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Abstract

Recently, face recognition systems have demonstrated
remarkable performances and thus gained a vital role in
our daily life. They already surpass human face verifica-
tion accountability in many scenarios. However, they lack
explanations for their predictions. Compared to human op-
erators, typical face recognition network system generate
only binary decisions without further explanation and in-
sights into those decisions. This work focuses on explana-
tions for face recognition systems, vital for developers and
operators. First, we introduce a confidence score for those
systems based on facial feature distances between two input
images and the distribution of distances across a dataset.
Secondly, we establish a novel visualization approach to
obtain more meaningful predictions from a face recogni-
tion system, which maps the distance deviation based on
a systematic occlusion of images. The result is blended
with the original images and highlights similar and dissim-
ilar facial regions. Lastly, we calculate confidence scores
and explanation maps for several state-of-the-art face ver-
ification datasets and release the results on a web plat-
form. We optimize the platform for a user-friendly inter-
action and hope to further improve the understanding of
machine learning decisions. The source code is available
on GitHub1 , and the web platform is publicly available
at http://explainable-face-verification.
ey.r.appspot.com.

1. Introduction

Machine learning has recently demonstrated remarkable
performances in multiple tasks, from image processing to
natural language processing, especially with the advent of
deep learning. Along with research progress, it has influ-
enced many fields and disciplines. For example, in the med-
ical sector or security systems, a high level of accountabil-

1https://github.com/martlgap/
x-face-verification
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Figure 1. The proposed approach generates a similarity map and
blends it with the input images into an explanation map. Besides
the binary prediction of the network, we introduce a confidence
score to explain the decision further.

ity and thus greater transparency and interpretability is re-
quired. However, these systems are often considered black
boxes, and it is not known what happens internally. They
lack an explanation. According to Phillips et al. [23], an
accompanying explanation needs to be interpretable and ac-
curate, and models must operate within their known limits.

Explainable artificial intelligence (XAI) arose from the
need to understand models in various areas [8, 27]. The
benefits of explanations are apparent and in recent years,
more and more approaches have been introduced. With ever
more explainable face recognition systems, humans are get-
ting more involved in the decision process, which is vital for
many fields of applications. But explainability is not only
important for the final user, but also for developers, which
can benefit from a better understanding of datasets and mod-
els. The distribution and accessibility of those explanations
is necessary.

There exist model-agnostic approaches [21, 22] and the
famous model-specific Gradient-weighted Class Activation
Mapping approaches (GradCAM) [7,26,29], which propose
saliency maps, highlighting decisive facial regions. They
often require access to the layers of deep learning archi-
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tectures used by facial matchers, which is not always fea-
sible in commercial systems. Instead, we follow the idea
of Mery [22] and consider deep learning models as input-
output functions, which cannot be accessed. Our model-
agnostic approach focuses on the face verification problem,
and we provide explanations with similarity maps, which
indicate similar and dissimilar regions of the face. Instead
of simply interpreting the cosine distance for the certainty of
the decision, we establish a more precise confidence score
calculation (see Figure 1).
Our main contributions are summarized as follows:

• We introduce a confidence score for face recognition
networks.

• We provide three different explanation methods for
face recognition.

• We build and release a user-friendly, interactive, and
modern web platform containing the proposed confi-
dence scores and explanation maps for several state-
of-the-art datasets and models.

2. Related Work

2.1. Explanation Maps

One of the earliest approaches for explainable artificial
intelligence (XAI) is the local interpretable model-agnostic
explanations (LIME) technique introduced by Ribeiro et
al. [25]. In their work, they proposed a method for faith-
fully explaining any classifier’s predictions by learning an
interpretable model locally around the prediction.

The most relevant XAI methods similar to our approach
are model-agnostic algorithms:

Firstly, Mery and Morris [22] introduced six different
saliency maps that can be used to explain any face verifi-
cation algorithm without manipulating the model. The key
idea of their method is to define a matching score of two fa-
cial images, which changes when one image is perturbed. In
addition, they experimented with XAI saliency maps based
on contours.

