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Abstract

While existing Neural Radiance Fields (NeRFs) for dy-
namic scenes are offline methods with an emphasis on visual
fidelity, our paper addresses the online use case that pri-
oritises real-time adaptability. We present ParticleNeRF, a
new approach that dynamically adapts to changes in the
scene geometry by learning an up-to-date representation on-
line, every 200 ms. ParticleNeRF achieves this using a novel
particle-based parametric encoding. We couple features
to particles in space and backpropagate the photometric
reconstruction loss into the particles’ position gradients,
which are then interpreted as velocity vectors. Governed
by a lightweight physics system to handle collisions, this
lets the features move freely with the changing scene ge-
ometry. We demonstrate ParticleNeRF on various dynamic
scenes containing translating, rotating, articulated, and de-
formable objects. ParticleNeRF is the first online dynamic
NeRF and achieves fast adaptability with better visual fi-
delity than brute-force online InstantNGP and other base-
line approaches on dynamic scenes with online constraints.
Videos of our system can be found at the anonymous project
website https://sites.google.com/view/particlenerf.

1. Introduction

Neural Radiance Fields [19] are 3D scene representations
trained from images using a differentiable rendering process
that allows them to render scenes from novel viewpoints
with high visual fidelity.

Dynamic NeRFs [6, 8, 23–26] learn to represent dynamic
scenes. However, these methods are currently offline, which
means they require access to the entire image sequence dur-
ing training and can take several minutes or even hours to
train for sequences that last only seconds in real-time.

Our paper addresses the challenge of online dynamic
Neural Radiance Fields that can continuously learn an up-
to-date implicit 3D representation of the dynamic scene in
real-time, without the need for access to future frames during
training.

We introduce ParticleNeRF, a novel dynamic NeRF ap-
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Figure 1. Our particle encoding significantly improves the ability to
adapt to changing scenes when compared to online InstantNGP [20],
the top-performing parametric encoding. The particle encoding
fills the space with particles at random locations, associating each
particle with a feature. Both the positions of the particles and their
features are optimized during training. As the wheel spins, the
particles move to maintain a low reconstruction error.

proach that uses a particle-based encoding to represent the
dynamic scene. Our key insight and novelty – illustrated
in Fig. 1 – is that backpropagating the reconstruction loss
into both the positions and the features of the particles en-
ables the embedding features to move in space as the scene

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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changes. As we illustrate in Fig. 2, this lets ParticleNeRF
elegantly adapt to moving, articulated or deforming objects
by adjusting the position of the feature-carrying particles.

ParticleNeRF uses a simple but effective physics system
to govern the particles’ positions and velocities, interpreting
the individual position gradients as velocity vectors. The
physics system implements collision constraints that prevent
the particles from accumulating too close to each other. This
creates a soft upper limit on the number of nearest neigh-
bours to be considered for interpolation when calculating the
feature for a query point, thereby supporting ParticleNeRF’s
efficient training process.

In contrast to the time-conditioned deformation networks
used in [6, 8, 23–26], which are designed for offline train-
ing, ParticleNeRF incrementally adapts to changes in the
environment every 200 ms – making it suitable for online
usage.

ParticleNeRF is the first method to address the challenge
of online learning of dynamic scenes (including rigid body
transforms, articulated objects, and deforming objects). Our
experiments show that ParticleNeRF can represent dynamic
scenes with higher fidelity than (i) brute-force online Instant-
NGP that simply continuously trains the network as new
frames become available, (ii) and other baselines (Sec. 5).
Our ablation in Sec. 5.2 shows that this superior performance
on dynamic scenes is indeed due to the ability to backpropa-
gate into the positions and move the feature-carrying parti-
cles during the training process. We furthermore show that
ParticleNeRF’s performance degrades gracefully with a de-
crease in the number of particles and the nearest neighbour
search radius.

