Identifying Label Errors in Object Detection Datasets by Loss Inspection

Marius Schubert, Tobias Riedlinger, Karsten Kahl, Daniel Kröll, Sebastian Schoenen, Siniša Šegvić, Matthias Rottmann; Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, pp. 4582-4591


Labeling datasets for supervised object detection is a dull and time-consuming task. Errors can be easily introduced during annotation and overlooked during review, yielding inaccurate benchmarks and performance degradation of deep neural networks trained on noisy labels. In this work, we introduce a benchmark for label error detection methods on object detection datasets as well as a theoretically underpinned label error detection method and a number of baselines. We simulate four different types of randomly introduced label errors on train and test sets of well-labeled object detection datasets. For our label error detection method we assume a two-stage object detector to be given and consider the sum of both stages' classification and regression losses. The losses are computed with respect to the predictions and the noisy labels including simulated label errors, aiming at detecting the latter. We compare our method to four baselines: a naive one without deep learning, the object detector's score, the entropy of the classification softmax distribution and a probability margin based method from related work. We outperform all baselines and demonstrate that among the considered methods, ours is the only one that detects label errors of all four types efficiently, which we also derive theoretically. Furthermore, we detect real label errors a) on commonly used test datasets in object detection and b) on a proprietary dataset. In both cases we achieve low false positives rates, i.e., we detect label errors with a precision for a) of up to 71.5% and for b) with 97%.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Schubert_2024_WACV, author = {Schubert, Marius and Riedlinger, Tobias and Kahl, Karsten and Kr\"oll, Daniel and Schoenen, Sebastian and \v{S}egvi\'c, Sini\v{s}a and Rottmann, Matthias}, title = {Identifying Label Errors in Object Detection Datasets by Loss Inspection}, booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month = {January}, year = {2024}, pages = {4582-4591} }