Secondly, in [21], Mery introduced an XAI method
based on how the probability of recognition of a given im-
age changes when it is perturbed. His algorithm removes
and aggregates different parts of the image and then mea-
sures the contributions of those parts individually and in-
collaboration as well. The generated saliency maps high-
light the most relevant areas for the recognition process.

Third, the work from Lin et al. [18] provided a learn-
able module that can be integrated into most face verifica-
tion models. This module generates meaningful explana-
tions with the help of a patched cosine map and an attention
map. These maps represent similarities instead of saliency.

Other model-specific XAI techniques require knowl-
edge of the structure to observe or manipulate the out-
puts of hidden model layers: The most popular approach
is the Gradient-weighted Class Activation Mapping (Grad-
CAM) [26] algorithm that utilizes the gradient of the class
signal with respect to the input image; Recently, many other
XAI techniques based on GradCAM, like GradCAM++ [3],
HiResCAM [7], AblationCAM [24], ScoreCAM [29], or
XGradCAM [9], have been introduced; Cao et al. [2] mod-
ified a network with a feedback loop to infer the activations
of hidden layers according to the corresponding targets; In
[16] and [4], the authors trained separate models to pre-
dict saliency explanation maps; Pruning a neural network
for a given single input to keep only neurons that highly
contribute to the prediction was introduced in the work of
Khakzar et al. [13].

2.2. Confidence Scores

In [12] Huber et al. exploited the approximation of
model uncertainty through dropout and proposed an uncer-
tainty score for the comparison of two images. Based on
that, they additionally calculated a decision confidence to
make the decisions for face verification more transparent
without any training effort.

In contrast, Li et al. [17] propose a novel framework
for face confidence learning in a spherical space. They ex-
tended the Mises Fisher density to it´s r-radius counterpart.

3. Method
3.1. Confidence Score

Nowadays, face verification systems [1, 5, 14, 19, 20, 32]
make predictions based on the distance between two fea-
ture vectors. Those feature vectors are typically derived
from a convolutional neural network N (·), which extracts
facial features N (I) = f from an aligned facial image
I ∈ R112×112×3. Most approaches utilize the cosine dis-
tance metric d for calculating the distance between two fa-
cial feature vectors f1,f2 which is defined as:

d(f1,f2) = 1− f1 · f2

∥f1∥2 ∥f2∥2
. (1)

From this follows that d ∈ [0, 2], whereas d is 0 for iden-
tical features, 1 for orthogonal vectors, and 2 for opposite
vectors. To classify a pair of images as genuine (d ≤ t) or
imposter (d > t) one can then define a particular thresh-
old t. For common face verification benchmark datasets
(e.g., LFW [11], CALFW [31], CPLFW [30], SLLFW [6],
XQLFW [15]), the threshold t is derived by applying 10-
fold cross-validation on the test set. A certain threshold is
found for each fold by maximizing the verification accuracy
on the remaining folds. A prediction from a face verification
with a distance d close to the threshold t can be interpreted
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Figure 2. Histogram of cosine distances for the first fold of the
LFW [11] dataset and the bin-wise ratio between genuine and im-
poster distance counts. The distances are derived from an Arc-
Face [5] model fine-tuned with OctupletLoss [14].

as uncertain. In contrast, a large distance close to 2 or a
small distance close to 0 indicates high confidence in the
model’s prediction.

However, there is no clear rule on interpreting the abso-
lute distance to the threshold t in terms of prediction con-
fidence. For instance, the FaceTransformer [32] model in
the work of Knoche et al. [14] has a threshold of t ≈ 0.2,
leading to highly imbalanced thresholds in the interval.

