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Abstract

A fast-paced development of DeepFake generation tech-
niques challenge the detection schemes designed for known
type DeepFakes. A reliable Deepfake detection approach
must be agnostic to generation types, which can present
diverse quality and appearance. Limited generalizability
across different generation schemes will restrict the wide-
scale deployment of detectors if they fail to handle un-
seen attacks in an open set scenario. We propose a new
approach, Multi-Channel Xception Attention Pairwise In-
teraction (MCX-API), that exploits the power of pairwise
learning and complementary information from different
color space representations in a fine-grained manner. We
first validate our idea on a publicly available dataset in a
intra-class setting (closed set) with four different Deepfake
schemes. Further, we report all the results using balanced-
open-set-classification (BOSC) accuracy in an inter-class
setting (open-set) using three public datasets. Our exper-
iments indicate that our proposed method can generalize
better than the state-of-the-art Deepfakes detectors. We
obtain 98.48% BOSC accuracy on the FF++ dataset and
90.87% BOSC accuracy on the CelebDF dataset suggest-
ing a promising direction for generalization of DeepFake
detection. We further utilize t-SNE and attention maps to
interpret and visualize the decision-making process of our
proposed network.

1. Introduction
Deepfakes are synthetic media that are generated by deep

learning methods to manipulate the content in images and
videos. The manipulations include altering people’s iden-
tities, faces, expressions, speech or bodies to both enter-
tainment and malicious intent (for example pornographic
uses). Benefiting from the remarkable advancement in gen-
eration models, amateurish individuals are capable of creat-
ing Deepfakes using off-the-shelf models [1, 4, 3] without
tedious efforts. In the meantime, channelized efforts have
been dedicated to devising Deepfakes detection algorithms
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Figure 1: Overview of proposed Multi Channel Xception
Attentive Pairwise Interaction (MCX-API) network. Two
inputs are first represented in n kinds of color spaces, CS1

to CSn to obtain a two N-channel input and subsequently
feature vectors. We thereafter obtain xself

i and xother
i by

comparison through MCX-API, where xself
i is enhanced

by its own images and xother
i is activated by the other im-

age. xi is therefore improved with discriminative clues that
come from both images. By comparison, we can finally dis-
tinguish if an image is pristine or fake.

using multiple approaches such as by determining unique
artifacts [37, 15, 23, 25, 8, 32], utilizing Convolutional Neu-
ral Networks (CNNs) based networks [36, 41, 39], employ-
ing frequency domain information [22, 13, 40] and other
clues [18, 16].

With an atomic effort, these methods could perform well
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with an average of more than 99% [41] accuracy in a closed-
set problem where the training and testing data are pulled
from the same label and feature spaces. For example, the
network is trained on attacks A, B and C and tested on
images/videos drawn from attack A or B or C. However,
newer DeepFakes generation mechanisms make the detec-
tion algorithms untrustworthy and non-generalizable by de-
grading the performance of the detector [55, 57] as no ex-
ception to those classifiers trained with machine learning
methods. In the context of DeepFakes detection, this can be
parallel to detecting attack D when the detector is trained
on A, B, and C, making it an open-set problem. The rea-
sons behind the collapse of detection models towards un-
seen contents can, to some degree, be attributed to various
generation algorithms, which often result in different data
distributions, feature spaces, and appearance properties of
images or videos. While one can see the imperative need
for a generalizable detection technique to make reliable de-
cisions on unknown/unseen generation types in addition to
known/seen generation data, we note low performances of
networks in this direction [55, 57, 51, 10].

We thus motivate our work, focusing on both closed-set
and open-set detection in this article. We draw our inspi-
ration from how humans tend to detect altered media in a
fine-grained manner by comparing one kind of visual con-
tent to another. Human decision making relies on detecting
an unseen kind of manipulated images/videos as fake by
comparing the unknown generation type to the known gen-
eration types, especially the artifacts and clues [58]. Ini-
tial work using on pairwise interaction has shown promis-
ing directions to capture subtle differences in a pairwise
manner with not only principal parts of the image but also
distinct details from the other image [58]. Using such a
paradigm, we propose to learn the known type of gener-
ations in a fine-grained pairwise manner explicitly to im-
prove the performance of a Deepfake detector for unknown
types. Further, we also note the complementary informa-
tion an image/video can exhibit in different color spaces
along the same lines. We therefore incorporate informa-
tion from four color spaces, including RGB, CIELab, HSV,
and YCbCr integrating to boost the attentive pairwise learn-
ing to guide the detector to classify the non-manipulated
images efficiently. Our proposed approach exploits the in-
formation from color channels in a pairwise manner using
the strengths of the Xception network and we refer to this
as the Multi-Channel Xception Attentive Pairwise Interac-
tion (MCX-API) network between non-manipulated images
against a set of manipulated images and to try to generalize
the detector towards unknown manipulation types or unseen
data. Figure 1 shows an overview of the idea presented in
this work.

