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Abstract

While many methods have been proposed to solve the

Super-Resolution (SR) problem of Low-Resolution (LR) im-

ages with complex unknown degradations, their perfor-

mance still drops significantly when evaluated on images

with challenging real-world degradations. One often over-

looked factor contributing to this, is the presence of spa-

tially varying degradations in real LR images. To address

this issue, we propose a novel degradation pipeline capa-

ble of generating paired LR/High-Resolution (HR) images

with spatially varying noise, a key contributor to reduced

image quality. Furthermore, to fully leverage such training

data, we novelly propose a Pixel-Wise Degradation Adap-

tive Real-World Super-Resolution (PDA-RWSR) framework.

Specifically, we design a new Restormer-based Real-World

Super-Resolution (RWSR) model capable of adapting the

reconstruction process based on pixel-wise degradation

features extracted by a new supervised degradation esti-

mation model. Along with our proposed method, we also

introduce a new challenging real-world Spatially Variant

Super-Resolution (SVSR) benchmarking dataset, where the

images are degraded by complex noise of varying intensity

and type, to evaluate the robustness of existing RWSR meth-

ods. Comprehensive experiments on synthetic and the pro-

posed challenging real dataset demonstrates the superior-

ity of our method over the current State-of-The-Art (SoTA).

The SVSR dataset is available at https://doi.org/

10.5281/zenodo.10044260.

1. Introduction

Image Super-Resolution (SR) aims to enhance the reso-

lution and details of LR images to generate High-Resolution

(HR) images, which have many practical applications. Most

recent SR methods accomplish this task by learning a map-

ping from LR images, generated synthetically by bicubic

downsampling, to the corresponding HR images [12,14,25,

32, 45, 58]. However, Deep Neural Network (DNN)-based

SR methods often suffer from overfitting to the training data

distribution, which consequently leads to decreased perfor-
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DASR [31]

BSRNet [53]

PDA-RWSR (Ours)

Real-ESRNet [43]

GT

Figure 1. The assumption of uniform degradations in State-of-

The-Art (SoTA) Real-World Super-Resolution (RWSR) methods

[31, 43, 53] limits the reconstruction performance of a real noisy

Low-Resolution (LR) image from our proposed Spatially Variant

Super-Resolution (SVSR) dataset. On the contrary, our proposed

PDA-RWSR results in a more faithful reconstruction with better

artifact suppression.

mance when applied to images with different degradations.

Recent attempts to overcome this problem include elaborate

degradation models [29, 37, 53] and network conditioning

based on degradation estimation [31]. However, these meth-

ods assume uniformly distributed degradations and hereby

ignore the phenomenon of spatially varying noise present

in real images acquired in photon-limited situations. This

key factor compromising the image quality is not contin-

gent upon specific image sensors, but a result of the physics

involved in the imaging process, such as random photon ar-

rival and non-ideal-sensor characteristics, leading to higher

Signal-to-Noise Ratio (SNR) in brighter pixels (low noise)

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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and lower SNR in darker pixels (high noise) [22]. Since

the SNR is ultimately controlled by the quantum nature of

light, the noise stemming from this phenomenon is an inher-

ent characteristic of any realizable imaging device operating

under natural settings [39]. An example case illustrating the

limitations of current SoTA methods when applied to im-

ages with spatially variant degradations is depicted in Fig-

ure 1. A similar challenge has been explored in the context

of deblurring images affected by spatially variant blur [51].

