system to detect morphing attacks.
In D-MAD, the system compares the subject’s facial image
with a reference image. This present work focuses on the
more challenging S-MAD, which has the advantage over D-
MAD of not requiring reliable live capture, and thus could
serve also the needs of a forensic investigation.

The proposed method relies on Principal Component
Analysis (PCA) performed on Local Binary Patterns (LPB)
of images’ individual RGB channels to extract features
which are subsequently merged and used to train a classi-
fier for detecting morphed images. The detection perfor-
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mance is evaluated on three different databases, in three
experimental protocols, and compared to a fine-tuned Mo-
bileNetV2 architecture [24].

The main contributions of this proposal are:

• An explicit S-MAD method based on RGB decompo-
sition, texture features, and PCA.

• An extensive benchmark of the proposed S-MAD
method and MobileNetV2 in single, cross-dataset and
cross-morphed evaluation protocols.

• A visualization method in a reduced vector space, to
show the most relevant areas on faces for bona fide and
morphed images, to get more explainable methods.

The rest of the paper is organized as follows: Section 2
describes relevant related work, Section 3 outlines the pro-
posed method for detecting morphed images based on PCA
features extracted from individual RGB channels. After
that, the metrics and databases used in this work are de-
scribed in Section 4 and 5, respectively. Subsequently, Sec-
tion 6 describes the three sets of conducted experiments,
corresponding results and relevant visualizations. Lastly,
Section 7 concludes with a summary of the work carried
out and the obtained results.

2. Related work
S-MAD can be performed on different kinds of image

features that can be classified into five main categories: tex-
ture descriptors, gradient-based descriptors, key point de-
scriptors, image forensics approaches, and the use of deep-
learning [25].

The texture is considered one of the most important im-
age characteristics, since the analysis of face textures can
be used to support fundamental image processing tasks
for morphing attack detection. According to a survey by
Venkatesh et al., one of the first texture features-based ap-
proaches was presented by Raghavendra et al. [21], who
worked with Binarized Statistical Image Feature (BSIF).
Other examples include Local Binary Patterns (LPB) [30]
and Local Phase Quantization (LPQ) [22].

Regarding gradient-based features, where focus is more
on analysing the changes of information, Histogram of Ori-
ented Gradients (HOG) was applied in [27] for S-MAD.

For key point descriptors, the main idea is to iden-
tify points of interest in the image and explicitly analyse
the surrounding area [25]. Common key point descrip-
tors are Scale-Invariant Feature Transform (SIFT) [14] and
Speeded-Up Robust Features (SURF) [13].

Some studies suggest applying image forensics tech-
niques to detect the origin of image manipulation. They
focus on noise patterns by analysing pixel discontinuities
that may be impacted by morphing algorithms – like Photo

Response Non-Uniformity (PRNU) [26] and Sensor Pattern
Noise (SPN) [34], or on image quality by quantifying image
degradation of artefacts in morphed faces [13].

Tapia et al. [31] proposed to add an extra stage of feature
selection after feature extraction of LBP, HOG and Raw im-
ages based on Mutual Information. Since high redundancy
between features confuses the classifier, they identify the
most relevant features, and remove the most redundant ones
from the feature vector, to better separate bona fide and mor-
phed images in an S-MAD scenario. The authors also con-
clude that eyes and nose are the most relevant facial areas.

Eventually, the emergence and the constant progress of
deep learning methods have also been observed in S-MAD
research: deep Convolutional Neural Networks (CNNs)
such as VGG19, AlexNet, GoogLeNet or ResNet have been
used in previous works to detect morphs [23] [29].

Although deep leaning-based methods usually outper-
form approaches based on handcrafted features when
enough training data is available, the learned features and
decision outcome is difficult to interpret. To advance more
explainable methods, this work explores a method based
on texture analysis, PCA and colour decomposition. In
the early days, PCA has been used for face recognition by
determining eigenfaces, e.g. principal image components
that define the latent space of faces [15]. Even though
PCA has been used for morphed face generation to im-
prove GAN-based morphing [19], no application of PCA in
S-MAD was found. Decomposing an image into separate
colour channels and analysing each channel individually
can help capture more relevant information. Venkatesh et al.
[32] experimented with it by analysing the noise residuals
of each Hue, Saturation and Value (HSV) colour channel.
Raghavendra et al. [22] also proposed an S-MAD method,
based on both HSV and YCrCb colour spaces decompo-
sition: they extract LBP features for each colour channel
independently, then they classify on the concatenated his-
togram of extracted features.