In this work, we aim for a more expressive metric and
introduce a confidence score (C-Score) s, which takes not
only this imbalance into account, but also exploits informa-
tion from the distribution of correct and wrong predictions
of the model for each dataset. Our C-Score is calculated as
follows:

Given the cosine distance distribution derived from an
arbitrary face verification model for genuine and imposter
image pairs, we compute the histogram (cf . Figure 2) with
400 bins. The bin-wise ratio of the number of genuine ex-
amples to imposter examples follows an s-shaped distribu-
tion starting from 1 for d < t and ending at 0 for d > t. The
closer d gets to the threshold t, the more uncertain the pre-
diction is due to more misclassifications in that range. We
interpret the left part of the distribution (d < t) as the proba-
bility that a given genuine prediction is correct and the right
part of the distribution (d > t) as the improbability that a
given imposter prediction is correct. Then, we fit a logistic
sigmoid curve c(d) depending on the parameters L, d0, k, b,
defined as,

c =
L

(1 + e−k·(d−d0))
+ b (2)

to the distribution of ratio values using the dogbox [28] al-
gorithm. This enables a continuous mapping of arbitrary
distance values. Because the fitted sigmoid curve c is an ap-
proximation, we clip the c to a range [0, 1]. Finally, to get a

more intuitive score, we invert the improbability values and
define our C-Score C as:

C =

{
c(d) ∀ d ≤ t

1− c(d) ∀ d > t
(3)

As a result, we obtain our introduced C-Score C in the range
of [0.5, 1] for either genuine or imposter predictions and can
interpret it as a probability for correctness. Notice that the
calculation of C is done fold-wise, resulting in altering pa-
rameters for each fold of the dataset.

Finally, with C-Score C, we establish an additional value
to the binary output prediction of a face verification system
and thus make the prediction more meaningful. It is im-
portant to note that for the C-Score C, we gathered ground
truth information of the dataset; hence, for the application
of the model to field data, the parameters for the C-Score
function need to be derived from a validation dataset.

3.2. Model-Agnostic Explanation Maps

The core principle of our model-agnostic explanation ap-
proach is visualizing the deviation between a non-occluded
and an occluded image. If the feature distance between
those two images is decreasing, we interpret the occluded
area as dissimilar and vice versa similar for a greater dis-
tance. With systematic image occluding, we can then mea-
sure the influence on the cosine distance of every part of the
image and hence, visualize this in a 2-D map.

In the following, the procedure is explained in more de-
tail: 1) First, we apply our proposed Algorithm 1, which
can be formulated as

occ(I) 7→ O :=
{
O1,O2, . . . ,ON

}
,

M :=
{
M1,M2, . . . ,MN

} (4)

with O ∈ R112×112×3, M ∈ R112×112, and N = ⌊(112 −
p)/s⌋2, dependent on the patch size p and a stride s. Note
that our masks M are sparsely populated; only the occluded
areas contain the values 1. After utilizing occ(·) on our in-
put image 2-tuple (I1, I2), we retrieve a 2-tuple of occluded
image sets (O1,O2) and a 2-tuple of mask sets (M1,M2).

In the next step, we extract the facial features f ∈ R512

with a face verification network N (·) for every single oc-
cluded image O in the 2-tuple (O1,O2):

F :=
{
f1,f2, . . . ,fN : f = N (O)

}
, (5)

and consequently, generate a 2-tuple of feature vector sets
(F1,F2). Then, we calculate the cosine distance d(· , ·) be-
tween all features in F1 and F2. To select the 2-tuple of
pair-wise distances sets (D1,D2), we employ the following
three methods:

713



Algorithm 1: Systematic Image Occluding occ(·)
Input: image I
s←− stride
p←− size of patch
Start at top left corner of I
while within I do move right s pixels

while within I do move down s pixels
M ←− draw a patch with size p at loc
O ←− occlude I with patch of size p at loc

end
end
Output: occluded images O, masksM

Method 1 selects the cosine distances D1 and D2 ac-
cording to

D1 :=

{
N∑
j=1

d(F (i)
1 ,F (j)

2 )

N
: ∀ i ∈ [1, 2, . . . , N ]

}

D2 :=

{
N∑
i=1

d(F (i)
1 ,F (j)

2 )

N
: ∀ j ∈ [1, 2, . . . , N ]

}
.

(6)

With this selection, we extract the averaged influence of all
occluded (at any location) image for one of the input images
compared with the occluded (at a particular location) image
of the other input image.

Method 2 selects the cosine distances D1 and D2 ac-
cording to

D1 :=
{
d(F (i)

1 ,N (I2)) : ∀ i ∈ [1, 2, . . . , N ]
}

D2 :=
{
d(N (I1),F (i)

2 ) : ∀ i ∈ [1, 2, . . . , N ]
}
.