Our main motivation lies in the observation that while

SoTA RWSR methods can effectively enhance real images

without severe degradations, they frequently fail in more

challenging and practical scenarios, such as surveillance,

where SR is most needed. To this end, we introduce a novel

degradation modeling pipeline capable of introducing spa-

tially variant degradations. More precisely, we propose a

mask blending technique that synthesizes LR images with

varying degrees of noise across the image to resemble the

signal-dependent noise in real images. To fully leverage

such complex training data, we also propose a Pixel-Wise

Degradation Adaptive Real-World Super-Resolution (PDA-

RWSR) framework which consists of a DNN that learns to

extract pixel-wise degradation features from the LR image

in a supervised manner, and a Restormer-based [49] RWSR

model that conditions the reconstruction process based on

the pixel-wise degradation features. One factor that has

been hampering research in practical SR is the lack of suf-

ficiently realistic and challenging real-world SR evaluation

datasets. While datasets of real image pairs do exist, they ei-

ther solely consider the resolution difference [8, 48, 57], or

contain noisy/clean pairs without scale differences [2, 40],

and hereby excluding more complex scenarios such as LR

images corrupted by strong and signal dependant noise. To

enable evaluation of RWSR methods in practical scenar-

ios, we propose a new Spatially Variant Super-Resolution

(SVSR) dataset, that contains LR images of multiple differ-

ent scenes captured with varying noise intensity and type,

and the corresponding noise-free HR Ground-Truth (GT)

images. We summarize our contributions as follows:

• A novel image degradation model that enables degra-

dation at pixel level, as opposed to existing models that

mostly operate on image level.

• A new Restormer-based [49] RWSR model capable

of adapting the reconstruction process based on pixel-

wise degradation features extracted by a new super-

vised degradation estimation model.

• A novel real-world Spatially Variant Super-Resolution

(SVSR) benchmarking dataset that challenges all ex-

isting SR methods.

• We highlight the importance of spatially variant degra-

dation modeling and adaptation by demonstrating

SoTA performance on the SVSR dataset with our pro-

posed method.

2. Related Work

Single Image Super-resolution: Since the first Convolu-

tional Neural Network (CNN) based SR network [14], a

plethora of subsequent work [12, 19, 25, 32, 58, 59] have

achieved promising reconstruction performance on LR im-

ages created by bicubic downsampling. Furthermore, Gen-

erative Adversarial Networks (GANs) have been used to

push the SR networks to introduce realistic textures for

more visually pleasing results [28, 45, 56]. However, due

to the simplistic bicubic downsampling model, the classic

SR methods do not generalize well to real-world scenarios

[4,16,17]. As such, the practical applications of such meth-

ods are limited when the LR images contain complex non-

uniform degradations, such as noise, blur, and compression

artifacts. An overview of classic and deep-learning-based

SR methods can be found in [38, 47].

Blind Super-Resolution: Classic blind SR assumes that

the blur kernel for the LR image is unavailable [36]. As

such, blind SR methods aim to enhance images beyond

the bicubic degradation scenario, by including estimated

blur kernel information either as a pre-processing step

[5, 6, 41, 54], or as part of the SR pipeline [18, 34]. RWSR

is a more practical version of blind SR, where the goal is to

handle the many complex degradation types, and combina-

tions hereof, present in real-world images. To address this,

recent SoTA approaches rely on elaborate degradation mod-

els that introduce random combinations of blur and noise

types, down-sampling operations, and JPEG compression

artifacts [43, 53]. Other works try to estimate the average

degradation in the input image and adapt the features in the

SR network accordingly [31, 37, 61]. FeMaSR [9] formu-

lates the SR problem as a feature matching problem be-

tween LR features and distortion-free HR priors. Other ap-

proaches to solving the RWSR problem include [1,8,48,57]

that collect paired real LR and HR images for supervised

learning. However, these datasets do not contain strong

degradations, and while [60] and [1] propose more chal-

lenging datasets for joint denoising and SR of microscopy

images, and joint low-light enhancement and SR, respec-

tively, there is still a lack of a sufficiently challenging nat-

ural image RWSR benchmarking dataset. Partially related

to our work are MANet [30] and KOALAnet [26] who per-

form feature modulation based on spatially varying blur ker-

nel estimations. More recently, the problem of spatially

variant noise is investigated in [10], where a method for

HDR imaging based on simultaneous denoising and fusion

of images with spatially varying SNR ratios is proposed.