To validate our idea in this work, we conduct various ex-
periments using FaceForensics++ dataset [41] which con-

sists of four different manipulation classes including Deep-
Fakes (DF) [2], FaceSwap (FS) [4], Face2Face (F2F) [47]
and NeuralTextures (NT)[46] where we obtain better state-
of-the-art (SOTA) performance or at par detection perfor-
mance to best performing SOTA approaches in closed-set
experiments [14, 7, 55, 32]. Furthermore, we demonstrate
the effectiveness of variants of the proposed approach in
detecting Deepfakes in open-set scenarios where our ap-
proach achieves better results than SOTA models on three
other public datasets such as FakeAV [28], KoDF [30], and
Celeb-DF [35].

A detailed ablation study is presented on MCX-API to
illustrate the variability of performance of the detector to
various design choices in the network. Thus, the main con-
tributions of our paper are (1) We propose a new framework
- Multi-Channel Xception Attentive Pairwise Interaction
(MCX-API) for Deepfakes detection by exploiting color
space and pairwise interaction simultaneously, bringing a
novel fine-grained idea for the Deepfakes detection field.
(2)We report all results by balanced-open-set-classification
(BOSC) accuracy to exemplify the generalizability of our
proposed approach. (3)We conduct cross-datasets valida-
tions with three SOTA Deepfake datasets, Celeb-DF [35],
KoDF [30] and FakeAVCelebDF [28]. Furthermore, we
compared the results with SOTA Deepfake detection meth-
ods. Our MCX-API obtains 98.48% BOSC accuracy on the
FF++ dataset and 90.87% BOSC accuracy on the Celeb-DF
dataset, indicating an optimistic direction for the general-
ization of DeepFake detection.

In the rest of the paper, we list a set of directly related
works in Sec. 2 and then present our proposed approach in
Sec. 3. We provide an analysis of explainability in Sec. 5
with the set of experiments and results on generalizability
detailed in Sec. 4. We finally conclude the work in Sec. 7.

2. Related Work
Deepfakes detection methods. A track of Deepfakes

detection focuses on the unique artifacts on human faces,
such as eye blinking [33], different eye colors [37], abnor-
mal heartbeat rhythms shown on the face [15, 23]. Lip-
Forensics [25] targets high-level semantic abnormalities in
mouth movements, which the authors observe as a common
indicator in many generated videos. Some articles are dedi-
cated to finding inconsistencies in images and videos. These
inconsistencies arise out of generation process where land-
marks, head pose are inconsistent [52, 8] or observable in
image blending [34, 32]. Cozzolino et. al. [18] have in-
troduced ID-Reveal, an identity-aware detection approach
leveraging a set of reference videos of a target person and
trained in an adversarial manner. Many papers have uti-
lized CNNs-based methods for detecting features existing
in forged images[36, 41, 39]. Using high-frequency fea-
tures [22, 13, 40] to distinguish Deepfakes are also gaining
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Figure 2: The architecture of MCX-API network.

more popularity on this topic. Although pairwise learning
have been used for Deepfake detection [26, 51], they lack
the pairwise interactions by using contrastive learning.

