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Abstract

No-Reference Image Quality Assessment (NR-IQA) aims
to develop methods to measure image quality in alignment
with human perception without the need for a high-quality
reference image. In this work, we propose a self-supervised
approach named ARNIQA (leArning distoRtion maNifold
for Image Quality Assessment) for modeling the image dis-
tortion manifold to obtain quality representations in an in-
trinsic manner. First, we introduce an image degradation
model that randomly composes ordered sequences of con-
secutively applied distortions. In this way, we can syn-
thetically degrade images with a large variety of degrada-
tion patterns. Second, we propose to train our model by
maximizing the similarity between the representations of
patches of different images distorted equally, despite vary-
ing content. Therefore, images degraded in the same man-
ner correspond to neighboring positions within the distor-
tion manifold. Finally, we map the image representations to
the quality scores with a simple linear regressor, thus with-
out fine-tuning the encoder weights. The experiments show
that our approach achieves state-of-the-art performance on
several datasets. In addition, ARNIQA demonstrates im-
proved data efficiency, generalization capabilities, and ro-
bustness compared to competing methods. The code and the
model are publicly available at https://github.com/
miccunifi/ARNIQA.

1. Introduction

Image Quality Assessment (IQA) refers to the computer
vision task of automatically evaluating the quality of images
with a high correlation with human judgments. Specifically,
No-Reference IQA (NR-IQA) focuses on devising methods
that can be used when a high-quality reference image is un-
available. NR-IQA finds diverse applications in industries
and research domains, including image restoration [14, 33],
captioning [4], and multimedia streaming [1].

Although supervised learning techniques have shown
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Figure 1. Comparison between our approach and the State of the
Art for NR-IQA. While the SotA maximizes the similarity be-
tween the representations of crops from the same image, we pro-
pose to consider crops from different images degraded equally to
learn the image distortion manifold. The t-SNE visualization of
the embeddings of the KADID dataset [15] shows that, compared
to Re-IQA [26], ARNIQA yields more discernable clusters for dif-
ferent distortions. In the plots, a higher alpha value corresponds to
a stronger degradation intensity.

notable advances in NR-IQA [7, 29, 30, 42], their effec-
tiveness is based on labeled data. Acquiring such anno-
tations is challenging and resource-intensive, given the re-
quirement for a substantial number of ratings to obtain de-
pendable mean opinion scores. For example, the KADID
dataset [15], which comprises 10125 images synthetically
degraded with several distortion types, required approxi-
mately 300K annotations. This inherent dependence on la-
beled data hampers the scalability and broad applicability
of supervised approaches.

More recently, several works based on self-supervised
learning [2, 3, 9] have been presented [19, 26, 44]. These
methods involve the pre-training of an encoder on unlabeled
data with a contrastive loss. Then, the image representa-
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tions are mapped to the quality scores with a fine-tuning of
the encoder weights [44] or by just using a linear regression
[19, 26]. For example, Re-IQA [26] generates image rep-
resentations by concatenating low-level and high-level fea-
tures obtained through a quality-aware and content-aware
encoder, respectively. Existing methods involve maximiz-
ing the similarity between the representations of two crops
of the same distorted image. Therefore, since crops share
similar visual information, the model is exposed to content-
dependent degradation patterns, which inevitably leads to
content-dependent embeddings. The upper part of Fig. 1
shows the t-SNE visualization [31] of the embeddings of the
KADID [15] dataset generated by Re-IQA. We notice that
the representations related to some types of distortions, e.g.
blur, are scattered across the space, without being confined
into separable clusters. This result stems from the training
strategy, as images distorted equally may correspond to dif-
ferent representations due to their diverse content.