However, unlike our approach, these methods do not pos-

sess the capability to effectively super-resolve real LR im-

ages degraded by spatially variant noise.
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Figure 2. An overview of our proposed Pixel-Wise Degradation Adaptive Real-World Super-Resolution (PDA-RWSR). We design a

Transformer-based RWSR model on the basis of Restormer [49], where Restormer Transformer Blocks (RTBs) [49] are organized in a U-

Net shaped architecture together with our Spatial Feature Transformation Blocks (SFTBs) to adapt the image reconstruction process based

on pixel-wise degradation features. A supervised degradation estimation model with Degradation Feature Extraction Blocks (DFEBs)

learns to separate image degradations from content, for the purpose of providing degradation features for conditioning the SR model.

3. Method

We focus on the challenging task of SR of real-world LR

images with complex and non-uniformly distributed degra-

dations, a setting where current SoTA most often fails, as

seen in Figure 1. Based on this observation, we design a

framework to handle images with spatially variant degra-

dations which include both pixel-wise degradation model-

ing, estimation, and adaptation. An overview of our pro-

posed method is presented in Figure 2. It consists of a SR

network based on the Restormer image restoration Trans-

former [49], where RTBs [49] are organized in a U-Net

shaped architecture together with our Spatial Feature Trans-

formation Blocks (SFTBs), a supervised degradation esti-

mation network with Degradation Feature Extraction Block

(DFEB), and a degradation model for synthesizing LR train-

ing images with spatially variant degradations. The core

novelty of our work is that the SR model is conditioned on

pixel-wise degradation features provided by the degradation

estimation network for improved refinement of location-

specific degradations. In the following, each component in

our framework is presented.

3.1. Spatially Variant Degradation Model

A necessity for a DNN based SR model to perform well

on test data is prior training on equivalent training data. The

classic degradation pipeline for creating realistic LR/HR

training image pairs [15] involves convolution with a blur

kernel k on the HR image y, followed by downsampling

with scale factor s, and lastly, degradation by additive noise

to produce the degraded LR image xd. The pipeline is for-

mally described in Equation 1.

x = (y ⊛ k) ↓s +n (1)

More elaborate and high-order degradation models for

synthesis of low-quality LR images have recently been pro-

posed by Zhang et al. [53], and Wang et al. [43] which

introduce diverse combinations of degradations by a ran-

dom shuffling strategy. However, a fundamental limitation

of these models is the use of spatially uniform degrada-

tions, which we hypothesize limits the generalization per-

formance to real images. Thus, we propose a novel degrada-

tion pipeline where the noise strength varies spatially across

the image. This better resembles the distribution of noise in

real images, which varies naturally as a result of different

SNR levels [20, 21] (See also Figure 6). More specifically,

we propose to synthesize LR images with spatially varying

noise with the concept of mask blending. First, we gener-

ate a mask m of the same spatial size as the LR image x,

which contains either a randomly shaped and oriented gra-

dient mask, or a mask based on the image brightness level.

Next, we generate a noisy image xn by adding spatially

invariant Gaussian or Poisson noise to x. Then x and xn

are blended according to the varying intensity levels defined

in the mask, to form the degraded image xd with spatially

varying noise, formally:
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Input images a) Linear gradient b) Radial gradient c) Thresholding

Figure 3. Examples of a LR image from DIV2K [3] degraded by

our proposed spatially variant degradation framework. Top left:

clean input image. Bottom left: Input image corrupted by uniform

noise. a-b: Examples of the different masks used in our framework

(top row) and the corresponding output images after blending (bot-

tom).

xd = (1−m) ∗ x+ xn ∗m (2)

Examples of different masks and the resulting noisy im-

ages can be seen in Figure 3. Note that our goal is not to

accurately model camera specific noise distributions, but

rather to introduce the concept of spatially variant noise into

the training of the SR model, and thereby facilitate learning

spatially variant noise suppression in real images. More de-

tails about the mask generation are given in the supplemen-

tary material.