In summary, our contributions are:
1. A novel online NeRF formulation that can adapt to the

changes in dynamic scenes every 200 ms without using
time-conditioned deformation networks;

2. A new particle-based encoding that associates features
with moving particles and allows the gradients from
the photometric loss to propagate to and change the
positions of the particles;

3. The incorporation of a physics system into the NeRF
formulation to update the motion of the particles while
preventing collisions.

Our implementation is open-sourced. Videos of ParticleN-
eRF rendering dynamic scenes can be found in the attached
supplementary.

2. Related Work

We review NeRFs in the context of (i) how they have
been used to tackle dynamic environments, (ii) how certain
encodings allow close to realtime training and rendering,
and lastly (iii) how our particle encoding is different to three
other point-based encodings suggested to date.

Grid-Based 
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Embeddings 
relearnt
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Figure 2. In a rigid grid-based encoding (e.g. InstantNGP [20]),
features are associated with fixed positions in space and cannot
move. If the scene geometry changes, features have to be unlearned
and relearned in different positions. In contrast, our particle encod-
ing associates features with particles that can move freely in 3D
space. As the scene geometry changes, the particles can move to
accommodate the scene change, resulting in faster adaptation and
higher quality representation of dynamic scenes.

Dynamic NeRFs Several papers extended the NeRF model
to encompass dynamic scenes [6, 8, 9, 15, 23–26, 32]. The
distinguishing factor between the static and dynamic NeRF
formulations is that the first represents a single static scene
while the latter encodes the evolution of a 3D scene over
time. During training, these dynamic NeRFs can access
images taken at any time step. They are therefore designed
to be trained after a sequence of images has already been
taken. To date, the majority of these works are not close
to being realtime capable taking minutes and even hours
to train. Since these dynamic NeRF approaches use the
complete set of images during training, we refer to them as
“offline” methods. Alternatively, we seek to create a NeRF
at every timestep and only capture the latest state of the
scene. In this context, our method is “online”. For many
applications, representing a time-varying scene within the
NeRF itself is unnecessary. A robot, for example, is usually
only interested in the latest state of the world.

Learning an online NeRF is therefore the challenge of
learning a NeRF at a timestep t given a NeRF at a timestep
t − 1 and a set of images taken at time t. Our particle
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encoding is formulated to tackle this problem.

Embeddings In general, a NeRF is composed of two main
parts: the encoding, and a multi-layered perceptron (MLP).
An encoding transforms the spatial input of the NeRF to
an alternative feature space where learning can be made
easier [29]. The MLP transforms the resultant feature into
values that represent color and geometry. Mildenhall et
al. [19] introduced the first version of NeRFs with a Fourier
encoding which is a simple trigonometric map. The Fourier
encoding does not have any parameters that are learnt as part
of the training and is not associated with a discrete datas-
tructure. It is, therefore, referred to as non-parametric, or
functional. This version of NeRF takes hours to train be-
cause it requires a large MLP to represent the scene. Later
works [4, 20, 27] show that by storing a large set of features
in a discrete datastructure, the spatial input could be used
to index into and interpolate between features in that set.
The computed features become the embeddings that are con-
sumed by the NeRF’s neural network. Since the features in
the set are stored as parameters and are updated during train-
ing, these are referred to as “parametric” encodings by [20].
By storing features in memory, the computational burden
on the MLP is reduced and training speed is significantly
increased. The strategy used to index and interpolate into
the feature set distinguishes the various types of parametric
encodings. Almost all the parametric encodings conceptu-
ally rely on a fixed grid datastructure [4, 20, 27] with the
exception of [33] which uses a point-based encoding. The
grid encompasses the workspace of the NeRF and each node
within is associated with a feature. Therefore, while the
features associated with the nodes can be learnt, they cannot
be moved.

In this paper, we show that if the features are allowed
to be both learnt and moved, then NeRFs can be made to
incrementally adapt to dynamic scenes. We introduce a
particle encoding, where features are associated with moving
points in space. We show that in a changing scene, the
feature-holding particles move in accordance with the scene
– Fig. 2.