In contrast, we propose a self-supervised approach,
named ARNIQA (leArning distoRtion maNifold for Image
Quality Assessment)1, to model the image distortion mani-
fold so that images that exhibit similar degradation patterns
correspond to resembling embeddings, despite varying con-
tent. We refer to image distortion manifold as the continu-
ous space of all the possible degradations to which an im-
age can be subjected. Different regions along this manifold
represent various types and degrees of degradation. For ex-
ample, images showing distinct blur and noise patterns lie
in different areas of the manifold. Similarly, images sub-
jected to varying compression rates using the same algo-
rithm correspond to diverse regions within the space. Such
a distortion manifold represents image quality in an intrin-
sic manner. In fact, images that show similar degrees and
patterns of degradation are prone to be perceived as having
similar quality. At the same time, images exhibiting com-
parable levels and types of distortion correspond to simi-
lar positions in the manifold. Therefore, to map the repre-
sentation in the manifold to a quality score, it is sufficient
to train a simple linear regressor, without the need of fine-
tuning the encoder weights. Moreover, by focusing on the
inherent distortions within images rather than being depen-
dent on their content, our approach significantly reduces the
complexity of the learning process [29]. Given two differ-
ent images that are degraded in the same way, our training
strategy consists of extracting a crop from each of them and
maximizing the similarity between their representations. At
the same time, we maximize the distance from the embed-
dings of other images degraded in a different manner. In
this way, our model learns to recognize image degradation
despite varying content. To improve contrastive learning
performance, we present a strategy to ensure the presence
of hard negative examples within each batch by also consid-

1Pronounced as the English word “arnica” (/"a:r.nIk.@/).

ering half-scale images. To train our model, we propose to
synthetically distort pristine images with a wide variety of
degradations. To this end, we introduce an image degrada-
tion model that produces random compositions of consecu-
tively applied distortions. Our degradation model is capa-
ble of generating about 100 times more possible distortion
compositions than existing approaches. In the lower section
of Fig. 1 we report the t-SNE visualization of the embed-
dings of the KADID dataset obtained by ARNIQA. We no-
tice that compared to Re-IQA [26], our approach produces
more easily distinguishable clusters for different types of
degradation, thanks to our training strategy.

Extensive experiments show that ARNIQA achieves
state-of-the-art performance on datasets with both synthetic
and authentic (i.e. real-world) distortions. Furthermore,
since our learning process is less complex, the proposed
approach proves to be more data efficient than competing
methods, requiring only up to 0.5% of the training images
compared to the competitors. In addition, cross-dataset
evaluation and the gMAD competition [18] demonstrate
that ARNIQA has better generalization capabilities and is
more robust than the baselines.

We summarize our contributions as follows:

1. We propose ARNIQA, a self-supervised approach for
learning the image distortion manifold. By maximiz-
ing the similarity between the embeddings of different
images distorted equally, we make the encoder gen-
erate similar representations for images exhibiting the
same degradation patterns regardless of their content;

2. We introduce an image degradation model that ran-
domly assembles ordered sequences of distortions,
with 1.9 · 109 distinct possible compositions, for syn-
thetically degrading images;

3. ARNIQA achieves state-of-the-art performance on
NR-IQA datasets with both synthetic and authentic
distortions while showing enhanced data efficiency,
generalization capabilities, and robustness.

2. Related Work
2.1. No-Reference Image Quality Assessment

Due to its importance in both industry and computer vi-
sion tasks, No-Reference Image Quality Assessment (NR-
IQA) has been an active area of research for several years
[6, 12, 19, 20, 24, 26, 30, 32, 34].

Traditional methods [20–22, 35, 41], such as BRISQUE
[20] and NIQE [21], rely on the extraction of handcrafted
features from the images. Subsequently, they employ a re-
gression model to predict quality scores. Codebook-based
approaches, such as CORNIA [36] and HOSA [34], build
a visual codebook from local patches to obtain quality-
aware features. In recent years, methods using supervised

190



learning achieved a significant boost in performance in NR-
IQA [7, 12, 29, 30, 37, 39, 42]. For example, HyperIQA [30]
presents a self-adaptive hypernetwork that distinguishes
content understanding from quality predictions. The most
similar to our work is Su et al. [29], which learns the image
distortion manifold in a supervised manner on IQA datasets.
Given that it requires distortion-specific information for
training, it cannot be used for NR-IQA on datasets with au-
thentic degradations. On the contrary, we model the dis-
tortion manifold using unlabeled data with self-supervised
learning. Due to their dependence on ground-truth qual-
ity scores for training, supervised methods suffer from the
scarcity of labeled data for IQA, which are expensive and
time-consuming to collect.