3.2. Pixel­Wise Degradation Estimation

Most existing degradation estimation methods only pro-

vide a global average estimate of the degradations in the

input image [31, 42]. For more fine-grained control of the

reconstruction of local degradations, we propose to estimate

the degradation on a pixel level. However, complex com-

binations of different degradations are difficult to quantify

and label for supervised learning, and unsupervised learn-

ing requires elaborate frameworks with large batch sizes.

As such, we propose to estimate the degradations by learn-

ing to extract them directly from a degraded image. More

specifically, as shown in Figure 2, the degradation feature

extraction network D takes as input an LR image xd, which

is a degraded version of y with spatially variant degrada-

tions. In D, shallow features are first extracted by a 7 × 7
convolutional layer. Next, these features are further pro-

cessed by 9 DFEBs to extract spatially variant degradation

features. Lastly, the deep degradation features are mapped

to 3-channels by four 3× 3 convolutional layers to form d,

which are combined with a bicubicly downsampled version

of y by element-wise addition to produce x̂d. The design of

the DFEBs, illustrated in Figure 4, combines a gating mech-

anism and depth-wise convolutions for efficient extraction

of local degradation information [49]. In each DFEB, infor-

mation is first processed by one 3 × 3 convolutional layer

with LeakyReLU followed by two parallel paths through

depth-wise convolutional layers, where one is activated with

a ReLU non-linearity. Lastly, the two paths are combined

by taking the element-wise product followed by a 1 × 1
convolutional layer. An additive skip connection is used

to allow direct information flow from the initial convolu-

tional layer. D is optimized by the loss between x̂d and xd.

To encourage images with similar structure and frequency

distributions we use a combination of SSIM [46] and focal

frequency loss [24]. The whole degradation feature extrac-

tion model has 4.6M parameters and a moderate receptive

field of 51 × 51. During inference, we extract degradation

features from the 9th DFEB for conditioning of the SR net-

work.

Figure 4. Details of the proposed Degradation Feature Extraction

Block (DFEB).

3.3. Pixel­Wise Feature Modulation

To condition the SR model on the pixel-wise degrada-

tions estimated by the degradation feature extraction net-

work, we design a feature modulation block that transforms

the deep spatial features of the SR network adaptively and

individually for each pixel accordingly. As visualized in

Figure 5, the Spatial Feature Transformation Block (SFTB)

takes a degradation feature map d and an image feature map

f of the same spatial dimensions as input. First, channel-

wise attention is applied to d, followed by two convolu-

tional layers with LeakyReLU to reduce the channel dimen-

sion from 256 to the same dimension as the feature maps

in the SR network. As each SFTB shares the same degra-

dation map, the channel attention serves to emphasize the

most relevant degradation features for each part of the SR

network. Next, feature transformation is performed by two

Spatial Feature Transformation (SFT)-layers [44], each fol-

lowed by convolutional layers, which learn parameters for

a spatially affine transformation of each feature map indi-

vidually. Formally, feature maps f are conditioned on the

degradation map d by a scaling and shifting operation:

SFT (f, d) = γ ⊙ f + β (3)

where γ and β are the scaling and shifting parameters and

⊙ represents the element-wise addition operation. To avoid
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mixing spatially adjacent degradations, the filter size of all

convolutional layers in the feature transformation block is

1× 1. Furthermore, multiple separate SFTB are inserted in

the SR backbone model, as the deep features propagating

through the network have different sensitivity to the degra-

dations for each level in the network. Implementation spe-

cific details are given in Section 5.1.

Figure 5. Details of the proposed Spatial Feature Transformation

Block (SFTB) for adaptive conditional feature-wise and spatial-

wise transformation.

4. SVSR Dataset

In this section, we present the data collection method for

our SVSR benchmark dataset along with an analysis of its

characteristics. The purpose of this dataset is to advance re-

search in RWSR by enabling evaluation on real LR images

with challenging and spatially variant degradations.