Point-based NeRFs There are three works that use points
as part of their formulation. Point-NeRF and SPIDR [16,33]
utilize points as a data structure to store features, but their
embedding differs significantly from ours. Notably, they
do not address the dynamic scene use case and they do not
allow their points to move during optimization. In addition,
they require depth data, their training takes in the order of
minutes to hours, and their encoding is not invariant to SE(3)
transformations. NeuroFluid [11] uses particles and NeRFs
to specifically model the behaviour of fluids. Their encoding
is non-parametric and their points represent particles of a
physical medium rather than descriptors of an embedding
space.

3. NeRF Preliminaries
A NeRF is a continuous representation of a 3D scene that

maps a point x ∈ R3 and a unit-norm view direction d ∈ R3

to a color c ∈ R3 and a density value σ ∈ R. During training,
rays are cast from camera centers through their image plane.
Each ray r is associated with a direction vector d and a set of
points xi progressively sampled from the ray’s length [19].
The points xi and the direction vector d are mapped by the
NeRF to ci and σi. Defining δi = ∥xi+1−xi∥, the expected
color of the ray Ĉ(r) is given by:

Ĉ(r) =

N∑
i=1

wici (1)

wi = Ti(1−exp(−σiδi)) and Ti = exp

− i−1∑
j=1

σjδj


A photometric loss is defined as

Lrgb =
∑
r∈R
∥Ĉ(r)− cgt(r)∥2 (2)

The ground-truth color cgt(r) is the color of the pixel in
the training image that the ray r intersects. R is the set of all
rays that pass through the training images. Refer to [18, 28]
for an in-depth derivation.

Encodings Given a point xi and a direction vector di, a
NeRF first maps each to an embedding space Ex(xi) and
Ed(di). The embeddings are subsequently consumed by a
multilayered perceptron to output color and density. Not
including an embedding layer critically deteriorates ability
of the NeRF to reconstruct scenes [29]. The choice of the
embedding layer can significantly reduce the size of the MLP
required [4, 20, 33] and in some cases removes the need for
one entirely [7]. Close to realtime performance is possible
due to a particular class of encodings that the authors of [20]
refer to as “parametric”. These encodings are characterized
by a discrete datastructure that can be queried by the in-
coming coordinate xi to produce a set of features fj . The
features fj are then combined to produce an embedding fi.
By storing the features in memory, a large MLP is no longer
required and significant savings are made in both rendering
and training times when compared to other formulations that
use functional encodings [2, 3, 5, 19, 31].

4. ParticleNeRF
ParticleNeRF introduces a new particle-based encoding

that associates features with moving particles and allows the
gradients from the photometric loss to propagate through
and change the positions of the particles. This is a novel
method of dealing with dynamic scenes in an online manner
without using time-conditioned deformation networks.
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Figure 3. Illustration of our particle encoding. (1) A query point x is sampled in space. (2) The features and positions of the particles
within a search radius are retrieved. (3) The features and distances from the query point are used to interpolate the feature at the query
point x. (4) The resulting feature is evaluated by the neural network to give color and density. To train the encoding, the loss gradients are
backpropagated through the network (4), the query feature (3), and finally into the positions and features of the particles in (2).

Our particle encoding is formulated as a neural pointcloud
P = {(xi,vi, fi) : i = 1, 2, ...,M}, where xi ∈ R3 is the
position of a latent particle in the system, vi ∈ R3 is the
velocity of the particle, fi ∈ Rm is its associated feature, and
M is the total number of particles. The pointcloud P is an
irregular grid of latent features that defines the map F from a
coordinate xj ∈ R3 to fj .

fj = F (xj ,P) =
∑

(xi,fi)∈P

w(∥xj − xi∥2)fi (3)

where w is the bump function – a compactly supported
radial basis function (RBF) – given by:

w(r) =

exp

(
− s2

s2 − r2

)
, for r ∈ (−s2, s2)

0, otherwise
(4)

The search radius s controls the influence of a particle
on a region of space. The compact RBF decreases the in-
fluence of a given particle on the interpolated feature to 0
as its distance approaches the search radius. This allows
for the efficient calculation of fj with a fixed-radius nearest
neighbour search algorithm [30] where the radius is set to
s. We find that using unnormalized features encourages the
particles to spread across the geometry.