Recently, self-supervised learning has emerged as a
promising technique for NR-IQA [19, 26, 44]. Self-
supervised methods train an encoder on unlabeled data with
a contrastive loss and then use its image representations
to obtain the final quality scores, either by fine-tuning the
model weights [44] or using a linear regressor [19,44]. QPT
[44] proposes a quality-aware contrastive loss based on the
assumption that the quality of patches is similar for the same
distorted image but differs as the image or the degradations
vary. CONTRIQUE [19] models the representation learning
problem as a classification task, where each class is com-
posed of images degraded equally. Re-IQA [26] trains a
quality-aware and a content-aware encoder to generate low-
level and high-level representations, respectively. Existing
methods are based on maximizing the similarity between
the representations of crops of the same distorted image. In
contrast, we maximize the similarity between the embed-
dings of patches that belong to different images that were
degraded equally, regardless of varying content, to model
the image distortion manifold. After training, we freeze the
encoder weights and map the image representation to the
final quality scores with a simple linear regressor.

2.2. Image Degradation Models

Image degradation models aim to synthetically distort
images so that the degradation patterns closely resemble
those found in real-world scenarios. They play an impor-
tant role in both blind image restoration [28, 33, 38, 40, 43]
and IQA [7,26,42,44]. Degradation models differ mainly in
how many distinct types of distortion they consider and how
they compose them. Specifically, the number of times and
the order in which they apply the degradations. RealESR-
GAN [33] proposes a second-order degradation model, i.e.
that performs the distortion process twice but with different
parameters. The images are degraded sequentially with one
distortion from each of 4 predefined groups, always follow-
ing the same order. Re-IQA [26] considers 25 distortion
types but applies only one of them to each image, thus not
studying combined degradation patterns. QPT [44] presents

a second-order degradation model with skip and shuffle op-
erations. It takes into account 3 distortion groups compris-
ing a total of 9 degradation types. In contrast, we introduce
an image degradation model that randomly composes or-
dered sequences of consecutively applied distortions. Given
that we consider 24 distortion types divided into 7 groups,
we obtain 100 times more possible compositions than exist-
ing methods. We rely on our degradation model to synthet-
ically degrade the training images.

3. Proposed Approach
Our approach relies on the SimCLR [2] framework to

train a model composed of a pre-trained ResNet-50 [2] en-
coder and a 2-layer MLP projector that reduces the dimen-
sion of the features. We employ unlabeled pristine im-
ages distorted with the proposed degradation model for self-
supervised learning. After training, we discard the projector
and consider the encoder output features as the image repre-
sentations. Finally, we freeze the encoder and train a linear
regressor on top of it to obtain the quality score of an image
from its representation.

3.1. Image Degradation Model

To effectively learn the image distortion manifold, dur-
ing training our model must be exposed to a very wide range
of diverse degradation patterns. Additionally, it is impera-
tive to possess information about the nature and intensity of
degradations within each image for self-supervised learn-
ing with a contrastive loss. To address these requirements,
we propose to train our model using synthetically degraded
images. To this end, we need to make two considerations.
First, a broad spectrum of distortion types, spanning vary-
ing degrees of intensity, must be taken into account to create
a rich collection of degradation patterns. Second, we also
need to consider the case of multiple distortions applied at
once to investigate how the degradations appear when com-
bined together. Therefore, we introduce an image degra-
dation model that randomly composes ordered sequences
of consecutively applied distortions to generate images that
exhibit a large variety of degradation patterns. Figure 2
shows an overview of the proposed degradation model.

We consider 24 distinct degradation types D divided into
the 7 distortion groups G = {G1, . . . ,G7} defined by the
KADID [15] dataset. Each distortion has L = 5 levels of
intensity. See the supplementary material for more details
on the specific degradation types. The distortion groups
we consider are: 1) Brightness change; 2) Blur; 3) Spa-
tial distortions; 4) Noise; 5) Color distortions; 6) Compres-
sion; 7) Sharpness & contrast. Each of them is defined as
Gi = {. . . , Dij , . . .}, where i ∈ {1, . . . , 7} is the index of
the distortion group within G and j ∈ {1, . . . , |Gi|} indi-
cates the index of the degradation type within Gi, with |·|
that represents the cardinality.
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Figure 2. Overview of the proposed image degradation model. We randomly assemble distortion compositions C, i.e. ordered sequences of
distortions applied consecutively, to synthetically generate images with a wide variety of degradation patterns. Each distortion composition
contains a maximum of Ndist degradations sampled from 7 distinct distortion groups.