4.1. Data Collection

Our goal is to acquire high-quality HR reference images

and corresponding low-quality LR images. To this end, we

capture static scenes with diverse content, both in- and out-

doors, using three different Canon Digital single-lens reflex

(DSLR) cameras, two different zoom lenses, and three dif-

ferent aperture values. This ensures diverse degradations,

as the noise characteristics and point-spread-function vary

between the different cameras, lenses, and aperture set-

tings. The scale difference is obtained by changing the fo-

cal length of the zoom lenses, by which we collect image

pairs of both ×2 and ×4 scale difference. To obtain varying

degrees of noise, we capture multiple images of the same

static scene using aperture priority and change the camera’s

ISO setting. At low ISO settings (low signal gain) the cam-

era will produce the most noise-free images, while at higher

ISO settings, and appropriately shorter exposure times, the

images will contain more noise due to the lower signal-to-

noise ratio. Hence, we capture the clean images at the cam-

era’s native ISO setting (ISO100), while the noisy images

are captured at incrementally higher ISO levels up to the

maximum setting for each camera. We have established

ISO1600 as the threshold to distinguish noisy images, as

this is the point at which all three cameras introduce visible

noise. Consequently, the dataset comprises a total of 978

images, with 141 noise-free images for each scale level, and

555 images as the noisy LR counterparts. For completeness,

the released dataset contains the additional ISO levels which

we do not consider in this work. A breakdown of the dataset

can be seen in Table 1. Note that due to different technolo-

gies, images captured at the same ISO setting by different

cameras do not necessarily contain similar noise levels and

types. Additional details about the cameras, setup, and ex-

amples are given in the supplementary material.

Table 1. Overview of the different combinations of camera types

and ISO settings and the resulting number of degraded LR images

in the SVSR benchmarking dataset.

ISO

Camera 1600 3200 6400 12800 25600 51200 65535

Canon 6D ✓ ✓ ✓ ✓ ✓ ✓ ✓

Canon 600D ✓ ✓ ✓ ✗ ✗ ✗ ✗

Canon 1Ds Mark II ✓ ✓ ✗ ✗ ✗ ✗ ✗

Total noisy LR images 141 141 93 45 45 45 45

Clean LR (ISO100)

0

20

40

60

80

100

120

Absolute Difference Noisy LR (ISO 65535)

Figure 6. Visualization of the color-channel avg. absolute dis-

tance in LR space between a noisy and clean pairs from the SVSR

dataset. As seen, noise is more present in the darker regions.

4.2. Data Pre­processing

Even though the image collection is done with the cam-

era mounted on a tripod and using a remote trigger, mis-

alignment between the LR and HR image pairs can still oc-

cur, as the different focal lengths distort the image differ-

ently. To mitigate this, we design a pre-processing pipeline:

First, the lens distortion is removed using Adobe Light-

room [11], followed by center cropping to keep only the

sharpest part of the images. Next, we obtain pixel-wise reg-

istration of LR and HR images using a luminance-aware

iterative algorithm [8], which we empirically found to be

more accurate for the highly noisy images, compared to

keypoint-based algorithms. To maintain the scale difference

between the LR and HR images, we perform the alignment

in LR space. Finally, all image pairs are examined, and ones

with misalignment, out-of-focus, or other unwanted defects

are discarded. The resulting image pairs have a resolution

of 640× 640, 1280× 1280, and 2560× 2560px for the ×1,

2, and 4 scale factors, respectively.
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4.3. Data Analysis

To demonstrate the spatially variant distribution of noise

in the dataset, we visualize the color-channel average ab-

solute distance between LR images of different ISO levels

in Figure 6. As seen, a larger degree of noise is present

in the darker regions of the image, compared to lighter re-

gions. Figure 7 quantitatively supports this by showing the

mean value of the noise in different intensity ranges. Fur-

thermore, to quantify the effect of varying ISO levels on the

image quality, we compare clean and noisy images at LR

scale for the different ISO values. In Table 2 we present

the average standard deviation of the noise, and the result-

ing change in image quality as the ISO increases. As seen,

high ISO settings result in higher noise contributions, which

translates to accordingly lower image quality, e.g. the Peak

Signal-to-Noise Ratio (PSNR) for the highest ISO setting is

12.53dB lower than for ISO1600. Examples of the different

noise levels can be seen in Figure 8, respectively.
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Figure 7. Mean noise intensity values for the highest ISO level of

the SVSR dataset, computed at different pixel intensity ranges.

