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Figure 1. VD-GR outperforms strong baselines and achieves new state-of-the-art results on VisDial v1.0, VisDial v0.9, VisDialConv, and
VisPro. 1 indicates higher is better and | indicates lower is better. (& = Fine-tuning on dense annotations, <> = Ensemble model).

Abstract

We propose VD-GR — a novel visual dialog model that
combines pre-trained language models (LMs) with graph
neural networks (GNNs). Prior works mainly focused on
one class of models at the expense of the other, thus missing
out on the opportunity of combining their respective bene-
fits. At the core of VD-GR is a novel integration mecha-
nism that alternates between spatial-temporal multi-modal
GNNs and BERT layers, and that covers three distinct con-
tributions: First, we use multi-modal GNNs to process the
features of each modality (image, question, and dialog his-
tory) and exploit their local structures before performing
BERT global attention. Second, we propose hub-nodes
that link to all other nodes within one modality graph, al-
lowing the model to propagate information from one GNN
(modality) to the other in a cascaded manner. Third, we
augment the BERT hidden states with fine-grained multi-
modal GNN features before passing them to the next VD-
GR layer. Evaluations on VisDial v1.0, VisDial v0.9, VisDi-
alConv, and VisPro show that VD-GR achieves new state-
of-the-art results across all four datasets.

iy

“@¥ Our project web-page is accessible here.

1. Introduction

Visual dialog is a multi-modal task to assess how well
an artificial agent can hold a conversation with a human on
a visual content using natural language [8]. Visual dialog
differs from other tasks, such as visual [3] or video question
answering [49], in that it requires the agent to answer a se-
ries of temporally dependent questions. That is, the agent
not only has to reason about the visual input but also has to
leverage the context of previous rounds to be able to answer
the current question correctly. Although other datasets have
been proposed for this task [22,39], VisDial [8] has estab-
lished itself as the de-facto standard because of its challeng-
ing, open-ended, and real-world nature.

Early visual dialog models on this dataset were based
on recurrent networks [ 1 5] within deep neural architectures
ranging from vanilla LSTMs [14] over memory nets [48]
to hierarchical structures [40]. More recently, graph neu-
ral networks (GNNs) have been proposed and have been
shown to produce more fine-grained features based on the
local structures of each modality [6, 12, 16, 17,25]. Other
works have focused on attention models and pre-trained lan-
guage models (LM) [, 8,33, 38], fine-tuned for the visual
dialog task [27,32,46,55]. However, both methodological
approaches have so far remained separate despite their com-
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plementary strengths and weaknesses: While GNNs are ef-
fective at exploiting local structure, they struggle to capture
the global inter-modal context, especially in a rich multi-
modal task like visual dialog. In contrast, transformer-based
models [44] (e.g. BERT [9]) excel at learning the global
context using self and global attention but often fail to ex-
ploit local intra-modal structures within each modality and
suffer from the lack of inductive bias [50].

We posit that it is essential to exploit both local intra-
modal structures and the global inter-modal context: Each
modality is composed of smaller entities whose relation-
ships have to be separately captured and understood by the
model (i.e. the objects in the image, the words that con-
stitute the question, and the rounds that form the history).
At the same time, the inter-dependency of the modalities
and the global context are equally important for a model to
be able to answer the current question efficiently. Imple-
menting this idea, we propose VID-GR - the first visual di-
alog model to combine transformer-based LMs and GNNs.
Each of our proposed layers alternates between GNNs that
use hub-nodes to propagate information from one modality
graph to another to alleviate the lack of inter-modal con-
text, as well as BERT layers to learn the global intra-model
context. The contributions of our work are threefold:

* A novel integration method of GNNs into transformer-
based models that alternates between multi-modal graph
aggregation and BERT layers. The GNNs exploit the lo-
cal structure of each modality to augment the BERT hidden
states with their fine-grained features before passing them to
the next VD-GR layer in an attempt to mitigate their lack
of inductive bias.

* A novel feature propagation technique for multi-modal
GNNss that relies on hub-nodes that link to all other nodes of
the other modality in a cascaded manner, thus alleviating the
lack of inter-modal context within the multi-modal graphs.