Generalization to unseen manipulations. While many
works are proposed for detecting DeepFakes, they have
focused on closed-set experiments where the training and
testing set distributions are similar. The open-set experi-
ments indicate that they underperform on unseen manipula-
tions. In the meantime, an increasing number of works have
tried to address the problem of generalization of DeepFakes
detection. These works have focused on domain adapta-
tion and transfer learning to minimize the task of learning
parameters in an end-to-end manner [10, 29, 31]. Coz-
zolino et. al. [19] proposed an autoencoder-like structure
ForensicTransfer and the generalization aspect was stud-
ied using a single detection method for multiple target
domains. The follow-up works like Locality-aware Au-
toEncoder (LAE) [21] and Multi-task Learning were pro-
posed for detecting and segmenting manipulated facial im-
ages and videos [38]. Transfer learning-based Autoencoder
with Residuals (TAR) [31] recently proposed uses the resid-
uals from autoencoders to handle generalizability. Kim
et. al. [29] employed the Representation Learning (ReL)
and Knowledge Distillation (KD) paradigms to introduce
a transfer learning-based Feature Representation Transfer
Adaptation Learning (FReTAL) method. While these trans-
fer learning and zero-shot/few-shot learning methods could
not wholly deal with the Deepfakes detection generaliza-
tion problem, because the networks have already seen the
manipulated image/videos. Therefore, strictly speaking, it
is not an open-set situation.

In the meantime, some other novel networks have been
proposed dealing with the generalization problem of Deep-
fakes detection. A new method to detect deepfake images
using the cue of the source feature inconsistency within
the forged images [55] is proposed based on the hypothesis

that distinct source features can be preserved and extracted
through SOTA deepfake generation processes. Joint Audio-
Visual Deepfake Detection [57] is proposed by jointly mod-
eling video and audio modalities. This novel visual/auditory
deepfake combined detection task shows that exploiting
the intrinsic synchronization between the visual and audi-
tory modalities could benefit deepfake detection. Xu et.
al. [51] proposed a novel method using supervised con-
trastive learning to deal with the generalization problem in
detecting forged visual media.

3. Proposed Method

Fine-grained method has been widely used for classifi-
cation problems where the categories are visually very sim-
ilar [58, 50, 9]. We draw similar inspiration to our prob-
lem of Deepfake detection following the architecture pro-
posed by earlier [58] and build upon with number of im-
provements. We assert that architecture for fine-grained
classification can help in detecting Deepfakes. Unlike the
orginal architecture, we introduce Xception [14] to extract
the embeddings motivated by earlier works in Deepfake de-
tection [41, 54, 49, 29].

Second, to benefit from information from different color
spaces, we make the base network to a multi-channel net-
work. Then, we enforce pairwise learning by following the
architecture of Attentive Pairwise Learning [58]. We pro-
pose using the Multi Channel Xception Attentive Pairwise
Interaction Network (MCX-API) to deal with the Deepfakes
classification problem as detailed further.

3.1. Architecture

We first utilize MTCNN[53] to crop and align the face
region of a single frame. Two selected face images are fur-
ther sent to a Multi-Channel Xception backbone, and this
backbone network extracts two corresponding D-dimension
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feature vectors x1 and x2 using the face image represented
in N different channels that include RGB, CIELab, HSV,
and YCbCr. A mutual vector xm P RD is further gener-
ated by concatenating x1 and x2 and using a Multi-Layer
Perceptron (MLP) function for mapping xm to get a D di-
mension. xm is a joint feature that includes high-level con-
trastive clues of both input images across multiple color
channels.

In order to compare xm with x1 and x2, we need to ac-
tivate xm using sigmoid function to increase the positive
relation with xi and decrease the negative relation against
xi [58]. Therefore, two gate vectors g1 and g2 will be gen-
erated. gi is calculated by xm and xi, thus containing con-
trastive clues and acting as discriminative attention spots
semantic contrasts with a distinct view of each xi. The gate
vector gi is the sigmoid of the output of channel-wise prod-
uct between xm and xi, whose formula is provided in Equa-
tion (1).

gi “ sigmoidpxm d xiq, i P t1, 2u (1)

A pairwise interaction between input features xi and gate
vectors gi is performed to induce residual attention by com-
paring one image to the other to distinguish the final class.
The sequence of interaction can be shown in Equation (2).

xpristine
1 “ x1 ` x1 d g1

xfake
1 “ x1 ` x1 d g2

xpristine
2 “ x2 ` x2 d g2

xfake
2 “ x2 ` x2 d g1

(2)

Through the pairwise interaction of each feature xi, two at-
tentive feature vectors xpristine

i P RD and xfake
i P RD are

further produced. The former one is highlighted by its gate
vector, and the latter is triggered by the gate vector of the
compared image. xi is thus enhanced with discriminative
clues from both input features through pairwise interaction.