3. Proposed PCA-based method for S-MAD
The method proposed in this paper applies colour de-

composition to an RGB image and, for each colour chan-
nel, extracts features using LBP. Subsequently, PCA is per-
formed and data is projected in the PC-space of each colour
channel. Finally, the three resulting projections are concate-
nated to train a classifier for distinguishing between mor-
phed and bona fide images. Figure 1 shows a block diagram
of the proposed method. In this section, each phase of the
proposed method is detailed.

3.1. Preprocessing

In the preprocessing phase, detection, alignment, and
cropping are applied to a facial image to obtain a 500× 500
image focused around the facial region. In contrast with
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Figure 1. Block diagram of the proposed method for S-MAD.

several other S-MAD systems [21] [30] which use the
Viola-Jones algorithm [33] for face detection, an implemen-
tation of Dlib [12] is used in this work. Indeed, it captures
a larger area, by taking parts of forehead, chin and hair into
account, which are likely to be affected by the morphing
process. Additionally, each colour channel of the image is
normalized to cover the full range of pixel values, from 0 to
255.

3.2. Feature extraction

To extract features from a face image, the image is first
decomposed in the RGB colour space, forming a separate
2D array for each colour channel. The RGB colour space
was selected in this work after analysing 3 common repre-
sentations used in image analysis: Red-Green-Blue (RGB),
Hue-Saturation-Value (HSV) and YCrCb. By default, a
coloured image is defined in RGB. After comparing the ef-
ficiency of each configuration on individual dataset exper-
iments, the RGB decomposition was found to be the best
colour space configuration for the proposed method.

Figure 2. Box plot with the optimal number of PCA components.
Results come from individual dataset experiments.

After the colour space decomposition, each colour chan-
nel can be independently analysed in terms of anomalies
and artefacts, which can be used to detect the morphed im-

ages. First, LBP, using a 3 × 3 matrix without patch av-
eraging, is applied to each colour channel independently to
extract texture information. Then, images are flattened as
1D-vectors, and scaled by removing the mean and scaling
to unit variance by using a scaler. Subsequently, PCA is
performed, which reduces the feature dimensionality of the
extracted LBP features. In this work, the PCA is applied
resulting in 50 components, for each colour channel. The
choice was made by analysing the Detection Equal Error
Rate (D-EER) across a range of different numbers of com-
ponents, as shown in Figure 2. Afterwards, the PCA fea-
tures of the three colour channels are merged together to
form the final feature vector.

3.3. Classification

To determine the probability that the input image is a
morph, four different classifiers were tested: 1) Gaussian
Process-based Bayesian classifier, with a radial basis func-
tion kernel of length scale 1.0. 2) K-Nearest Neighbours
classifier, with K = 5 neighbours and uniform weights. 3)
Logistic Regression, with a regularization strength of 1.0, a
Limited-BFGS solver and a random state of 42 and 4) C-
Support Vector Machine classifier, with a radial basis func-
tion kernel, and a regularization parameter of C = 1.0.

By performing individual dataset experiments, the C-
Support Vector Machine classifier was found to provide the
best performance.

4. Metrics
To evaluate the performance of the proposed method,

metrics in compliance with the International Standard
ISO/IEC 30107-1 [10] are used. The Attack Presentation
Classification Error Rate (APCER) is defined as the pro-
portion of morphed faces incorrectly classified as bona fide
faces, and the Bona fide Presentation Classification Error
Rate (BPCER) as the proportion of bona fide face images
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Figure 3. Examples of studied morphing algorithms for two sub-
jects. Top: FERET. Middle: FRGCv2. Bottom: FRLL.

incorrectly classified as being morphed. In this paper, per-
formance is evaluated by reporting the Detection Equal Er-
ror Rate (D-EER), which is the error rate when APCER
and BPCER are equal. Additionally, plots of Detection Er-
ror Tradeoff (DET) curves are provided, which display the
tradeoff between APCER and BPCER at different operating
points.