¢ Our model achieves new state-of-the-art results on Vis-
Dial v1.0, VisDial v0.9, VisDialConv, and VisPro datasets,
thereby outperforming strong baselines on all four datasets.

2. Related Work
2.1. GNN:ss for Visual Dialog

GNN-EM [59] was one of the earliest models to deploy
GNNss for visual dialog. It relied on building graphically
structured neural networks to approximate the learning and
inference processes of graphical models [10, 28, 29, 42].
FGA [38] developed a general attention mechanism that
borrowed from the core idea of GNN message passing,
and that was able to combine representations of any num-
ber of utilities. CAG [12] proposed representing the im-
age as a fully-connected graph of objects whose adjacency

matrices could be dynamically updated using a question-
based attention mechanism. GOG [6] proposed represent-
ing each modality as a graph before processing them by a
light-weight fusion module [33] to rank the candidate an-
swers. Similarly to CAG [12], DualVD [18] proposed rep-
resenting the image as a graph consisting of connected ob-
jects. They argued that the visual view helped to capture the
appearance-level information, including objects and their
relationships, while the semantic view enabled the agent to
understand high-level visual semantics from the whole im-
age to the local regions [18].

Our model differs from the aforementioned works in
two major aspects: (1) Instead of concatenating the GNN
node features, we propose using hub-nodes that link to all
remaining nodes within a given modality. We argue that
this improves the feature fusion on a local scale given that
GNNs can freely learn how to integrate information ex-
tracted from previous modalities. (2) We marry GNNs with
pre-trained LMs (BERT) in a novel way to benefit from the
advantages of both worlds. Contrarily to [51,53] where sim-
ple integration approaches for plain uni-modal tasks were
introduced, we propose a sophisticated integration method
for the complex and rich multi-modal visual dialog task: We
first exploit the local multi-modal structures through GNNs
before propagating inter-modal information in a cascaded
manner via hub-nodes to finally enhance the hidden states
of each BERT layer. To the best of our knowledge, we are
the first to propose this for the visual dialog task.

2.2. Language Models for Visual Dialog

ViLBERT [30] and XLMERT [43] were among the first
attempts to leverage pre-trained LMs for vision-language
tasks (e.g. VQA [3], VCR [58], and image retrieval [54]).
Concretely, they used a transformer encoder as a backbone
and deployed a two-stream architecture to separately en-
code text and visual input. VisDial-BERT [32] built on
top of VILBERT and specifically adapted it to the visual
dialog task, achieving new state-of-the-art performance on
VisDial, and thus becoming the standard baseline for this
dataset. More recently, UTC [5] was introduced as an im-
provement of VisDial-BERT and used two inter-task con-
trastive losses to improve training. Another class of mod-
els used a single stream to encode the multi-modal input
such as B2T2 [2], VisualBERT [26], VL-BERT [41], and
UNITER [7]. VD-BERT [46] adapted a single stream VQA
model [60] to the visual dialog task and managed to achieve
good performance without relying on external datasets.

Contrarily to the aforementioned works, our model relies
on the power of cascaded GNNs to exploit local structures
within each modality and, thus produce more fine-grained
representations for subsequent BERT layers. To the best of
our knowledge, this combination of GNNs and pre-trained
LMs has not been explored before for visual dialog.
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Figure 2. VD-GR takes an image, a question, and a history consisting of the previous turns as input together with their respective graph
structures. Each VID-GR-layer is composed of cascaded multi-modal graphs and a vanilla BERT layer.

3. Method

As shown in Figure 2, VD-GR consists of four main
components: a) a graph construction and pruning module,
(b) a backbone operating on alternating cascaded multi-
modal graphs and BERT layers, (c) multiple loss heads
(next sentence prediction L,,sp, masked language modelling
Lnim, masked region modelling £,,,;-,, and multi-modal
graph edge masking (L%, £S,,.. £1¢,)) , and (d) a pre-
diction module to rank a set of candidate answers.