(7)

This selection aims to measure the influence of one of the
input images compared with the occluded (at any location)
image of the other input image.

Method 3 selects the cosine distances D1 and D2 ac-
cording to

D1 = D2 :=
{
d(F (i)

1 ,F (i)
2 ) : ∀ i ∈ [1, 2, . . . , N ]

}
. (8)

Here, we measure the distances between the co-located oc-
cludings of both input images.

Independent of the above-described methods, we obtain
a 2-tuple of distance sets (D1,D2), which is then compared
with the original distance dorig = d(I1, I2) of both non-
occluded input images. The difference in the distance inD1

orD2 compared with dorig is the weight for it’s correspond-
ing occlusion mask in M. After building the mean across
all weighted masks, we generate similarity maps S:

S =

N∑
i=1

(di − dorig) ·Mi

N
(9)

with di ∈ D and Mi ∈ M. This allows visualizing the
deviation caused by an occlusion at a particular location.
The procedure described above is performed separately for
every particular occlusion patch size p ∈ {7, 14, 28} and a
stride s = 5. The stride s reduces the number of images
inferred by a factor of s2. Consequently, we get three simi-
larity maps S each for both input images I1 and I2. Finally,
we calculate the weighted average of the similarity maps
based on the size of the patch area:

S =

|p|∑
i=1

Si

p2i · |p|
(10)

The occurring raster artifacts, caused by using a stride
instead of shifting the occlusion patch pixel by pixel, are
compensated by applying a Gaussian-Blur to the mean sim-
ilarity maps S with an s× s kernel and σ = s, followed by
normalization to the range [−1, 1].

Ultimately, we generate a 2-tuple of X-Maps for
a 2-tuple of input images (I1, I2) via color blending
blend(I,S) (see Algorithm 2) with the corresponding S1
and S2.

Algorithm 2: Color Blending blend(· , ·)
Input: image I, similarity map map
l←− get luminance from: RGBtoHLS(img)
h←− get hue from: RGBtoHLS(map)
s←− get saturation from: RGBtoHSV(map)
Ib ←− HLStoRGB(h, l, s)
Output: blended image Ib

The proposed approach generates an image-specific X-
Map for both images of an arbitrary image pair. It high-
lights the similar and dissimilar regions of an image in terms
of their identity features extracted from a face verification
model.

4. Results
4.1. Qualitative Results

This section provides X-Maps for a small selection of
image pairs from the LFW [11] dataset. With the release
of our proposed eXplainable Face Verification platform, its
very easy to browse through all the generated X-Maps for
several models.

The X-Maps of the genuine pairs in Figure 3 are dom-
inated by green-colored facial regions, for indicating simi-
larity. In example a), the X-Map reveals that the eyes and
mouth of the subject seem to not play an essential role in the
model’s decision. The cosine distance will get even smaller
for occlusions on those parts of the face. In b), the nose
is the only facial part, which is less critical for the model’s
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prediction. In the genuine example pair c), eyes, nose, and
mouth are highlighted, and push the distance closer to zero.

Not surprisingly, the X-Maps of the imposter pairs indi-
cate more dissimilar facial regions than the genuine pairs’
X-Maps. Whereas the nose of the subjects in pair f) is
marked very dissimilar, that is the case for the eyes of pair
e). Interestingly, the nose of pair d) is specified as a very
similar facial region.

All three X-Maps indicate that the forehead is rather sim-
ilar compared to the more distinctive facial parts such as the
eyes, nose, and mouth.

4.2. Comparison of Explanation Maps

In this section, we compare our three proposed methods
(cf . Subsection 3.2) of generating the X-Maps. Whereas the
X-Map-I (cf . Equation (6)) technique considers both im-
ages occluded, the X-Map-II (cf . Equation (7)) technique
compares a non-occluded image with an occluded image.
The main difference between those two methods and X-
Maps-III (cf . Equation (8)) are the co-located occlusions
in both images, resulting in identical X-Maps for both im-
ages. Therefore, X-Map-III method is most expressive for
normalized and frontal facial images with co-located facial
parts.