5. Databases

In this study, three different databases of frontal faces
are used: the Facial Recognition Technology database
(FERET), the Face Recognition Grand Challenge database
(FRGCv2) and the Face Research London Lab (FRLL). The
morphed images in these datasets have been created using
a morphing factor of 0.5, meaning both parent images con-
tribute equally to the morphed image. FERET and FRGCv2
morphed images are generated with the four same morphing
tools, i.e. UBO, FaceFusion, FaceMorpher and OpenCV.
FRLL morphed images are generated with two other mor-
phing tools i.e. StyleGAN and WebMorph, and another one
in common with FERET and FRGC, i.e. FaceMorpher. A
summary of the datasets is provided in Table 1. Bona fide
subjects and morphs examples are displayed in Figure 3.

Table 1. Number of bona fide and morphed images used for
FERET, FRGCv2 and FRLL databases. ’-’ refers to the case where
a morphing tool is not applied to the given database.

Morphing Tool Bona fide images (FERET/FRGC/FRLL) Morph images (FERET/FRGCv2/FRLL)
UBO 622 / 1,440 / - 529 / 964 / -

FaceFusion 622 / 1,440 / - 529 / 964 / -
FaceMorpher 622 / 1,440 / 102 529 / 964 / 103

OpenCV 622 / 1,440 / - 529 / 964 / -
StyleGAN - / - / 102 - / - / 270
WebMorph - / - / 102 - / - / 212

5.1. FERET dataset

FERET dataset is a subset of the Colour FERET
Database [18], generated in the context of the Facial Recog-
nition Technology (FERET) program technically handled
by the National Institute of Standards and Technology

(NIST). It contains 622 bona fide and 529 morphs gener-
ated with four different morphing algorithms:

• UBO [1, 8]: developed at the University of Bologna,
this morphing tool matches the facial landmarks of the
two subjects, then it combines, averages and blends
borders to generate a morph.

• FaceFusion [3] : this proprietary mobile application
developed by MOMENT generates very realistic faces,
since morphing artefacts are almost invisible.

• FaceMorpher [4]: this open-source Python imple-
mentation relies on STASM, a facial features finding
package, for landmark detection, but generated morphs
show many artefacts which make them more recogniz-
able.

• OpenCV [6]: this open-source morphing algorithm is
quite similar to FaceMorpher method, but it uses Dlib
to detect face landmarks. Again, some artefacts re-
mains in generated morphs.

5.2. FRGC dataset

The FRGC dataset used in this work is a constrained sub-
set of the second version of the Face Recognition Grand
Challenge (FRGCv2) dataset [17]. It contains 1,440 bona
fide, and 964 morphs generated with the same four differ-
ent morphing algorithms as used for the FERET dataset, i.e.
UBO, FaceFusion, FaceMorpher, and OpenCV.

5.3. FRLL dataset

The FRLL dataset is a subset of the publicly available
Face Research London Lab (FRLL) dataset [2]. It contains
102 bona fide. Three morphing algorithms were applied
to obtain 103 morphs from FaceMorpher algorithm, 270
morphs from StyleGAN algorithm [11], and 212 morphs
from WebMorph algorithm [5].

6. Experiments and Results
To evaluate the performance of the S-MAD method,

three protocols are used: intra, cross-database and cross-
morphed experiments. In experiment-A (Section 6.1),
datasets are evaluated separately. In experiment-B (Section
6.2), morphing algorithms are evaluated in cross-database
experiments, e.g. the applied morphing algorithm remains
the same between the training and the test set, but initial
database changes. Lastly, in experiment-C (Section 6.3),
the performance is investigated when the morphing tech-
nique used for testing is unknown during training.

For each experiment, the performance of the proposed
method is compared with a Deep Learning method: all pa-
rameters of the MobileNetV2 network [24], pre-trained on
ImageNet, are fine-tuned. The model was trained on 100
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epochs using a batch size of 32 elements. The Cross En-
tropy Loss is used as criterion, the Adam algorithm with a
learning rate of 1e−4 as optimizer, and the cosine annealing
schedule as learning rate scheduler.