3.1. Problem Formulation

Given a question Q. grounded on an image I
at t-th turn, as well as its dialog history Hy =
{C, (Q1,21),..sy (Q¢_1,Ac_1) } (Where C denotes the im-
age caption), the model is tasked to predict its answer
A. by ranking a list of N = 100 answer candidates

Al ~2 ~100
{AL,AL,..,A }

3.2. Graph Construction and Pruning

Image Modality. The image graph constructor Gz (.) treats
each object in the image as a node and relies on spatial rela-
tionships to construct the graph topology, i.e. the adjacency
matrix, where each edge represents a relationship between
two objects in the image. The objects I = {vy,...,vn,}
are obtained using Faster R-CNN [37] pre-trained on Vi-
sual Genome [23] where each object feature v; is a 2048

dimensional vector and N; = 36. Similar to [52], we dis-
tinguish between 11 relations based on the (z1,y1, Z2, y2)
object coordinates. Specifically, the overlapping region and
spatial coordinates of two regions are used to judge whether
an edge exists between them or not.

Question Modality. The question graph constructor Go(.)
treats each word in the question as a node and relies on
dependency relations to construct the graph topology, i.e.
the adjacency matrix, where each edge represents a rela-
tionship between two words in the question. To extract
these relationships, we use the neural dependency parser of
Stanza [36] that yields 47 relations.

History Modality. The history graph constructor Go(.)
treats each dialog round as a node and relies on coreference
relations to construct the graph topology, i.e. the adjacency
matrix, where each edge represents a relationship between
two rounds in the history.

As can be seen in Figure 2, the topology of all multi-
modal graphs is computed once during a pre-processing
stage and is always kept constant over time. We refer to
the supplementary material for additional details.

3.3. Proposed Layer
3.3.1 Transformer Features

Inline with previous works, we use VisDial-BERT [32] lay-
ers within our novel GNN-enhanced approach. For a given
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image-question pair at round ¢, we first concatenate the cap-
tion C, the previous dialog rounds H, the current question
Q:, and a candidate answer A to form the textual input

T = {[CLS] C [SEP] Q; [SEP]A;,..,Q; [SEP] A.},

ey
where [CLS] and [SEP] are the special classification and
separation tokens, respectively. Asin [5,32,46,55], we use a
special learnable token [IMG], and initialise it using mean
pooling of the object sequence. The hidden features of the
[IMG] token are used in conjunction with those of [CLS]
by means of element-wise multiplication to produce the fi-
nal input features of the NSP head.

Finally, the two sequences are used as input for the lan-
guage and vision streams of the VisDial-BERT layer to ob-
tain the hidden states Tg) and Ig), where [ is the VD-GR
layer index.

3.3.2 Spatial-Temporal GNN Features

Node Features. As illustrated in Figure 2, the multi-
modal GNNs of the [-th VID-GR layer get their node fea-
tures from the hidden states of the previous VisDial-BERT
layer (or from the embedding layers in the first step). It
is worth noting that the special tokens [IMG] and [CLS]
are not included in the graph features. The nodes of the
image and question graphs are gathered from the image
and question token embeddings of the (I — 1)-th layer, i.e.
{I(l 2 } U, and {T(l 1)} «tNa \where sq and N, denote
the index of the first questlon token and the length of the
question, respectively. We use the special [ SEP] tokens to
represent each dialog round in the history and gather their
hidden states from Tg_l) to get the node features of the
history graph. The node features of the question and his-
tory graphs have to be extracted carefully since the textual
input, i.e. where the question starts and ends and where the
[SEP] tokens are located, varies within Tg_l) for each
dialog and round.

Hub-node Features. To make each modality aware of the
other in a cascaded manner, we introduce hub-nodes as il-
lustrated in Figure 2. As a result, the history becomes aware
of the image, the question becomes aware of the history,
and finally the image becomes aware of the question. The
hub-node within each graph links to all other nodes using
a special edge feature to propagate information on a local
scale from one modality to the other before applying self-
and cross-attention. To obtain the hub-node features, we
train attention-based graph embeddings for each modality,
ie. fo,(.), foo(.), and fo,, (.), which take the node features
of the corresponding graph and output a single vector repre-
senting it. For example, the image hub-node Z, is computed
from the image graph node features I of the [-th layer as

follows:
7= fo,(Ig) = Z a;v; for v; € I, 2)

7

a = {a}; = MLP(Ig), (3)

where MLP is a multi-layer perceptron that maps from the
node features’ vector space to R and 67 is the set of learn-
able parameters of the embedding. The question hub-node
@ and history hub-node # are obtained in the same manner.