ParticleNeRF uses the same architecture as InstantNGP
(a 3 layer MLP with 64 neurons each), but replaces its hash
encoding with our particle encoding. Note that if a query
point finds no neighbouring particles within the search radius
s, the feature is set to 0. Fig. 3 illustrates our method.

We optimize the MLP parameters Φ, the particle features
fi and the particle positions xi relative to the NeRF loss Lrgb
defined in Eq. (2):

Φ∗, {fi}∗, {xi}∗ = argmin
Φ,{fi},{xi}

Lrgb (5)

A core novelty of our approach is that the gradients of
the NeRF loss are used to update both the position and the
associated features of the particles. This allows the particles
to move with the geometry in the scene as it changes, leading
to a higher fidelity representation of dynamic scenes. As
our experiments in Sec. 5 will show, ParticleNeRF can adapt
to changes in the scene online, i.e. every 200 ms, which is
orders of magnitude faster than previous NeRFs in dynamic
scenes [9, 15, 23–25, 32], and enables a much higher recon-
struction quality compared to online InstantNGP [20] and
other baselines.

4.1. Position Based Dynamics

We observe that propagating the NeRF loss into the parti-
cle positions can sometimes lead to multiple particles accu-
mulating in a small region of space. Although this does not
adversely affect the reconstruction quality, it is not desirable
because it needlessly increases the number of neighbours
that each query point has to process during training and eval-
uation. To address this problem in a structured way, we build
a position-based physics system [17, 21] into InstantNGP
that resolves the dynamics of our particles.

Position-based dynamics (PBD) is a simple, robust, and
fast physics system that can evolve the motion of our par-
ticles while resolving the constraints we put on them. We
interpret the gradients dLrgb

dxi
as scaled velocity vectors that

are added to the particles’ current velocity – Algorithm 1.
Using PBD not only provides a means of limiting the num-
ber of neighbours a particle has, but it also creates future
opportunities to add other constraints into the system. For
example, if an object is known to be a rigid object, or part of
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Algorithm 1 PBD Physics Step

1: for all particles i do

2: vi ← γvi − α
dLrgb

dxi
▷ Update velocities

3: pi ← xi ▷ Store previous positions
4: xi ← xi +∆tvi ▷ Integrate positions
5: for all collision pairs i, j do
6: l← ||xj − xi||
7: xi ← xi + 0.5(l − δ)

xj − xi

l
▷ Resolve collisions

8: for all particles i do
9: vi ← (xi − pi)/∆t ▷ Update velocities

an articulated body, the particles can be suitably constrained.
In all our experiments, we choose a damping factor γ =

0.96, a timestep ∆t = 0.01, a minimum distance of δ =
0.01. The base InstantNGP implementation transforms a
given scene so that it fits within a unit cube. Our minimum
distance δ in the physics system and the search radius s that
is used to query neighbouring particles are given in the units
of the unit cube.

4.2. Implementation

We build our particle encoding as an extension of the
InstantNGP implementation released by Müller et al. [20].
We clip the particle position gradients so that their norms
do not exceed the search radius. We implement the sorting-
based fixed-radius nearest search algorithm described by [10]
and the position-based dynamics physics system described
by [21] as additional CUDA kernels [22] within InstantNGP.
Two different Adam optimizers [14] are used. The first is
for the parameters of the MLP Φ and the second is for the
particle features fi. Both are parameterized by β1 = 0.9,
β2 = 0.99, ϵ = 10−10 with the learning rate set at 0.01.
The particle positions are updated through the PBD system
where collision constraints can be resolved.