The input for machine learning classifiers is a vector of
size 1× 150, representing the concatenation of the 50 PCA
components for each colour channel (R, G, B). For Mo-
bileNetV2, the input is an RGB image of size 224×224×3.

6.1. Experiment A: Individual dataset

For each experiment, datasets are created with all bona
fide of a given database and a group of morphs based on the
same database.

To build a dataset, a group of bona fide pictures is gath-
ered with a group of morphed pictures, then randomly split
into 3 sets: 60% as a training set, 20% as a validation set
(used in the MobileNetV2 training phase) and 20% as a
test set. To ensure a fair training, split is performed so that
resulting datasets remain balanced between bona fide and
morphed images.

D-EER performance results on the test set of each
database are shown separately for the different morphing
algorithms in Table 2.

Table 2. Performance results in terms of D-EER (in %) on
experiment-A (individual datasets) for the proposed PCA-based
method and the MobileNetV2 based method. The best result for
each experiment is marked in bold.

Database Morphs PCA D-EER (%) MobileNetV2 D-EER (%)
FERET UBO 18.18% 0.00%
FERET FaceFusion 17.12% 1.85%
FERET FaceMorpher 11.32% 1.00%
FERET OpenCV 11.71% 0.93%

FRGCv2 UBO 2.55% 0.00%
FRGCv2 FaceFusion 3.21% 0.51%
FRGCv2 FaceMorpher 0.00% 0.00%
FRGCv2 OpenCV 1.06% 0.00%

FRLL StyleGAN 0.00% 28.00%
FRLL WebMorph 0.00% 0.00%
FRLL FaceMorpher 11.11% 0.00%

The results show that, generally, the CNN-based method
performs better than the handcrafted PCA-based method,
except for the recognition of StyleGAN morphs in the
FRLL database. Indeed, in this case, the PCA-based
method perfectly completes the classification task, while
MobileNetV2 approach struggles clearly more. Neverthe-
less, this observation is inverted in FaceMorpher morphs
detection for FRLL database. This shows that different
approaches must be created to generalize to both, namely
landmark-based methods and synthetic-based morph im-
ages. Also, the classification task performs better on
FRGCv2 than on the FERET database for both methods.
Besides, Scherhag [25] states that the comparison score dis-
tributions of the more complex morphing algorithms (Face-
Fusion and UBO) are consistently closer to the mated com-

parison score distributions than the comparison score distri-
butions of the more basic morphing algorithms (FaceMor-
pher and OpenCV). This idea is confirmed since, in most
cases, FaceFusion and UBO morphed faces lead to a larger
detection error than OpenCV and FaceMorpher.

6.2. Experiment B: Cross-database

In cross-database experiments, training and test are per-
formed on morphs generated with the same morphing algo-
rithm but on different databases. This is a more challenging
scenario than experiment-A, as the algorithms must learn to
generalize to images acquired under different conditions.

In dataset construction, the whole data is considered as a
test set, but training is still performed on the defined training
dataset, e.g. 60% of the whole data.

The D-EER performance results are provided in Table 3.

Table 3. Performance results in terms of D-EER (in %)
on experiment-B (cross-database) for the proposed PCA-based
method and the MobileNetV2 based method. The best result for
each experiment is marked in bold.

Training Database Morphs Test Database PCA D-EER (%) MobileNetv2 D-EER (%)
FERET UBO FRGCv2 9.65% 3.42%
FERET FaceFusion FRGCv2 12.24% 4.56%
FERET FaceMorpher FRGCv2 4.77% 0.93%
FERET OpenCV FRGCv2 6.43% 0.73%
FERET FaceMorpher FRLL 2.91% 0.00%

FRGCv2 UBO FERET 24.20% 15.12%
FRGCv2 FaceFusion FERET 25.14% 17.58%
FRGCv2 FaceMorpher FERET 20.60% 13.04%
FRGCv2 OpenCV FERET 22.68% 14.74%
FRGCv2 FaceMorpher FRLL 7.77% 0.00%

FRLL FaceMorpher FERET 20.42% 21.17 %
FRLL FaceMorpher FRGCv2 12.45% 14.11%

The results show that in cross-database experiments,
e.g. when training is performed on FERET or FRGCv2
database, the CNN-based approach performs better than the
hand-crafted PCA-based method.