3.3.3 Graph Aggregation

Our multi-modal graphs are a variant of graph attention
networks [45], although other types of GNNs can be used
within each VD-GR layer. Each multi-modal graph uses K
layers (purple boxes in Figure 2) to propagate information
between the nodes. For example, the k-th image graph layer
receives the node features from the previous graph layer and
updates them as follows:

{V(k)v VN)’Vg\]fC)ﬂ}_GNN (Ig 1% 1))’ 4)

=0
) — GeLU < | o vt ”) : )
v = f (ST o mE My vi<n<mH, (6

Vs GNvt

where || and H are the concatenation operation and the
number of GNN attention heads, respectively. N, repre-
sents the neighbourhood of node v;, as—,; denotes the at-
tention weight that scales the message mgi}};) between a
source node v and a target node v, and f is a linear layer.

(k,h)

The messages m,_,,” between the nodes are computed fol-

lowing:
m{%y = gn (v ep), %)

where g, is a linear layer and e;_,; is the edge feature be-
tween the nodes v, and v;. We omitted the [ index of the
VD-GR layer in the previous equations for brevity. The k-
th question and history graph layers update their node fea-
tures Q(Cf) and Hgf ) in the same manner.

3.3.4 Hidden States Enhancement

The outputs of the multi-modal graphs of the last K-th
1 . (I,K) (I,K) (LK)
ayer,ie. I, Qs and H; "/, are used to enhance the
hidden states of the following BERT layer. First, the GNN
features are scattered back to their corresponding places
within the VisDial-BERT hidden states. Then, we apply
a fusion operation inspired by the idea of residual connec-

tions [13] as illustrated in Figure 2. Our experiments show
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Method VisPro VisDialConv
NDCGT MRRT R@11t R@57 R@10T Mean, NDCGT MRRtT R@1T R@51 R@10T Mean]|

MCA-I[1] 59.80 57.88 4539 72.24 82.76 5.84 52.07 55.55  41.65  72.47 83.81 5.92
MCA-I-HConcQ [1] 61.08 61.79 48.95 77.50 86.58 4.72 54.84 62.06 47.42  80.10 88.87 4.37
MCA-I-HGuidedQ [ 1] 61.35 60.13  47.11  75.26 86.18 5.23 53.81 62.29 48.35 80.10 88.76 4.42
MCA-I-VGH [1] 61.68 59.33  46.18  75.53 86.71 5.07 55.48 58.48  44.54  74.95 86.19 5.18
MCA-TI-H [1] 61.72 59.62 4592  77.11 86.45 4.85 53.01 61.24  47.63  79.07 87.94 4.77
Student [19] — - - - - - 59.30 - - - — -
VD-GR 67.09 66.82 54.47 81.71 91.44 3.54 60.35 69.89 57.21 8597 92.68 3.15

Table 1. Performance comparison on VisPro. The best and second-best results are in bold and underlined, respectively. 1 indicates higher

is better and | indicates lower is better.

that this step is crucial and leads to significant improve-
ments in performance. These operations can be summarised
as follows:

I =1, 0 @™ 1dx,), 1, =\, + (1 - V)T, ®8)

T}, = (T}, 0 (Qe™ 1dx,)) @ (HE™ 1dx), )
TL = AT), 4 (1 — AT, for A € [0, 1], (10)

where @ denote the scatter operation and Idx, the indices
of the graph nodes features with respect to the BERT hidden
states. The final enhanced features iﬁl and Tlh are passed to
the next BERT layer.