Table 2. Overview of the std. deviation σ of the noise at the dif-

ferent ISO levels in the SVSR benchmarking dataset, and how it

affects image quality at LR scale.

ISO σ PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓

100 0.0 ∞ 1.0 0.0 0.0

1600 4.93 34.32 0.9041 0.0305 0.0780

3200 6.43 32.06 0.8516 0.0711 0.1203

6400 8.06 30.18 0.8318 0.1061 0.1543

12800 9.38 28.77 0.7813 0.1403 0.1670

25600 12.31 26.37 0.6420 0.2693 0.2232

51200 15.15 24.58 0.5649 0.3364 0.2525

65535 20.87 21.79 0.4239 0.4562 0.3015

ISO100 ISO1600 ISO6400 ISO25600 ISO65535

Figure 8. Examples from the SVSR benchmarking dataset illus-

trating how the noise level changes at different ISO settings.

5. Experiments and Analysis

5.1. Experimental Setup

Table 3. Average PSNR(dB) results of state-of-the-art methods

for ×4 SR on synthetic noisy LR images. DN and SR indicates

if the method has denoising and/or super-resolution capabilities,

respectively. σ indicates the noise level.

Set14 [50] BSD100 [35] Urban100 [23]

DN SR Method σ = 15 σ = 25 σ = 15 σ = 25 σ = 15 σ = 25

✓ ✓ PDM-SR [33] 19.83 17.27 19.36 16.87 18.36 16.69

✗ ✓ RRDB [45] 19.84 16.48 19.81 16.42 18.96 15.98

✓ ✗ 3× 3 Median+Bic 20.38 19.89 21.56 21.05 19.13 18.79

✓ ✓ DAN [34] 20.98 18.07 20.73 17.95 19.79 17.26

✓ ✓ FeMaSR [9] 21.89 21.41 21.80 21.40 20.00 19.67

✗ ✗ Bicubic 22.05 19.76 22.08 19.76 20.22 18.56

✓ ✓ BSRNet [53] 22.08 19.58 22.14 19.66 20.81 18.98

✓ ✓ DASR [31] 23.26 21.73 23.14 21.84 21.26 20.14

✓ ✓ MM-RealSRNet [37] 23.41 22.69 23.68 23.04 21.38 20.90

✓ ✓ Real-SwinIR-L [29] 23.61 22.12 23.75 22.48 21.96 20.91

✓ ✓ Real-ESRNet [43] 23.93 22.74 23.90 22.97 22.06 21.24

✓ ✓ PDA-RWSR (Ours) 24.07 23.12 24.10 23.29 22.04 21.41

Datasets: Following recent practice in SR re-

search [37, 43, 45, 53], we use the DIV2K [3] and

Flick2K [32] dataset for training. For evaluation on

images with synthetic degradations we use Set14 [50],

BSD100 [35] and Urban100 [23] which we corrupt by

additive Gaussian noise with zero mean and standard

deviation σ = 15, 25, 50, respectively. For evaluation on

real-world degraded LR images, we use the SVSR dataset.

In both cases, we experiment with ×4 upsampling as

commonly used in the SR literature.

Implementation Details: We use our proposed spatially

variant noise degradation model together with the degrada-

tion pipeline from [53] by replacing the degradation with

uniform Gaussian noise with spatially variant Gaussian and

Poisson noise. Following [52], we set the noise standard

deviation to [1,50] and scale to [2,4] for Gaussian and Pois-

son noise, respectively. The remaining steps in the degra-

dation pipeline include Gaussian blur, downsampling and

JPEG compression noise, with the same hyperparameters

as defined in [53] for comparability. As such, any per-

formance improvements related to the degradation model-

ing are solely due to the introduction of spatially variant

noise. We perform experiments on Restormer [49], a Trans-

former based image reconstruction model, where we add

SFTBs for each encoder level, and before the final refine-

ment block. We use average pooling of the degradation

maps to match the spatial dimensions of the feature maps

at the different encoder levels. ×4 upsampling is done as fi-

nal step by nearest-neighbour interpolation + convolutional

layers, as commonly used in the SR literature [29, 45, 53].