Nonetheless, when training is performed on the FRLL
database, the PCA-based method is more performant than
MobileNetV2. However, the experiments with FRLL as a
training set need to be considered cautiously, since the cor-
responding training dataset is quite small. This is due to
the few bona fide images for this dataset, which constrains
the number of images in each class as the experiments are
conducted on balanced classes. Hence, the FRLL dataset is
smaller than FERET or FRGCv2 dataset.

6.3. Experiment C: Cross-morphed

In the cross-morphed experiments, morphs are generated
with a different morphing algorithm between the training
and test phase. As such, training and testing databases are
not necessarily the same; making it a harder scenario than
the previous single and cross-database experiments.

For the specific case where training and testing are per-
formed on the same database but on different morphing al-
gorithms, the test set has to be built in a specific manner
since both share the same bona fide group. Let D(1) be
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Table 4. Performance results in terms of D-EER (in %) on Experi-
ment C (cross-morphed) for the proposed PCA-based method and
the MobileNetV2 based method. The best result for each experi-
ment is highlighted in bold.

Training Test Performance (%)
Database Morphs Database Morphs PCA D-EER MobileNetV2 D-EER
FERET UBO FERET FaceFusion 16.22% 0.90%
FERET UBO FRGC FaceFusion 12.34% 6.95%
FERET UBO FRLL StyleGAN 34.07% 18.89%
FERET FaceFusion FERET UBO 15.15% 0.00%
FERET FaceFusion FRGC UBO 11.41% 4.05%
FERET FaceFusion FRLL StyleGAN 38.52% 24.44%
FRGC FaceMorpher FRLL StyleGAN 33.33% 50.37%
FRGC UBO FRLL StyleGAN 32.59% 47.04%
FRGC UBO FRGC FaceFusion 3.21% 0.00%
FRGC UBO FERET FaceFusion 26.65% 21.74%
FRGC FaceFusion FRGC UBO 1.53% 0.00%
FRGC FaceFusion FERET UBO 25.52% 16.63%
FRGC FaceFusion FRLL StyleGAN 30.37% 42.22%
FRLL StyleGAN FRLL WebMorph 26.83% 14.63%
FRLL StyleGAN FERET FaceFusion 33.84% 38.94%
FRLL StyleGAN FRGC FaceFusion 22.82% 33.61%
FRLL WebMorph FRLL StyleGAN 26.83% 24.39%

the dataset that gathers bona fide pictures of the database
D and the morphed pictures generated with the morphing
algorithm 1 on the database D. In the same way, let D(2)

be the dataset that gathers bona fide pictures of the database
D and the morphed pictures generated with the morphing
algorithm 2 on the database D. Thus, D(1) and D(2) can be
described as follows:

D(1) =


D

(1)
train = Bona fide(1)train + Morphs(1)train

D
(1)
validation = Bona fide(1)validation + Morphs(1)validation

D
(1)
test = Bona fide(1)test + Morphs(1)test

D(2) =


D

(2)
train = Bona fide(2)train + Morphs(2)train

D
(2)
validation = Bona fide(2)validation + Morphs(2)validation

D
(2)
test = Bona fide(2)test + Morphs(2)test

Therefore, the test set of a cross-morphed experiment for
morphings algorithms 1 and 2, based on the same database
D, can be built as follows:

Dtest = Bona fide(1)test + Morphs(2)test

This way, bona fide pictures in the test set are definitely
not present in the training set.

The D-EER performance results for the cross-morphed
experiments are provided in Table 4.

The results show that both algorithms fail to achieve a
robust detection performance across many of the experi-
ments: it achieves unacceptable high D-EER > 42% across
multiple experiments. The results show that especially the
StyleGAN-generated morphs are difficult to detect when
they are unseen during training.

Figure 4. DET showing the performance for FRLL (StyleGAN,
WebMorph) when used for training on cross-morphed datasets.