5. Experiments

We experimentally evaluate ParticleNeRF and show its
abilities to represent a dynamic environment online.
Datasets: We construct a dynamic dataset consisting of
6 scenes, inspired by D-NeRF [25], comprising of scenes
with deformable and articulated moving objects that loop.
In addition, we created an animated version of the original
NeRF Blender dataset [19], by applying translations and
rotations to the objects.

We note that datasets such as [23, 24] that are commonly
used to evaluate offline dynamic NeRFs are not compat-
ible with ParticleNeRF’s (and InstantNGP’s) requirement
for multiple cameras per frame. We discuss this limitation
further in Sec. 6.

Baseline: We compare ParticleNeRF against online Instant-
NGP [20] and online TiNeuVox [6].

InstantNGP is the fastest NeRF implementation currently
available, and it can be utilized for online applications by
continuously learning on new frames without resetting the
weights. We are not the first to propose this, as EvoN-
eRF [12] uses a continuous data stream to train InstantNGP
for a robotic grasping task. InstantNGP’s fast training speed
allows us to evaluate whether a brute force approach of con-
tinuous learning is a feasible strategy for online dynamic
scenes.

As most of the dynamic NeRF approaches [9, 15, 23–
25, 32] published to date are offline methods that are not
trained at the required speeds for online applications, we
do not compare our approach against them. However, a
recent offline method called TiNeuVox [6] has been released,
which trains within minutes by utilizing a time-conditioned
deformation network and voxel-based parametric encodings.
We compare our approach against the two configurations of
TiNeuVox released by the authors: TiNeuVox and TiNeuVox-
S. We convert them to an online use-case where only images
from the current timestep can be sampled.
Hyperparameters: For all the experiments involving the
particle encoding, we initialize the unit cube containing the
scene with a grid of uniformly spaced particles (We obtain
comparable outcomes when initializing the particles ran-
domly). Each particle is associated with a 4 dimensional
feature and is initialized randomly between ±10−2. Increas-
ing the dimension of the feature has minimal impact.

5.1. Dynamic Dataset

We evaluate our method using our dynamic dataset
(Fig. 4). Each scene in the dataset has one or multiple objects
being looked upon by 20 cameras distributed on the top half
of the surface of a sphere. The objects are either articulated
(robot), deformable (spring, cloth), or rigid (wheel). The
remaining scenes are comprised of multiple moving objects
(pendulums, robot system).

During each experiment, the scene remains fixed for 500
training steps, after which the animation starts. ParticleNeRF,
online InstantNGP, and online TiNeuVox have only five
training iterations before loading the next animation step.

At the end of every frame, we evaluate the photometric
reconstruction quality (SSIM, PSNR and LPIPS) from 10
unseen views. The SSIM values are plotted against each
frame in Fig. 4. The average PSNR, SSIM, and LPIPS
values of all the scenes for each method are shown in Tab. 1.
Qualitative visualizations are shown in Fig. 5 and the full
videos can be found in the attached supplementary.

Our findings reveal that ParticleNeRF effectively adapts
to motion within a small number of training steps, while
the performance of online InstantNGP noticeably declines
under motion. InstantNGP is able to recover when the speed
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Figure 4. ParticleNeRF evaluated on 6 scenes with deformable,
articulated, and multiple object movements. Scenes are held static
for 100 frames before the animation begins. ParticleNeRF provides
a stable representation during movements. InstantNGP can recover
when motions slow down. Online TiNeuVox fails when movements
get faster.

of movements slow down. Nonetheless, ParticleNeRF ex-
hibits reduced performance when objects in the scene have

Particle (Ours) TiNeuVox InstantNGP

Figure 5. Image captures from a novel viewpoint at the 300th frame
for ParticleNeRF, TiNeuVox, and InstantNGP.