Otherwise, the architecture follows the original implemen-

tation. We train our proposed degradation estimation and
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LR DASR [31] Real-ESRNet [43] MM-RealSRNet [37] BSRNet [53] Real-SwinIR-L [29] PDA-RWSR (Ours) Ground-truth

Figure 9. Visual comparison of the reconstruction performance on the SVSR dataset. In comparison to the SoTA approaches, our PDA-

RWSR produces more visually faithful results with less artifacts.

Table 4. Quantitative comparison of state-of-the-art methods for ×4 SR on real noisy LR images from the SVSR benchmarking dataset

(Full dataset / ISO65535). DN and SR indicate if the method has denoising and/or super-resolution capabilities, respectively.

DN SR Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓

✓ ✓ FeMaSR [9] 0.5914 / 0.3535 22.87 / 18.66 0.2772 / 0.5176 0.1557 / 0.2813

✓ ✓ PDM-SR [33] 0.6685 / 0.3891 23.82 / 18.84 0.3047 / 0.5367 0.1805 / 0.2838

✗ ✓ RRDB [45] 0.7073 / 0.4380 24.69 / 20.00 0.3011 / 0.5579 0.1745 / 0.2602

✓ ✓ DAN [34] 0.7085 / 0.4450 24.69 / 20.03 0.2997 / 0.5527 0.1741 / 0.2895

✓ ✓ DASR [31] 0.7092 / 0.3990 24.53 / 19.79 0.2478 / 0.4917 0.1577 / 0.2779

✗ ✗ Bicubic 0.7282 / 0.4920 24.84 / 20.41 0.3093 / 0.5439 0.1717 / 0.2828

✓ ✓ Real-ESRNet [43] 0.7650 / 0.6043 24.32 / 20.84 0.2063 / 0.4008 0.1407 / 0.2265

✓ ✗ 3× 3 Median+Bic. 0.7690 / 0.6412 25.08 / 21.51 0.2953 / 0.4350 0.1687 / 0.2587

✓ ✓ MM-RealSRNet [37] 0.7708 / 0.6302 24.26 / 21.17 0.2071 / 0.3836 0.1501 / 0.2280

✓ ✓ BSRNet [53] 0.7844 / 0.6707 25.13 / 21.71 0.2067 / 0.3563 0.1401 / 0.2148

✓ ✓ Real-SwinIR-L [29] 0.7853 / 0.6818 25.01 / 21.96 0.1956 / 0.3395 0.1442 / 0.2074

✓ ✓ PDA-RWSR (Ours) 0.7943 / 0.7427 25.16 / 22.56 0.1916 / 0.2985 0.1374 / 0.2043

SR network jointly for 1M iterations with a batch size of 16

using the ADAM [27] optimizer, a learning rate of 2×10−4,

LR patch sizes of 64×64, and L1-loss. Note that we do not

focus on finding the optimal architecture, or training hyper-

parameters, but rather on showing the importance of han-

dling the phenomenon of spatially variant degradations. As

such, the performance of our proposed method can likely be

further improved.

Evaluation Metrics: We evaluate the reconstruction per-

formance using two hand-crafted (PSNR, SSIM [46]), and

two SoTA DNN-based (LPIPS [55], DISTS [13]) Full-

Reference Image Quality Assessment (FR-IQA) metrics.

PSNR reports the image fidelity as a measure of the peak

pixel-wise error between the prediction and target, while

SSIM, LPIPS, and DISTS are more focused on the per-

ceived image quality [7].

5.2. Comparison with State­of­The­Art Methods

We compare our method with recent SoTA real-world

SR methods. Specifically, we include one codebook-
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Figure 10. Plot of how the performance (SSIM/PSNR) of SoTA

methods decrease as the ISO (noise levels) in the SVSR bench-

marking dataset increases. On the contrary, our PDA-RWSR has a

more consistent performance across the range.