3.2. Loss calculation

The four attentive features xj
i where i P t1, 2u and j P

tpristine, fakeu, the pairwise interaction outputs, are fed
into a softmax classifier for the loss calculation [58]. The
output of softmax denoted by pji is the probability of a
feature belonging to a specific class (i.e., non-manipulated
or Deepfake). The main loss in our case is the cross-entropy
loss

Lce “ ´
ÿ

iPt1,2u

ÿ

jPtpristine,fakeu

y⊺i logppji q (3)

where yi is the one-hot label for image i in the pair and ⊺
represents the transpose. MCX-API can be trained to deter-
mine all the attentive features xj

i under the supervision of
the label yi through this loss.

Furthermore, a hinge loss of score ranking regularization

Lrk “
ÿ

iPt1,2u

maxp0, pfakei pciq ´ ppristinei pciq ` ϵq (4)

is also introduced when computing the complete loss [58].
ci is the corresponding index associated with the ground
truth label of image i. So pji pciq is a softmax score of pji .
Since xpristine

i is activated by its gate vector gi, it should
contain more discriminative features to identify the corre-
sponding image, compared to xfake

i . Lrk is utilized to pro-
mote the priority of xpristine

i where the score difference be-
tween pfakei pciq and ppristinei pciq should be greater than a
margin. The whole loss for a pair is composed of two losses,
cross-entropy loss Lce and score ranking regularization Lrk

with coefficient λ.

L “ Lce ` λLrk (5)

In this way, MCX-API is able to take feature priorities into
account adaptively and learns to recognize each image in
the pair.

4. Experiments and Results
4.1. Datasets

Training data: We select FaceForensics++ [41] to train
the proposed approach. This forensics dataset consists of
1000 original videos and corresponding number of manip-
ulated videos consisting of 1000 videos for each of the sub-
sets - DeepFakes (denoted as DF) [2], Face2Face (denoted
as F2F) [47], FaceSwap (denoted as FS) [4], and Neural-
Textures (denoted as NT) [46].

Cross-dataset Validation: We also select three other
SOTA datasets for generalization test and comparison.
Celeb-DF [35]: For Celeb-DF, we choose id51-id61
from Celeb-real, Celeb-synthesis and id240-id299 from
YouTube-real for the test set. KoDF [30] We randomly se-
lected 265 real videos and 734 fake ones as our test set.
FakeAV [28] We randomly selected 500 videos as our test
set.

Implementation details. We choose uncompressed
videos for our experiments in this work using the Pytorch
framework [5] to develop the models and the experiments
are conducted on Python 3.6 environment on NVIDIA Tesla
V100 32Gb in IDUN system owned by NTNU [43].

Multi-task Cascade Convolutional Neural Networks
(MTCNN) [53] is employed for face detection and face
alignment since our experiments are focused on detecting
the manipulated face region alone. We allow loose cropping
of the face region to capture the entire silhouette against
tight cropping. The first 30 frames from each video are ex-
tracted, resulting in 150000 total images. We use random

675



Table 1: Frame-level BOSC Accuracy and AUC for our proposed MCX-API networks and SOTA methods on seen
data. We compare the results with the SOTA methods on DF/F2F/FS/NT respectively. All networks are trained on the whole
FF++ c23 dataset. The data of the first three methods are adopted from Table 5 in Appendix of FF++ [14].