Figure 4 and Figure 5 show the performance in the most
challenging scenarios, i.e. when training on FRLL and test-
ing on FRGCv2 and FERET (Figure 4) and oppositely when
testing on FRLL (Figure 5). For both approaches, PCA-
based and MobileNetV2, the StyleGAN morphing tool
reached higher values of EER. This validates the premise
that methods developed with StyleGAN-generated images
and used for training cannot classify with precision (low
EER) landmark-based method in cross-morphed scenarios.
The same conclusion can be observed according to Table 4
when the model was trained with a landmark-based morph-
ing tool and tested with StyleGAN-generated images.

Figure 5. DET showing the performance to classify FRLL when
used for test on cross-morphed datasets.

6.4. Visualizations

One strong advantage of the proposed PCA-based
method is the capability to visualize and clarify facial re-
gions containing important information. Hence, the pro-
posed method makes it possible to visualize an image space
where bona fide and morph can be better differentiated.
This can be useful if applied in real-world forensic inves-
tigations, where algorithms usually perform in unison with
humans.
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To illustrate this, some visualizations are provided for
Experiment-A, with FRGCv2 database and FaceMorpher
morphs. In order to choose the most relevant PCA (Red,
Green or Blue channel) and a suitable 2D PC-space for vi-
sualization, the most discriminative components are com-
puted.

Let N be the size of the training set. Let Nc = 50 be
the total number of components. Pn refers to the projection
of the n-th image in a given PC-space, with {c1, ..., cNc

}
components. Therefore: Pn =

∑Nc

i=1 λnici, with λni the
coefficients of the n-th image against component i.

To compute how principal components can discriminate
bona fide from morphed images, a distance Di between the
two classes for a given component i was defined. Let IBF
be the set of the indices of bona fide images from training
set, and IM be the set of the indices of morph images from
training set. NBF refers to the size of IBF, and NM to the
size of IM. Thus, the distance Di is defined as:

Di = | 1

NBF

∑
n∈IBF

λni −
1

NM

∑
n′∈IM

λn′i|

The table 5 provides the 5 most discriminative compo-
nents of Red, Green and Blue colour channel’s PCA on
LPB, with corresponding distances, for the training set of
Experiment A - FRGCv2 with FaceMorpher morphs, and
the most discriminative component found is the first compo-
nent in the Blue channel PCA. Therefore, the 2D PC-space
with PC1 and PC2 of the Blue PCA is chosen.

Table 5. Distances between morphs and bona fide, for the 5 most
discriminative components of R, G, B colour channel’s PCA on
LPB, for the training set of Experiment A - FRGCv2 with Face-
Morpher morphs. The most discriminative component is marked
in bold.

Ranking Colour Channel
Red Green Blue

Top-1 PC2: 48.98 PC2: 74.58 PC1: 96.65
Top-2 PC5: 38.44 PC1: 50.90 PC2: 20.52
Top-3 PC3: 36.78 PC6: 12.42 PC4: 8.76
Top-4 PC1:35.52 PC7: 8.58 PC5: 5.13
Top-5 PC8:23.79 PC4: 8.34 PC14: 4.79

Figure 6 shows a projection of the two most discrimi-
native principal components (PC1 and PC2) for the blue
colour channel. As shown, the two classes can be distin-
guished, mostly thanks to the first component (PC1).

In order to better see how this first principal component
helps to discriminate morphs from bona fide images, com-
parison score density plots are provided in Figure 7.

Also, it is possible to visualize this first principal com-
ponent back into the scaled image space. Then the average
of all projections of the training set is computed against this
first principal component for each class, which is brought
back into the scaled image space. This helps to better un-
derstand which parts of the LBP image are relevant to dis-

Figure 6. Scatter plot of FRGCv2 versus FaceMorpher individual
experiment data, projected onto the two most discriminative com-
ponents of the Blue colour channel

Figure 7. Comparison score density plots of training (left) and test
(right) set of FRGCv2 versus FaceMorpher dataset for PC1 score
of PCA on blue colour channel.

tinguish morphs from bona fide face images. In Figure 8,
the first component is displayed as a 500 × 500 image in
the scaled pixel range, with the average projection against
this component, among all bona fide data. Similarly, the
same visualization process is applied to all FaceMorpher
data from the training set. To obtain these two average pro-
jections for the bona fide and morphed images, the values of
the image reconstructed from PC1 are multiplied by the av-
erage coefficient for this component for the respective class.