Let I be a pristine image. Our aim is to obtain a ran-
domly selected distortion composition C, i.e. an ordered se-
quence of distortions that generates the degraded image I
from I . We define Ndist as the maximum number of differ-
ent distortions that can be applied to I . First, we randomly
select a number ndist={1, . . . , Ndist} of distortions. Then,
we sample ndist distortion types with a uniform distribution
from ndist different degradation groups. In other words, as
in [40, 43], for each distortion composition, there can be a
maximum of one degradation for each group. Finally, we
shuffle the order of the selected distortions and sample a
level of intensity for each of them with a given probability
distribution. In the end, we obtain a distortion composi-
tion C = {. . . , Dijl

k , . . .} where k ∈ {1, . . . , ndist} is the
distortion index within C, i and j are defined above and
l ∈ {1, . . . , L} is the intensity level. Since we want our
model to also have access to pristine images during train-
ing, we define a hyperparameter pprist and apply the degra-
dation composition to an image with probability 1− pprist.
Compared to the 9 types of distortion considered by QPT
[44], we take significantly more degradation patterns into
account. Moreover, contrary to Re-IQA [26], we consec-
utively apply multiple distortions to the same image, thus
studying the effect of their combination.

Applying multiple distortions with a high level of inten-
sity to the same image usually results in a complete disrup-
tion of its content. Although our aim encompasses learning
areas of the distortion manifold corresponding to very se-
vere degradations, our primary focus resides in regions that
are more likely to be related to real-world scenarios. These
regions correspond to degradation compositions that alter
the content of the image, but not so severely as to make it

unrecognizable. In fact, when evaluating the performance
of an image restoration model or assessing the quality of a
picture uploaded to social platforms, it is unlikely that the
images under consideration would be degraded to the point
of rendering their content indistinguishable. Therefore, we
propose to sample the intensity level of each distortion with
a Gaussian distribution with mean 0 and standard deviation
σ. In this way, lower intensity levels are more likely to be
sampled, leading to less severe degradation compositions.
Thus, we model regions of the distortion manifold corre-
sponding to degradations most probably corresponding to
real-world scenarios in a more fine-grained manner.

Ultimately, our image degradation model is capable of
yielding a large variety of distinct distortion compositions.
Specifically, the number of possible ways in which the
degradations can be assembled is given by:

Ndist∑
m=1

m!Lm

 7∑
i=1

|Gi|
7∑

j=2

|Gj | . . .
7∑

k=m

|Gk|

 (1)

As an example, with Ndist=4, we obtain 1.9 · 109 possible
compositions, which are about 100 times more than the 2 ·
107 available with the model proposed in QPT [44].

3.2. Training Strategy

Existing self-supervised NR-IQA methods, such as Re-
IQA [26], extract two crops from a single distorted image.
Then, they maximize the similarity between their represen-
tations. Since the crops share similar visual information,
the models learn content-dependent distortion features. In
contrast, we maximize the similarity of the representations
of crops from two different images with completely diverse
content but distorted in the same manner. This way, the en-
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Figure 3. Overview of the proposed training strategy. Given two pristine images, we extract two crops and degrade them equally. Then,
we maximize the similarity of their embeddings. At the same time, we minimize the similarity with respect to the embeddings of degraded
crops from the half-scale versions of the original images. These embeddings constitute hard negative examples for the representations of
the full-scale images since they share similar content and differ only for a downsample distortion. Notice how the original and half-scale
degraded crops differ despite being degraded in the same way due to the downsampling operation.

coder learns to model the distortion manifold, thus yield-
ing resembling embeddings for images that exhibit simi-
lar degradation patterns, despite varying content. Figure 3
shows an overview of our training strategy.