FF++ c23 Frame-level (BOSC(%)/AUC)
Method DF F2F FS NT Average
Cozzolino et al. [17] 75.51/ - 86.34/ - 76.81/ - 75.34/ - 78.50/ -
Bayar and Stamm [11] 90.25/ - 93.96/ - 87.74/ - 83.69/ - 88.91/ -
MesoNet [7] 89.55/ - 88.60/ - 81.24/ - 92.19/ - 87.90/ -
Xception*[14] 96.35/0.9941 96.26/0.9937 96.29/0.9952 92.43/0.9736 95.33/0.9892
SupCon*[51] 97.18/0.9984 96.88/0.9978 97.05/0.9980 92.92/0.9846 96.01/0.9947
API-Net(ResNet101)*[58] 88.71/0.9820 90.13/0.9860 87.79/0.9728 82.96/0.9248 87.40/0.9664
Ours
MCX-API(RGB) 98.75/0.9996 99.90/0.9986 98.5/0.9993 96.75/0.9896 98.48/0.9968
MCX-API(RGB+HSV) 98.75/0.9988 98.50/0.9979 97.75/0.9978 95.75/0.9829 97.69/0.9943
MCX-API(RGB+CIELab) 97.00/0.9996 96.50/0.9985 96.25/0.9989 95.25/0.9909 96.25/0.9970
MCX-API(RGB+YCbCr) 98.00/0.9998 98.25/0.9991 97.75/0.9993 96.75/0.9920 97.69/0.9976
MCX-API(RGB+HSV+CIELab) 96.50/0.9990 95.50/0.9888 96.00/0.9835 95.50/0.9933 95.88/0.9912
MCX-API(RGB+LAB+YCbCr) 92.00/0.9963 92.25/0.9972 91.50/0.9960 91.00/0.9870 91.69/0.9941

* Our implementation of the method.

cropping in the training phase and center cropping during
the testing phase (5122 Ñ 4482). In all our experiments,
we employ Xception as the backbone where we derive the
feature vector xi P R2048 after the global average pooling.
We use a batch sampler during the training by randomly
sampling three categories in each batch. For each category,
we randomly choose nine images due to the limitations of
the GPU and memory constraints. We further exercise care
to have no sample overlap among all batches, as we exclude
the selected sample from the dataset. We locate its most
similar image from both its own class and the rest classes for
each image by calculating the distance between features by
utilizing both Euclidean distance and cosine distance. Each
image would get one image as its intra- and inter-pair in the
batch, respectively. Each pair is used as input x1 and x2 as
well as generating a mutual vector xm P R2048 through the
concatenation and the multilayer perceptron (MLP).

Based on empirical evaluations, we adopt the coefficient
λ in Equation (5) as 1.0, and 0.05 as the margin value in
the score-ranking regularization. We use cosine annealing
strategy to alter the learning rate starting from 0.01 [55]. We
train the network with 100 epochs and freeze the parameters
in the CNN backbone, and further on train only the classifier
in the first eight epochs.

Evaluation Metrics. We adopt Balanced-Open-Set-
Classification (BOSC) accuracy and AUC as evalua-
tion metrics. BOSC “

Sensitivity`Specificity
2 , where

Sensitivity “ TP
TP`FN and Specificity “ TN

TN`FP .

Table 2: Comparison of the test results on the FF++ dataset
with c23 (high-quality compression) settings. Training
for all networks is carried out on FF++ c23. The accu-
racy and AUC score are at frame-level. The best perfor-
mances are marked in bold. Data for Xception, F 3-Net, and
EfficientNet-B4 are adopted from Table 2 in MaDD [54].

Method ACC AUC
Xception 95.73 0.9909
F 3-Net [40] 97.52 0.9810
EfficientNet-B4 [45] 96.63 0.9918
DCL [44] 96.74 0.9930
MaDD [54] 97.60 0.9929
M2TR [49] 97.93 0.9951
API-Net 87.40 0.9664
Ours 98.48 0.9968

4.2. Experimental Results

We evaluate the effectiveness of the proposed MCX-API
network with both seen and unseen data in this section.

4.2.1 Intra-dataset Evaluation (Closed Set Protocol)

We conduct experiments on six networks with different
color spaces on MCX-API whose results are presented in
Tab. 1. All networks are trained with all four manipulated
methods along with pristine in FF++ c23 dataset. We test
the frame-level detection performance on the test data of
FF++ c23 in a non-overlapping manner regarding the ID.

In Tab. 1, the frame-level test results are listed. We ob-
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Table 3: Video-level BOSC Accuracy and AUC for our proposed MCX-API networks and SOTA methods on unseen
data. We compare the results with the SOTA methods on FakeAV/KoDF/Celeb-DF respectively. All the networks are trained
on the whole FF++ c23 dataset. The data of the SOTA methods are adopted from Table 2 from [16].