From this first principal component as an image, it was
noticed that relevant areas, e.g. areas with extreme val-
ues (red or blue areas), to discriminate morphs from bona
fide faces are mostly located around the eyes, nose, lips and
cheeks. Red shows areas with a high LBP value, and blue,
areas with a low LBP value. A morph face is supposed to
be closer to this first component, since the associated co-
efficient tends to be more likely positive, according to the
density plots in Figure 7. In contrast, a bona fide face is
supposed to be the opposite of this first component, since
the associated coefficient tends to be more likely negative.

These observations can be confirmed by plotting the av-
erage LPB face of the bona fide and morph class, in the
scaled image space. In Figure 9, the average LBP face for
the blue colour channel are shown for the bona fide and
FaceMorpher images of the FRGCv2 training set. To obtain
these two images, all images of the training set are scaled by
applying the same scaler as used before performing PCA.
Thereafter, it was computed the average image for all bona
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Figure 8. Left: first PC of the blue colour channel’s PCA applied
on FRGCv2 using FaceMorpher, back into the scaled image space.
Middle: average of bona fide LBP projections into PC1 on the
blue channel of FRGCv2. Right: average of FaceMorpher LBP
projections into PC1 on the blue channel of FRGCv2.

fide faces, then for all FaceMorpher morphed faces. The
same process is applied on the bona fide and FaceMorpher
morphs images of the test data, as shown in Figure 10. For
both training and test data, the pattern of PC1 can be recog-
nized in the average morph face image, whereas it is oppo-
site for the average bona fide face image.

Figure 9. Left: average of scaled bona fide LBP training images
on the blue channel of FRGCv2. Right: average of scaled Face-
Morpher LBP training images on the blue channel of FRGCv2.

Finally, the comparison score density plots against this
first component is plotted, with the average of scaled face
images, for another dataset as test set. Thus, this makes it
possible to better understand the performance of the PCA-
based proposed method in cross-morphed scenario. As a
study case, the dataset with StyleGAN morphing tool ap-
plied to FRLL database as a test set is studied. The compar-
ison score density plots against PC1, and the two average
faces - following the same protocol as for Figure 9 and 10,
are presented in Figure 11. The scaler from the FRGCv2
versus FaceMorpher experiment previously studied is used
to scale the FRLL versus StyleGAN dataset. Even though
bona fide and StyleGAN morphs distributions are less dis-
criminated than in the individual dataset scenario, the PC1
pattern as an image can still be recognized in the average
StyleGAN morph LPB face, and its opposite in the average
FRLL bona fide LPB face.

7. Conclusion
This work proposed a method for single image mor-

phing attack detection based on features extracted by us-
ing Local Binary Patterns and Principal Component Anal-
ysis separately for each RGB channel. The generalizabil-
ity of the PCA-based method was evaluated in intra, cross-
database and cross-morphed scenarios and compared to a

Figure 10. Left: average of scaled bona fide LBP test images for
the blue channel of FRGCv2. Right: average of scaled FaceMor-
pher LBP images for the blue channel of FRGCv2.

Figure 11. Left: Comparison score density plots of FRLL ver-
sus StyleGAN dataset as test set, for PC1 score of PCA on blue
colour channel performed on FRGCv2 versus FaceMorpher train-
ing set. Middle: average of scaled bona fide LBP pictures on the
blue channel of FRLL faces. Right: average of scaled StyleGAN
morphs LBP test pictures on the blue channel of FRLL faces.

CNN-based method. The results show that even though Mo-
bileNetV2 outperforms the proposed method in most cases,
the proposed method performs better on StyleGAN. Over-
all, both methods still need improvements to detect morphs
efficiently, especially across challenging scenarios such as
when the morphing technique and dataset are unseen during
training. The proposed method has the advantage that it pro-
vides increased explainability compared to deep learning-
based methods, as the principal components can be visual-
ized back in the image space. However, future work should
explore methods for explainable deep learning-based meth-
ods, which traditionally are seen as black box models. Ad-
ditionally, synthetic data can be explored for improving per-
formance in a cross-morphed evaluation scenario.
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