Our approach is based on SimCLR [2]. SimCLR is
a framework for self-supervised learning based on a con-
trastive loss. Given a training example (i.e. an image),
SimCLR constructs a positive pair for the contrastive loss
by generating two views of the original image with ran-
dom augmentation techniques. The training process aims
to maximize the similarity between the representations of
the two views of each training example while maximizing
the distance between the embeddings of all the other aug-
mented images in the batch. Thus, the number of exam-
ples in each batch is doubled. Intuitively, given that our
goal is to learn the image distortion manifold, we can inter-
pret a specific distortion composition as a training example.
Therefore, by using it to degrade two different images, we
are generating the two views considered by SimCLR. For-
mally, let C = {C1, . . . , CB} be a batch of distortion com-
positions obtained with the proposed degradation model,
where B is the batch size. Similarly, let B1 ={x1

1
, . . . , x1

B
}

and B2 = {x2
1, . . . , x

2
B} be two batches of pristine images

randomly selected from the training dataset. For each pair
(x1

i , x
2
i) where i ∈ {1, . . . , B}, we extract a random crop

from each image and employ Ci to obtain the degraded ver-
sion (x1

i , x
2
i). Each pair constitutes the two views of the

SimCLR framework, and their embeddings represent a pos-
itive pair in the contrastive loss.

However, since the proposed degradation model has a
very large number of possible compositions, the given batch

of distortion compositions C could lead to considerably dif-
ferent image pairs. In that case, it would be trivial for the
model to discriminate between the different examples, mak-
ing the learning process less effective. To avoid this issue,
we propose a strategy to ensure the presence of hard neg-
ative examples in each batch, which is known to enhance
contrastive learning [11, 25]. Given an image pair (x1

i , x
2
i)

defined as above, we downsample the images to half size
before cropping, resulting in (̂x1

i , x̂
2
i). After applying Ci,

we obtain the distorted image pair (̂x1
i , x̂

2
i). Given that the

downsampling operation fundamentally reduces the pixel
count, it inherently results in information loss and thus can
be viewed as a degradation. Therefore, this process can be
likened to prepending a downsampling degradation to each
distortion composition Ci. Finally, we apply this technique
to all the image pairs and add the new B pairs to the batch,
thereby doubling the batch size and the number of negative
examples, which improves the performance of contrastive
learning [2, 8]. Moreover, since we use all the images both
at full-scale and half-scale, the size of the training dataset
is also doubled. Thanks to our strategy, the model always
has to discriminate between the two examples x1

i and x̂1
i ,

which mutually serve as hard negatives for each other. In-
deed, they share similar content as they are crops taken from
the same image at two different scales, and their degrada-
tion differs only for a downsample distortion. Therefore, by
minimizing the similarity between the representations of x1

i

and x̂1
i , our model learns to discriminate between images

with slightly different degradation, even if they share simi-
lar content. The same considerations apply for x2

i and x̂2
i .

CONTRIQUE [19] considers images at half-scale as well
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but regards them as positive examples belonging to the same
distortion class. On the contrary, we treat the half-scale res-
olution crops as challenging negative examples, since they
actually differ for a single distortion.

Formally, let f(·) be the ResNet-50 encoder and g(·) the
2-layer MLP projector that we use for dimensionality reduc-
tion. Then, given an image x ∈R3×H×W , with H and W
representing respectively its height and width, we compute
its representation z with:

h = f(x) ∈ RC , z = g(h) = g(f(x)) ∈ RD (2)

where C and D are the number of channels of the encoder
and the projector, respectively. First, we generate the em-
beddings of all the views, both at full- and half-scale. Then,
following SimCLR, we employ the NT-Xent contrastive
loss [2] for training. To this end, we define the loss terms:

ℓ1,2i = − log
γ1,2

i,i

B∑
k=1

[
γ1,2

i,k + γ1,2

i,̂k
+ γ1,1

i,̂k

]
+

B∑
k ̸=i

γ1,1

i,k

ℓ̂2,1

i = − log
γ2,1

î ,̂i

B∑
k=1

[
γ2,1

î ,̂k
+ γ2,1

î ,k
+ γ2,2

î ,k

]
+

B∑
k ̸=i

γ2,2

î ,̂k

(3)

where γ1,2

i,̂k
= e(cos(z

1
i ,̂z

2
k)/τ) and cos(·) and τ represent the

cosine similarity and a temperature hyperparameter, respec-
tively. Hence, the overall training loss is given by:

L =
1

4B

B∑
i=1

[
ℓ1,2i + ℓ2,1i + ℓ̂1,2i + ℓ̂2,1i

]
(4)

Intuitively, the loss maximizes the similarity between the
representation of each view and the corresponding one,
while maximizing the distance to all the other views, both at
full-scale and half-scale. Therefore, we consider 2 (views)
× 2 (scales) × B (batch size)=4B elements in total.