In Figure 4, we present the different X-Maps for three
example image pairs. The X-Map-I and X-Map-II methods
indicate different parts of the face as similar or dissimilar,
which makes it difficult for a human to interpret the expla-
nation. Nevertheless, this enables better explainability for
misaligned, varying pose, or occluded images. The bottom
row (Method-III) reveals that the eyes in example pair a)
most strongly impact the prediction into the imposter direc-
tion. In c), the same holds for the nose and mouth region.
Compared to a) where the eyes are clearly visible and of
good quality, in c), they are of very bad quality and hence,
are not considered playing an essential role in the verifica-
tion prediction from our algorithm. In all images, the fore-
head region is highlighted rather as similar, which is obvi-
ously due to the lack of information.
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Figure 3. X-Maps for three genuine and three imposter example
pairs from the LFW [11] dataset. Green colors indicate similar
facial regions and red highlights dissimilar ones. All X-Maps are
generated utilizing a FaceTransformer [32] model fine-tuned with
OcutpletLoss [14].

4.3. Experiments with Cut-and-Paste Patches

Additionally, we conduct experiments with modified im-
age pairs. This experiment investigates whether the replace-
ment of particular facial regions in one image with a copy of
the co-located region of the other image is successfully de-
tected by our algorithm and described with high similarity
in the X-Maps. Figure 5 depicts three facial replacements
such as the eye region a), half side of the face b), or one
eye and mouth c). In all three examples, our proposed al-
gorithm highlights the copied facial regions as similar and
the remaining facial area as dissimilar. In example c), this
effect is most weakly pronounced.

4.4. Sensitivity Studies

We conduct multiple sensitivity studies to determine the
influence of the size, edge quality, coloring, and shape of
the patches used in our systematic image occlusion algo-
rithm Algorithm 1.

First, we use three different patch sizes (7 × 7, 14 ×
14, 28 × 28 pixels) for our systematic image occlusion al-
gorithm Algorithm 1 to visualize the effect of the occluding
patches. As depicted in Figure 6 a), it strongly affects the
resulting similarity maps. The smallest patch generates a
more fine-grained similarity map and highlights small ar-
eas, which are not visible in the largest patch. In order to
obtain one generalized X-Map (top right of Figure 6), with
information from different levels of granularity, we merged
three maps (all patches black colored, rectangular shaped
and not Gaussian blurred) and weighted them based on the
area of the patches (cf . Equation (10)).

Second, we analyze three different edge qualities in the
patches, in the form of different levels of Gaussian blur-
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Figure 4. Comparison of our three proposed explanation maps al-
gorithms for three example image pairs of the LFW [11] dataset.
Green colors indicate similar facial regions and red highlights dis-
similar ones. All X-Maps are generated utilizing a FaceTrans-
former [32] model fine-tuned with OcutpletLoss [14].
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Figure 5. X-Maps (method-III) for three example image pairs of
the LFW [11] dataset with modified facial regions. Green colors
indicate similar facial regions and red highlights dissimilar ones.
All X-Maps are generated utilizing a FaceTransformer [32] model
fine-tuned with OcutpletLoss [14].
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Figure 6. Similarity maps (method-III) for an example image pair
of the LFW [11] dataset, generated with a different patch size,
edge quality, coloring, and shape. Green colors indicate similar
facial regions and red highlights dissimilar ones. All similarity
maps are generated utilizing a FaceTransformer [32] model fine-
tuned with OcutpletLoss [14].

ring. For both the kernel size and sigma, we use the values
{7, 14, 56}. As seen in b), this affects the similarity maps
regarding visual granularity.

Third, we vary the coloring of the patches and indicated
in c) that it affects the similarity maps. The weakest simi-
larity map is generated for black occlusions. The difference
for gray, white, and noisy occlusion is only marginal.

Lastly, we investigate the effect of the shape of the
patches. In d), we depict the X-Maps for rectangular and
round shape. There are only minor differences visible in
the similarity maps. We conclude that the shape of the patch
has the most minor effect on our proposed X-Maps.

In summary, our sensitivity study reveals that the X-

Maps content depends on the patch characteristics, and they
should be adjusted carefully to the purpose and kind of
data.