Table 1. Average quantitative performance of methods on all dy-
namic scenes

Method PSNR↑ SSIM↑ LPIPS↓
Particle 27.47 0.94 0.08
InstantNGP 24.69 0.91 0.12
TiNeuVox 27.28 0.91 0.13
TiNeuVox-S 26.64 0.92 0.14

varying sizes, which is due to its reliance on a fixed search
radius, as shown by the decreased performance in the robot
system scene. Additionally, online TiNeuVox exhibits arti-
facts, particularly visible in the wheel scene, caused by the
deformation network’s inability to adapt within 5 training
iterations.

5.2. Animated Blender Dataset

We further evaluate our method using a novel animated
version of the standard “Blender” dataset [19]. Each of the
8 scenes is made to rotate or translate at a certain speed for
100 frames to test ParticleNeRF’s ability to deal with ele-
mentary motions. At the end of every frame, we evaluate the
photometric reconstruction quality (PSNR) from 7 unseen
views. In total, 56 animations are tested and their results are
summarized in Tab. 2. Videos and a more detailed view of
the results can also be found in the attached supplementary.
The results reinforce our findings that allowing particles to
move provides a method of adapting to moving geometries.

5.3. Ablation

To thoroughly ablate and understand the dynamic repre-
sentational ability of ParticleNeRF, we use the wheel scene
from the dynamic dataset. To investigate ParticleNeRF’s
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Figure 6. On the Wheel dataset, ParticleNeRF maintains the structure of the wheel as it rotates. We show how our particle encoding performs
in three settings: (i) When both the features and the positions of the particles are optimized (blue). (ii) When only the positions of the
particles are optimized (yellow). (iii) When only the particle features are optimized (green). Lastly we show how InstantNGP [20] performs
(orange). We illustrate the results of the reconstruction from an unseen viewpoint at the frames indicated for both InstantNGP and the
complete ParticleNeRF, corresponding to setup (i). Even at the lowest PSNR at frame 700, our method preserves the wheel’s structure.
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Figure 7. An ablation showing the effect of the number of particles (left) and the particle search radius (right) on the photometric
reconstruction quality. When ablating the number of particles, search radius is set at 0.04. When ablating the search radius, number of
particles is set at 100,000. In both cases, there is a diminishing effect at higher speeds.

and the baselines’ performance in static scenes and dynamic
scenes with varying degrees of motion, we change the ro-
tation speed of the wheel from static to successively faster
speeds. Most of the following results are illustrated in Fig. 6.
Models are given 5 training steps per frame and are config-
ured with the same parameters from Sec. 5.1.

Optimising Particle Positions We first investigate the con-
tribution of ParticleNeRF’s ability to backpropagate the ren-
dering loss into the particle positions to the overall perfor-
mance. In Fig. 6 we show PSNR performance when allowing
the loss to propagate into only the features (green); only the
particle positions, keeping the features at their random ini-

tialisations (yellow), and allowing to learn both the positions
and the features (blue). We make the following observations:
First, when allowing to learn only the features (green), the
performance is identical to InstantNGP (orange), especially
at the higher motion rates. This is not surprising, since in that
setup ParticleNeRF operates like InstantNGP with randomly
positioned feature embeddings, instead of a fixed grid struc-
ture. Second, keeping the features fixed, but allowing the
particles to move, leads to increased PSNR performance that
already outperforms the baselines in all but a few dynamic
frames. Third, the combination of learning positions and
features achieves best performance.

5981



Table 2. Average PSNR on the animated blender scenes from [19].