After training, our model has learned a distortion man-
ifold and hence generates similar embeddings for images
degraded in the same way, regardless of their content.

4. Experimental Results
4.1. Implementation Details

We train our model for 10 epochs using a stochastic gra-
dient descent optimizer with momentum 0.9 and weight de-
cay 1e−4. Starting from a learning rate of 1e−3, we employ
a cosine annealing with warm restarts scheduler [16]. Dif-
ferently from [19, 26], we start from a pre-trained ResNet-
50 encoder and fine-tune its weights during training. The
encoder and the projector have a number of channels C and
D of 2048 and 128, respectively. During training, we use a
patch size of 224, a temperature τ of 0.1, and a batch size
of 16. Regarding the image degradation model, we set the

maximum number of distortions Ndist to 4, the probabil-
ity of using pristine images pprist to 0.05, and the standard
deviation of the Gaussian distribution σ to 2.5.

4.2. Datasets

We employ the 140K pristine images from the KADIS
dataset [15] for training, discarding the 700K degraded ones
it provides. In fact, we use our image degradation model to
obtain the degraded versions of the pristine images.

We test ARNIQA on datasets with both synthetic and au-
thentic distortions. These consist of collections of degraded
images labeled with subjective opinions of picture quality
in the form of Mean Opinion Score (MOS). We consider
four synthetically degraded datasets: LIVE [27], CSIQ [13],
TID2013 [23], and KADID [15]. LIVE comprises 779 im-
ages degraded with 5 types of distortion at 5 levels of in-
tensity, with 29 reference images as the base. CSIQ, on the
other hand, stems from 30 reference images, each under-
going 6 types of distortions at 5 levels of intensity, yield-
ing 866 images. TID2013 and KADID contain 3000 and
10125 images synthetically degraded with 24 and 25 types
of distortion at 5 different levels of intensity, starting from
25 and 81 reference images, respectively. Regarding the
datasets with authentic distortions, we consider FLIVE [37]
and SPAQ [5]. FLIVE is the largest existing dataset for NR-
IQA, comprising nearly 40K real-world images. SPAQ con-
tains 11K high-resolution images captured by several mo-
bile devices. Similar to [5,19], for evaluation, we resize the
SPAQ images so that the shorter side is 512.

4.3. Evaluation Protocol

To evaluate the performance, we employ Spearman’s
rank order correlation coefficient (SRCC) and Pearson’s lin-
ear correlation coefficient (PLCC) to measure prediction
monotonicity and accuracy, respectively.

Following [19, 26], we randomly divide the datasets into
70%, 10%, and 20% splits corresponding to training, vali-
dation, and test sets, respectively. Splits are selected based
on reference images to ensure no overlap of contents. We
employ the ground-truth MOS scores of the training split to
train a Ridge regressor [10] with an L2 loss. Note that we do
not perform any fine-tuning of the encoder weights during
the evaluation. Similarly to [19, 26], we use the validation
split to identify the regularization coefficient of the regres-
sor via a grid search over values in the range

[
10−3, 103

]
.

During testing, we compute the image features at full-scale
and half-scale and concatenate them to obtain the final rep-
resentation, as in [19]. Similarly to [44], we take the four
corners and the center crops at both scales and average the
corresponding predicted quality scores to obtain the final
one. To remove any bias in the selection of the training set,
we repeat the training/test procedure 10 times and report
the median results. Given the large size of the dataset, for
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Synthetic Distortions Authentic Distortions

LIVE CSIQ TID2013 KADID FLIVE SPAQ Average
Method Type SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [20]
Handcrafted

0.939 0.935 0.746 0.829 0.604 0.694 0.528 0.567 0.288 0.373 0.809 0.817 0.652 0.703
NIQE [21] 0.907 0.901 0.627 0.712 0.315 0.393 0.374 0.428 0.211 0.288 0.700 0.709 0.522 0.572