3.4. Loss Heads

We complement the traditional losses used for the visual
dialog task (masked language modelling £, masked re-
gion modelling Lym, and next sentence prediction Lygp)
with graph edge masking Lg.n to improve learning of the
local structure of each modality, and thus to enhance the
feature representation of our multi-modal graphs.

Masked Language and Region Modelling. Similar to
masked language modelling introduced in [9], we randomly
masked 10% of the text tokens and image objects with the
special token [MASK] and the model had to recover them
based on the surrounding tokens and cross-modal clues:

Emlm =
Lnem = _E(W,I)~S” UOQP(Vmu\m, hcrs) )] ,

—E(w1)~s,, [L09P (Wi |W\ s hivey)], (1D
(12)

where w,,, V,,, and S denote the masked words, the
masked regions, and the training set, respectively.

Next Sentence Prediction. The aim of next sentence pre-
diction (NSP) is to identify whether the appended answer
A, is correct or not, i.e.

ACnsp = _E(W,I)NS” [logP(y|N(w,I))] s (13)

()~

Prediction P(y|hv,; hvy,)
AN~
O—(E)—~
/ P(ylhv,, ;)
(O Masked node O Unmasked node ——Edge not eligible ——Edge eligible for - - - Masked edge

for masking masking

Figure 3. Only edges connecting two unmasked node features are
eligible for masking with a 15% probability.

where y € {0,1} is a ground-truth binary label, and
N(.,.) is the binary answer prediction head operating on the
element-wise product of the [IMG] and [CLS] token rep-
resentations.

Graph Edge Masking. We introduce the multi-modal
graph edge masking to alleviate the potential problem of
having well-trained BERT layers but not sufficiently trained
GNNs. Given that, by design, our GNNs receive their
features from the previous BERT layer, they inherit some
masked node representations. In order to make the edge pre-
diction task stable, we only masked 15% of the edges con-
necting two unmasked node features as illustrated in Fig-
ure 3. The representations of these nodes were then used
to predict the masked edges. For the example of the image
graph, this results in the following loss:

Lhm = ~Ewpns, |logPu7 by, b)), (14

where y%’j ) is the ground-truth edge type between the nodes
v; and v;. The question and history edge graph masking

losses Lg%m and ﬁ;’ém are obtained in a similar manner.

Total Loss. We adopt a two-stage approach to train our
model. First, we train it on a warm-up task of masked token
and graph edge prediction, i.e. using the total loss Lyam:
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Method MRRt R@1T R@51 R@10T Mean]
MN [&] 59.65  45.556  76.22 85.37 5.46
CoAtt [57] 63.98  50.29  80.71 88.81 4.47
HCIAE [31] 62.22 4848  78.75 87.59 4.81
CorefNMN [21] 64.10  50.92  80.18 88.81 4.45
RvA [34] 66.34  52.71 8297 90.73 3.93
Student [19] 60.03  50.40 70.74 77.15 12.13
DVAN [11] 66.67  53.62  82.85 90.72 3.93
VD-BERT [46] 70.04 57.79 85.34 92.68 4.04
VisDial-BERT [32]  71.99  59.41  87.92 94.59 2.87
VD-GR 74.50 6210 9049 96.37 2.45

Table 2. Performance comparison on the val split of VisDial v0.9
dataset. NDCG is not supported in this version of the dataset.

Lyarm = al(ﬁmlm + Emrm) + 042£GEMa (15)
Loem = L& + Ly + L (16)

Then, we only train the model based on the visual dialog
loss
Lyvp = Luim + Lim + Ensp- (17)

4. Experiments
4.1. Datasets

We evaluated VD-GR on the challenging VisDial v0.9
and VisDial v1.0 datasets. VisDial v0.9 has circa 83k train-
ing and 40k validation dialogs. The more recent v1.0 ver-
sion consists of about 123k, 2k, and 8k images for train-
ing, validation, and testing, respectively. Each image comes
with a caption and 10 question-answer pairs; each question
turn is associated with 100 candidate answers. The valida-
tion data and part of the training data of VisDial v1.0 pro-
vide dense annotations for the candidate answers. Further-
more, we evaluated our model on two additional datasets,
i.e. VisPro [56] and VisDialConv [1].