FF++ c23 Video-level (BOSC(%)/AUC)
Method FakeAV KoDF Celeb-DF
Xception* 23.99/0.450 25.97/0.482 31.34/0.505
Seferbekov [6] 95.0/0.986 79.2/0.884 75.3/0.860
FTCN [56] 64.9/0.840 63.0/0.765 -
LipForensics [25] 83.3/0.976 56.1/0.929 -/0.820
ID-reveal [18] 63.7/0.876 60.3/0.702 71.6/0.840
POI [16] 86.6/0.941 81.1/0.899 -
API-Net(ResNet101)* 59.99/0.72 66.92/0.76 58.00/0.76
Ours
MCX-API(RGB) 74.94/0.95 78.09/0.87 77.88/0.87
MCX-API(HSV) 74.63/0.75 80.64/0.85 75.67/0.88
MCX-API(CIELab) 84.28/0.90 81.16/0.90 64.28/0.81
MCX-API(RGB+HSV) 71.58/0.93 78.11/0.87 80.18/0.88
MCX-API(RGB+CIELab) 83.89/0.93 77.93/0.83 68.34/0.91
MCX-API(RGB+YCbCr) 70.41/0.92 78.39/0.85 90.87/0.90
MCX-API(RGB+HSV+CIELab) 92.38/0.98 78.91/0.83 59.04/0.89
MCX-API(RGB+LAB+YCbCr) 82.93/0.96 76.20/0.80 54.92/0.85

* Our implementation of the method.

serve that our proposed MCX-API network with RGB in-
puts reaches the highest average accuracy, 98.48%. In addi-
tion, this setting also gains the highest accuracy on DF, F2F,
and FS with 98.87%, 99.90% and 98.50%, respectively.
MCX-API with YCbCr achieves the highest accuracy for
NT with 97.00%. As RGB provides best performance un-
der 3-channel setting, we combine RGB with HSV, CIELab,
and YCbCr, respectively, to create three 6-channel MCX-
API networks. From the second block in Tab. 1, we can see
that RGB+YCbCr obtains the highest average AUC score
of 0.9976 and the best performance on DF, F2F, and FS re-
garding AUC score. This indicates better prediction out-
put scores using MCX-API with the combination of RBG
and YCbCr color spaces. The 9-channel MCX-API net-
work with RGB, HSV, and CIELab further gains the highest
0.9933 AUC score for NT.

The results of the comparison with the SOTA methods
are reported in Tab. 2. All networks are trained on FF++ c23
(high-quality compression). The accuracy and AUC scores
are measured at frame level. The results are averaged on
all the test sets from FF++ c23, including pristine and all
four kinds of manipulated videos. Our proposed method
MCX-API with RGB color space obtains the best perfor-
mance compared to SOTA methods. The best accuracy of
the BOSC is 98.48%, and the highest AUC score is 0.9968.
The result shows that our idea of pairwise learning in a fine-
grained manner could work well in inter-class (closed-set)
setting of Deepfake detection problem.

4.2.2 Cross-dataset Evaluation

We conduct a comparison on cross-dataset validation with
SOTA methods to validate the proposed approach. We em-
ploy FakeAV, KoDF, and Celeb-DF to test the generalizabil-
ity of our MCX-API network. Training for all networks are
carried out on the FF++ c23 dataset and tested on FakeAV,
KoDF, and Celeb-DF. We note that MCX-API with CIELab
color space gets the best scores for KoDF with an accu-
racy of 81.86% and an AUC score of 0.90 as presented in
Tab. 3. MCX-API with RGB+YCbCr wins in the cross-
dataset validation for Celeb-DF with an accuracy of 90.87%
and the second best AUC score 0.90. MCX-API with color
space RGB+HSV+CIELab achieves the second best place
for FakeAV with 92.38% accuracy and 0.98 AUC score. In
general, our proposed network gets a relatively better per-
formance than the SOTA methods which indicates the better
generalizability of the proposed MCX-API network.

5. Explainable Analysis of MCX-API

We further analyze the network to understand the per-
formance gain by analyzing embeddings using t-SNE
plots [48] and class activation maps [42, 12, 20, 27, 24].
While the t-SNE provides topology explanations of the
learned features, the activation maps allow for a better visu-
alization of what has been learned by our network.
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MCX-API (RGB) API

Figure 3: Data visualizations in 2D by t-SNE for MCX-API(RGB) and API. The left plot is t-SNE for our proposed MCX-
API. The right plot is t-SNE for base architecture API-Net. We blow up the intersection parts and outliers for a clear view.