Table 5. Comparison of different model types. DM, and FM de-

notes the degradation model, and whether the model uses feature

modulation, respectively. Giga Multiply-Accumulates per Second

(GMACs) are computed for an input image of 64× 64 pixels.

Name DM FM Params×106 GMACs SSIM ↑ PSNR ↑

A Bicubic ✗ 26.2 12.1 0.7058 24.68

B BSRNet [53] ✗ 26.2 12.1 0.7736 25.03

C Ours ✗ 26.2 12.1 0.7906 25.12

D Ours ✓ 28.4 51.4 0.7943 25.16

based method (FeMaSR [9]), two degradation estimation

and adaptation-based methods (DASR [31], DAN [34]),

five methods relying on elaborate degradation modeling

(Real-ESRNet [43], MM-RealSRNet [37], BSRNet [53],

PDM-SR [33]) and Transformers (SwinIR [29]), and for

completeness, one method trained on bicubicly down-

sampled images (RRDBNet [43]). For reference, we also

include a filter-based method i.e. 3 × 3 Median filter

followed by Bicubic upsampling. For all DNN-based

methods, we use the pre-trained weights provided by the

authors for enhancement of real images and optimized for

PSNR, rather than perceptual quality, since our goal is to

restore the original image with the highest possible fidelity.

Comparison on Synthetic Data: Table 3 shows the

results on synthetically degraded LR images. In this exper-

iment, where the degradations are uniformly distributed,

our method outperforms all the competing methods on

both noise levels, except for σ15 on Urban100 where our

method performs comparably with Real-ESRNet [45].

Comparison on Real Data: Table 4 shows the results

on real LR images with complex degradations. Contrary

to the experiments on synthetic data, the SVSR dataset

poses a more challenging reconstruction task, where the as-

sumption of spatially invariant Gaussian noise employed

by most of the SoTA methods will not hold. As such,

the global degradation estimation-based methods (DASR

[31], DAN [34]) cannot handle such real-world scenarios,

resulting in low performance based on all Image Quality

Assessment (IQA) metrics. Furthermore, while methods

based on elaborate degradation models (Real-ESRNet [43],

MM-RealSRNet [37], BSRNet [53], PDM-SR [33], Swin-

IR [29]) are trained on more complex degradations, their

reconstruction quality is very inconsistent on images with

spatially variant noise from the SVSR dataset. This can be

seen visually in Figure 9, and from the plot in Figure 10

where their performance drops sharply as the ISO level in-

creases. On the contrary, our proposed PDA-RWSR per-

forms better and more consistently across the range. This

is also reflected in Figure 9, where the reconstructions by

our methods are more faithful with fewer artifacts, proving

the superiority of PDA-RWSR for dealing with real-world

degradations.

5.3. Ablation Studies

In this section, we empirically show the importance of

our main technical contributions. As seen in Table 5 using

our proposed degradation model with spatially variant noise

(C) results in 0.09dB higher PSNR compared to using the

degradation model from BSRNet [53] (B). Due to the com-

plementary effect between our spatially variant degradation

model and our per-pixel-based degradation feature extrac-

tion and adaptation method (D) results in the best perfor-

mance, although with the cost of additional computations.

6. Conclusion

In this paper, we make significant progress towards

SR of real images with complex and spatially varying

degradations. Specifically, we propose to adapt the SR

reconstruction process on pixel-wise degradations. To

achieve this, we introduce a novel pixel-wise degradation

feature extraction network that conditions the SR backbone

model using pixel-wise modulation blocks. Additionally,

we develop a new degradation pipeline capable of introduc-

ing spatially variant degradations to the LR training images.

We further propose SVSR, a new RWSR benchmarking

dataset that challenges all the existing RWSR approaches.

Through experiments on synthetic and real LR images, we

demonstrate that our proposed PDA-RWSR outperforms

current SoTA methods.
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