Model Enc. Rot. (◦/frm) Trans. (cm/frm)
1 2 3 4 1 2 3

Chair ngp 21 18 17 17 23 19 18
ours 24 23 22 21 24 23 22

Drums ngp 19 18 17 16 19 18 17
ours 20 19 19 18 20 19 19

Ficus ngp 22 22 21 21 22 21 21
ours 23 22 22 21 22 22 21

Hotdog ngp 26 24 23 23 25 23 21
ours 27 27 26 25 26 25 24

Lego ngp 21 19 18 18 21 20 19
ours 23 22 21 21 23 22 21

Mic ngp 26 24 23 23 27 24 23
ours 28 27 26 25 28 27 26

Ship ngp 23 22 22 21 22 21 21
ours 23 23 23 22 23 23 22

Matrl. ngp 21 19 17 17 23 21 19
ours 23 23 22 21 23 23 23

(a) Rotation (b) Translation

Increasing Motion Magnitude From Fig. 6 we can see
that brute-force InstantNGP achieves a higher PSNR on
static scenes, but drops significantly in dynamic scenes as
it is not capable of relearning features fast enough to adapt.
While ParticleNeRF has a slightly worse performance on
static scenes, it maintains its PSNR with only slight degra-
dation as the scene becomes more dynamic. Comparing the
renderings at the bottom of Fig. 6, we can see the significant
motion artifacts exhibited by brute-force InstantNGP. We
furthermore observe a ghosting effect where InstantNGP
quickly recovers structure upon the wheel’s return to its orig-
inal configuration. This is manifested as oscillations in the
PSNR metric in Fig. 6.

Influence of Search Radius The right side of Fig. 7 il-
lustrates how increasing search radii have a diminishing
effect on reconstruction quality. We further observe that
at the smaller search radius of 0.03 and a higher speed of
3.6◦/frame, reconstruction quality begins to degrade over
time. This affect is due to a divergence that occurs when
the number of neighbours around a particle drops below the
necessary level to accurately represent the underlying geom-
etry. We currently do not have a growing strategy that would
detect such an event and multiply the particles in that region.
This edge case and future work for implementing a growing
strategy is further discussed in the supplementary.

Influence of Number of Particles In Fig. 7 (left), we
observed that increasing the number of particles used to
initialize the scene asymptotically improves reconstruction
quality, with 300, 000 particles producing the same quality as
200, 000. However, we also found that only approximately
7,000 particles contribute to regions with high density, with
the remaining particles providing minimal contribution. The
additional particles improve reconstruction quality in two
ways: Firstly, they enable more particles to begin near the
geometry, thereby reducing the initial convergence time. Sec-
ondly, as movement occurs, particles may be ejected from the
geometry, and having free particles in empty regions enables
the geometry to reabsorb these particles, thus maintaining re-
construction quality. These observations suggest the need for
future work on developing a pruning and growing strategy
for the particles. We will release an implementation of one
such strategy with our codebase. An example of it operating
can be found on our project page.

6. Conclusions, Limitations and Future Work

Limitations Our particle embedding and online formulation
require at least 10 views per frame to constrain the training,
while offline dynamic methods that use time-conditioned
deformation networks can use frames from any point during
the trajectory to meet this requirement. We can overcome
this disadvantage by incorporating depth supervision [1] and
additional regularizers into the NeRF loss [13].

ParticleNeRF currently has a cubic memory requirement
– albeit with a low constant – which can be addressed by
implementing a pruning strategy that removes particles with
a density below a certain threshold.

ParticleNeRF has lower visual fidelity on static scenes
when compared to other methods. While we prioritized creat-
ing an encoding that is invariant to rigid transformations and
quick to adapt to motions, we sacrificed the visual fidelity
that comes with either multilevel encodings or positional
Fourier transforms. These limitations are topics for future
research.
Conclusion We show that moving embeddings in space
and directly controlling them is a valid strategy for online
scenes. By leveraging the position of our particles, we have
shown an alternative approach to using time-conditioned
deformation networks for dynamic scenes. Our approach
is quicker to adapt to movement in the scenes providing a
consistent representation that is robust to movement. We
hope to inspire future work to build on this paradigm and
address robustness, efficiency, and applicability.
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