4.2. Quantitative Results

VisDialConv & VisPro. First, we evaluated our model on
VisPro ! and VisDialConv which were introduced to verify
the role of dialog history in answering the current question
Q.. We compared VID-GR to the baselines introduced in [ 1]
as well as the most recent Student model [19]. As can be
seen from Table 1, VD-GR significantly outperformed all
MCA variants across all metrics on both datasets. Specifi-
cally, it increased the performance of the baselines by over
5 absolute points on NDCG and MRR on VisPro. On Vis-
DialConv, VID-GR increased the top performance by over 4
absolute points on the same metrics. Table 1 also shows that
our model managed to surpass the Student model by over 1

ISame subset as in [1].

Method NDCGt MRRt R@1t R@5 R@10t Mean]

LTMI [33] 62.72 62.32  48.94  78.65 87.88 4.86
VD-BERT [46] 63.22 67.44  54.02  83.96 92.33 3.53
VisDial-BERT [32] 60.96 67.17  53.42 8441 92.62 3.41
MCA[1] 60.27 64.33  51.12  80.91 89.65 4.24
UniMM-UL [47] 62.86 53.49 4270  65.03 74.58 10.65
UTC [5] 63.22 68.58  55.48  85.38 93.20 3.28
Student [19] 65.47 53.19  43.08  64.09 71.51 14.34
VD-PCR [55] 64.16  69.71  56.79 85.82  93.64 3.15
VD-GR 64.32 69.91 5701 86.14 93.74 3.13

Table 3. Performance comparison on the val split of VisDial v1.0
dataset.

NDCG absolute point although it was trained on circa 13M
additional images.

VisDial v0.9. Second, we compared VID-GR with the
state of the art on the val split of VisDial v0.9. As can be
seen from Table 2, our model significantly outperformed all
previous models and achieved new state-of-the-art results
across all metrics. Specifically, it outperformed pre-training
methods such as VisDial-BERT and VD-BERT by a large
margin. Even more importantly, it managed to also surpass
more recent models such as Student. Specifically, VD-GR
improved the MRR and R@1 scores by over 2.5 absolute
points compared to the second best model.

VisDial v1.0 val. We then compared VID-GR with the
state of the art on the val split of VisDial v1.0. As can
be seen from Table 3, our model outperformed all previ-
ous models across all five sparse metrics. Specifically, it
outperformed pre-training methods, such as VisDial-BERT
and VD-BERT by a significant margin. Even more impor-
tantly, it managed to also surpass more recent models such
as UniMM-UL, VD-PCR, UTC, and Student. VD-GR im-
proved MRR, R@1, and R@5 by over 0.2 absolute points
compared to the second best VD-PCR model. Furthermore,
we compared their performance on individual dialog rounds
using the sparse metrics (MRR, R@1, R@5, and R@10).
As can be seen from Figure 4, VD-GR managed to outper-
form VD-PCR on almost all rounds of the dataset.

VisDial v1.0 test-std. Finally, we compared our model
with state-of-the-art published baselines on the test-std split
of the VisDial v1.0 dataset.

e State-of-the-art Results on Sparse Metrics: As can be
seen from the first section of Table 4, VD-GR lifted the
state-of-the-art R@5, R@10, and Mean scores from 85.38,
93.53, and 3.21 achieved by VD-PCR to 85.58, 93.85, and
3.20, respectively. On the remaining metrics, our models
performed on par with the state of the art. Specifically, it
reached respective scores of 68.65 and 55.33 on MRR and
R@1, only third to UTC and VD-PCR.
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Figure 4. Performance comparison on different dialog rounds of
the VisDial v1.0 val split. We only considered sparse metrics since
the dense annotations used to compute the NDCG score are not
defined on all 10 rounds of the validation dialogs.
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Figure 5. Performance comparison with different number of GNN
layers K on the val split of VisDial v1.0. Results are shown for
the val split of VisDial v1.0.