5. Web Platform
In this section, we will briefly describe our eXplainable

Face Verification platform for presenting all the qualitative
results of our approach and also help the community famil-
iarizing with several test datasets and different model be-
haviors. This platform supports the visual understanding of
the proposed algorithms. We also want our results to be
easily accessible and publicly available.

Figure 7. A screenshot of the landing page of our eXplainable Face
Verification platform

The platform runs a flask [10] framework, which is con-
nected to a database containing all the datasets and the
metadata. The backend does all the sorting, filtering, and
accessing to improve the user experience. The platform can
be divided into three parts:

First, the landing page (see Figure 7) explains our
method and gives an overview of the accessible data and
a preview of the “viewer” functionality.

Second, the ”explorer” page (see Figure 8) contains
an interactive table where users can filter and sort the

Figure 8. Screenshot of the “explorer” module of our proposed
platform. It shows the interactive data table.
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data. The image pairs and corresponding metadata, such
as file path, label, identity, and image quality score for
LFW [11], CALFW [31], CPLFW [30], SLLFW [6], and
XQLFW [15], are stored in the table. Moreover, we added
the results (e.g., prediction, distance, threshold, confidence)
from several face recognition models to the table.

Third, the purpose of the “viewer” page (see Figure 9)
is to present our generated X-Maps in an interactive, ad-
justable way. The user can select different models, methods,
and maps for each pair of images in the datasets.

Figure 9. Screenshot of the “viewer” module of our proposed plat-
form. It shows interactive X-Maps for an example image pair and
corresponding metadata.

The limitations of the eXplainable Face Verification plat-
form can be summarized as follows: 1) The datasets are
limited to LFW and its derivatives. 2) We only applied
our approach to face verification datasets. 3) The platform
presents results for a small portion of existing face recogni-
tion networks.

6. Conclusion and Future Work
This work conducts further research on explainable face

verification and proposes a novel strategy to generate three
different explanation maps and a confidence score for a face
verification model’s prediction.

With our eXplanable face verification platform, we con-
tribute a tool to further investigate the behavior of state-of-
the-art face recognition networks and demonstrate the inter-
pretability and accuracy of our approach.

However, our proposed X-Map algorithm can only high-
light highly locally appearing similarities. Hence, our
method cannot reveal more global similarities, such as skin
color or the shape of the face.

Although our work focuses explicitly on faces, the ap-
proach is not limited to the faces domain and can potentially
be applied to other binary decision problems.

In the future, we want to use the C-Scores and X-Maps
for a joint application of human and machine face verifica-
tion. We are planning to investigate whether a machine face
verification algorithm can successfully, with the help of hu-
mans, solve the edge cases in face verification. We want
to achieve this by filtering out the problematic cases based
on the C-Score and using the X-Maps to support humans in
their decision.
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[8] Danilo Franco, Nicolò Navarin, Michele Donini, Davide An-
guita, and Luca Oneto. Deep fair models for complex data:
Graphs labeling and explainable face recognition. Neuro-
computing, 470:318–334, 2022.

[9] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo,
Yinghui Gao, and Biao Li. Axiom-based grad-cam: To-
wards accurate visualization and explanation of cnns. arXiv
preprint arXiv:2008.02312, 2020.

[10] Miguel Grinberg. Flask web development: developing web
applications with python. ” O’Reilly Media, Inc.”, 2018.

[11] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric
Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. In
Workshop on Faces in ’Real-Life’ Images: Detection, Align-
ment, and Recognition, 2008.

[12] Marco Huber, Philipp Terhörst, Florian Kirchbuchner, Naser
Damer, and Arjan Kuijper. Stating comparison score un-
certainty and verification decision confidence towards trans-
parent face recognition. arXiv preprint arXiv:2210.10354,
2022.

[13] Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja,
Christian Rupprecht, Seong Tae Kim, and Nassir Navab.

717



Improving feature attribution through input-specific network
pruning. arXiv preprint arXiv:1911.11081, 2019.

[14] Martin Knoche, Mohamed Elkadeem, Stefan Hörmann, and
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