DF MCX-API (RGB) API

F2F MCX-API (RGB) API

Figure 4: Blow up in activation maps from LayerCAM analysis of MCX-API(RGB) and base architecture API-Net on DF
and F2F faces.
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(a) Visualization of the last block of the exit flow of MCX-API (RGB).
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(b) Visualization of the last block of the API-Net.

Figure 5: Visualization of the last layer of MCX-API
(RGB) and API networks. We utilize Grad-CAM [42],
Grad-CAM++ [12], HiResCAM [20], LayberCAM [27]
and XGradCAM [24] as our visualization tool. For larger
figure, please refer to Fig. 6.

5.1. Data Visualizations With t-SNE

The results of a t-SNE 2D map for the feature vec-
tors are illustrated in Fig. 3. We compare the t-SNE of
our MCX-API and base architecture API-Net. We no-
tice that the five classes of Real, DF, F2F, FS, and NT
for MCX-API are well separated with five different clus-
ters as against the base architecture of API-Net. There is
an unclear boundary between Real and NT, shown in the
blue box for MCX-API. This overlapping can be the rea-
son for the relatively lower accuracy obtained on NT. There
are small areas overlapping between DF/NT(yellow/purple)
and Real/F2F(red/blue). We further notice a few samples of
Real (red dots) distributed in each fake class, leading to the
errors of our proposed network.

5.2. Visualizing Decisions With Attention Maps

We apply different class activation visualization methods
on the last layer of proposed network to analyze MCX-API
shown in Fig. 5. For comparison, we also show the visu-
alization of the base API-Net. Precisely, we adopt Grad-
CAM [42], Grad-CAM++ [12], HiResCAM [20], Layber-
CAM [27] and XGradCAM [24]. The visualization results
are provided in Fig. 6(a) for our proposed MCX-API and in

Fig. 6(b) for API-Net.
The activation map for Output Real is on the left part

with a green background, and the activation map for Out-
put Fake is on the right part with a pink background. The
rows from top to bottom are the visualization for five classes
of Real, DF, F2F, FS, and NT, respectively. We can ob-
serve that real images gains more attention within Output
Real(left part) than Output Fake(right part). In contrast,
fake images obtain more attention within Output Fake than
Output Real. This explains the ability of our network to
detect Deepfakes.

We further blow up the activation maps from LayerCAM
for DF and F2F images in Fig. 4. From visual analysis,
it is evident that the MCX-API focuses more on the facial
region, such as the eyes and the mouth. For instance, double
eyebrows are found in the DF image (blue circle). MCX-
API pays more attention than API around this region.

6. Limitations of our work

We notice in Tab. 1 that with the increase in color spaces,
there are no apparent improvements in BOSC accuracy. We
assume that there is redundant information among channels,
and further work would be focused on finding the most help-
ful color information to extend our proposed approach. We
also observe that no single configuration could perform rea-
sonably well for all the unseen data, which is the biggest
issue for Deepfake detection field. Introducing other infor-
mation, such as temporal data and audio, would be a good
idea as more inconsistency could be found by extending our
work to video based approach.

7. Conclusion

There is an imperative need for a generalized Deep-
Fakes detection method to deal with the newer manipula-
tion methods in visual media. In this paper, we proposed
to apply the Multi-Channel Xception Attentive Pairwise In-
teraction (MCX-API) network to the Deepfakes detection
field in a fine-grained manner. We conducted experiments
on the publicly available FaceForensics++ dataset, and our
approach obtained better performance than the SOTA ap-
proaches on both seen and unseen manipulation types. We
obtain 98.48% BOSC accuracy on the FF++ dataset and
90.87% BOSC accuracy on the CelebDF dataset suggesting
a promising direction for the generalization of DeepFake
detection. Comprehensive ablation studies have been con-
ducted to understand our algorithm better. We further ex-
plain the performance of our network by using t-SNE and
attention maps. The results showed that Deepfake had been
well separated from real videos. While our approach has
indicated a promising solution to obtain a generalized de-
tection mechanism, we have listed certain limitations that
can pave the way for future work.
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