e Fine-tuning on Dense Annotations: As in previous
works, we fine-tuned our model on the dense annotations
released by [32] in order to improve the NDCG score. As
illustrated in the second section of Table 4, the NDCG score
sharply increased from 63.49 to 75.95, outperforming all
previous models in the single-model setting. However, by
fine-tuning on dense annotations, we decreased the perfor-
mance on the sparse metrics (MRR, R@1, R@5, R@10,
and Mean). This well-known phenomenon of the dataset
is due to the misalignment of the dense and sparse anno-
tations as previously observed by [32,46]. In contrast to
other baselines, VID-GR managed to keep relatively high
sparse scores (4/5 metrics are the new state of the art) after
fine-tuning.

o Ensemble Setting: As it is common practice, we fine-
tuned an ensemble comprised of eight pre-trained VD-GR
models to further improve the NDCG score. One set of four
models was fine-tuned with Cross Entropy (CE) and with a
varying number for GNN layers K, i.e. K = {1,2,3,4}.
Each model of the second set was trained using the List-
Net [4] ranking optimisation method. As can be seen in
the last section of Table 4, our ensemble model reached an
NDCG score of 76.43 outperforming the closest competitor
UniMM-UL with only 76.17 and, thus setting a new state of
the art in the ensemble setting.

4.3. Ablation Study

Number of GNN layers K. This is an important hyper-
parameter of our model: If K is too small, then the expres-
sive power of the GNNs will be hampered. Contrarily, if K
is too large, the GNNs will suffer from over-smoothing [24].
To this end, we increased K incrementally from one to four

Method NDCGt MRR? R@11 R@57 R@107 Mean)
MN [8] 4750 5549  46.98 7230  83.30 5.92
CorefNMN [21] 54.70  61.50 47.55 78.10  88.80 4.40
FGA [38] 56.90  66.20 52.75 8292  91.07 3.80
DAN [20] 57.59  63.20 49.63 79.75  89.35 4.30
LTMI [33] 59.03  64.08 5020 80.68  90.35 4.05
CAG[12] 56.64  63.49 49.85 80.63  90.15 4.11
GOG [6] 61.04  63.52 50.01 80.13  89.28 4.31
VD-BERT [46] 59.96 6544 51.63 82.23  90.68 3.90
VisDial-BERT [32] 63.87  67.50 53.85 84.68  93.25 3.32
UTC [5] 64.60  68.70 55.73 84.93  93.08 3.32
VD-PCR [55] 63.55  68.73 5545 8538  93.53 3.21
UniMM-UL [47] 63.90  68.14 5457 8515  93.13 3.27
Student [19] 64.91 6844 55.05 85.18  93.35 3.23
VD-GR 63.49  68.65 5533 85.58 93.85 3.20
*MCA [1] 72.47  37.68  20.67 56.67  72.12 8.89
*VD-BERT [46] 74.54  50.74  33.15 61.58  77.15 7.18
*VisDial-BERT [32] ~ 74.47  50.74  37.95 64.13  80.00 6.28
*UTC [5] 7432 50.24  37.12  63.98  79.88 6.48
*VD-PCR [55] 75.30 5617 4532  68.05  80.98 6.15
*UniMM-UL [47] 75.92  56.18 43.70 71.03 84.80  5.42
*VD-GR 7595 5830 46.55 71.45 8452  5.32
O®P14+P2 [35] 7491 4913  36.68 62.96  78.55 7.03
©O%VD-BERT [46] 75.35 51.17  38.90 62.82  77.98 6.69
@#VD-PCR [55] 76.14 56.05  44.75  68.40  82.75 5.72
O®UniMM-UL [47] 7617  56.42 44.32 70.23 8452 547
O*VD-GR 76.43  56.35 45.18 68.13  82.18 5.79

Table 4. Performance comparison on the fest-std split of VisDial
v1.0 dataset. & indicates fine-tuning on dense annotations and <»
denotes ensemble model. I denotes the use of extra large datasets
for training.

Ablation NDCGtT MRRt R@1t R@51 R@101t Mean|
VD-GR w/ A =0 56.69 67.71  54.07 85.03  92.84 3.33
VD-GR w/o Lyarm 63.76 69.83  56.84 86.05  93.70 3.15
VD-GR w/o sharing ~ 64.15 69.79  56.73  86.02  93.68 3.15
VD-GR w/o HN 64.11 69.86  56.88  85.97  93.67 3.14

VD-GR (Full) 64.32 69.91 5701 86.14 93.74 3.13

Table 5. Performance comparison of ablated versions of our model
on the val split of VisDial v1.0.

and used the sparse metrics of the task (MRR, R@1, R@5,
R@10) for validation. As illustrated in Figure 5, the perfor-
mance of our model peaked at K = 2 for all four metrics.
Thus, we kept this value fixed in all previous experiments
unless explicitly stated otherwise.

Model Ablations. In addition to the full model, we eval-
uated the following ablated versions:

e VD-GR w/ A = 0: This variant did not apply the pro-
posed residual connection of Equation 10 while augmenting
the BERT hidden states.

o VD-GR w/o Lyam: This variant was not trained on the
warm-up task of edge prediction as discussed in Sec. 3.4.
oVD-GR w/o sharing: This variant did not share the
weights of the GNNs in each layer of our model.

e VD-GR w/o HN: This variant did not use hub-nodes to
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Figure 6. Qualitative samples from the VisDial v1.0 val split. The attention weights correspond to the K-th GNN of the first and last
VD-GR layers. We first average them across all H attention heads before re-normalising them for each node using a softmax function.

For clarity, we only show a subset of the image graph nodes.

propagate the information between the multi-modal GNNs.

As can be seen from Table 5, the residual connections
are essential for high performance. Without them, VD-GR
achieved the lowest performance across all metrics. The
same applies to the warm-up training stage: Although the
performance of this ablated version improved over the pre-
vious one, it still performed significantly worse than our
best model. The results also underline the importance of
sharing the GNN weights within the different VD-GR lay-
ers: Although this version has more weights, it still per-
formed worse than our best model on all metrics. This
finding was to be expected given that the local structure
of each modality does not change from one VD-GR layer
to another. Finally, the importance of the inter-modal fea-
ture propagation using hub-nodes is highlighted by the two
last rows of Table 5: The hub-nodes enabled our model to
achieve the best performance across all metrics of the val
split of the VisDial v1.0 dataset.

4.4. Qualitative Results

Finally, in Figure 6 we show selected qualitative sam-
ples (with more in the supplementary material) from the
val split of VisDial v1.0 alongside the ground truth an-
swers, as well as the top-1 predictions of our VD-GR
model and VD-PCR for comparison since it achieved the
second best results on this split. We make two interest-
ing observations: (1) Our model deals better with ques-
tions that require exploiting local structure within modal-
ities. For example, it managed to correctly answer Q, =
How many skiers can you see? in the first dia-
log sample (see Figure 6a) by predicting 11 whereas
VD-PCR predicted I can only see two. We hy-
pothesise that this is due to the fact that our model ex-
ploits the spatial structure of the visual input more ef-

fectively using the image graph compared to VD-PCR,
although the latter has access to the same visual fea-
tures. (2) VD-GR has more accurate semantic under-
standing of the question. This is highlighted in answer-
ing O, = How old does she seem to be? (refer-
ring to the woman) in the second dialog sample (see Fig-
ure 6b). Whereas our model correctly predicted Early
20’ s, VD-PCR failed by answering Grey, which is not
a semantically-sound response. We posit that this advan-
tage of our model is related to the fine-grained features of
the question graph.

5. Conclusion

In this work we proposed VID-GR — a novel visual dia-
log model that combines pre-trained language models and
GNNs.  Specifically, VD-GR alternates between multi-
modal graphs and BERT layers, and augments the hidden
states of the latter with the fine-grained features obtained
by the former. VID-GR propagates information from one
modality graph to another in a cascaded manner using hub-
nodes that link to all other nodes within each modality,
thereby effectively alleviating the lack of inter-modal con-
text. Extensive analyses underlined its effectiveness, while
experiments on four challenging visual dialog datasets (Vis-
Dial v1.0, VisDial v0.9, VisDialConv, and VisPro) demon-
strated its superior performance over existing methods.
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