CORNIA [36]
Codebook

0.947 0.950 0.678 0.776 0.678 0.768 0.516 0.558 – – 0.709 0.725 – –
HOSA [34] 0.946 0.950 0.741 0.823 0.735 0.815 0.618 0.653 – – 0.846 0.852 – –

DB-CNN [42]
Supervised

learning

0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.856 0.554 0.652 0.911 0.915 0.841 0.870
HyperIQA [30] 0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845 0.535 0.623 0.916 0.919 0.838 0.859
TReS [7] 0.969 0.968 0.922 0.942 0.863 0.883 0.859 0.858 0.554 0.625 – – – –
Su et al. [29] 0.973 0.974 0.935 0.952 0.815 0.859 0.866 0.874 – – – – – –

CONTRIQUE [19]
SSL + LR

0.960 0.961 0.942 0.955 0.843 0.857 0.934 0.937 0.580 0.641 0.914 0.919 0.862 0.878
Re-IQA [26] 0.970 0.971 0.947 0.960 0.804 0.861 0.872 0.885 0.645 0.733 0.918 0.925 0.859 0.889

ARNIQA SSL + LR 0.966 0.970 0.962 0.973 0.880 0.901 0.908 0.912 0.595 0.671 0.905 0.910 0.869 0.890

Table 1. Comparison between the proposed approach and competing methods on datasets with synthetic and authentic distortions. Best
and second-best scores are highlighted in bold and underlined, respectively. – denotes results not reported in the original paper. SSL and
LR stands for self-supervised learning and linear regression, respectively.

Method

Training Testing HyperIQA Su et al. CONTRIQUE† Re-IQA† ARNIQA
LIVE CSIQ 0.744 0.777 0.803 0.795 0.904
LIVE TID2013 0.541 0.561 0.640 0.588 0.697
LIVE KADID 0.492 0.506 0.699 0.557 0.764
CSIQ LIVE 0.926 0.930 0.912 0.919 0.921
CSIQ TID2013 0.541 0.550 0.570 0.575 0.721
CSIQ KADID 0.509 0.515 0.696 0.521 0.735
TID2013 LIVE 0.876 0.892 0.904 0.900 0.869
TID2013 CSIQ 0.709 0.754 0.811 0.850 0.866
TID2013 KADID 0.581 0.554 0.640 0.636 0.726
KADID LIVE 0.908 0.896 0.900 0.892 0.898
KADID CSIQ 0.809 0.828 0.773 0.855 0.882
KADID TID2013 0.706 0.687 0.612 0.777 0.760

Table 2. Cross-dataset evaluation results for the SRCC metric. †

denotes results evaluated by us with the official pre-trained mod-
els. Best scores are highlighted in bold.

FLIVE we use only the official splits [37].

4.4. Results

In Tab. 1 we compare the performance of the proposed
approach with other state-of-the-art methods. ARNIQA
achieves competitive performance for both synthetic and
authentic distortions and obtains the best results on average.
In particular, we notice how our method outperforms Su et
al. [29], which also aims to learn the distortion manifold
but in a supervised manner and directly on IQA datasets.
Furthermore, contrary to our approach, Su et al. cannot be
evaluated on datasets with authentic degradations, as it re-
quires distortion-specific information for training. Com-
pared to other self-supervised approaches, namely CON-
TRIQUE [19] and Re-IQA [26], ARNIQA achieves com-
parable or better performance. However, our method is
significantly more data-efficient than the competitors. In-
deed, we employ 140K (training dataset) × 2 (scales) ×
10 (epochs)=2.8M images for training. In contrast, doing
similar computations, we get that CONTRIQUE uses 65M
images, while Re-IQA requires 512M and 38M images for

the content and quality encoders, respectively. See the sup-
plementary material for more details. Therefore, ARNIQA
achieves state-of-the-art performance while requiring only
up to 0.5% of the data compared to competing methods.
The reason is that focusing solely on the degradation pat-
terns within images reduces the complexity of the learning
process compared to depending on image content as well,
as also observed by [29].

We evaluate the generalization capabilities of our model
by measuring cross-dataset performance. We train the re-
gressor on the whole training dataset and then use it to ob-
tain the quality predictions on the testing dataset. We re-
port the results for the SRCC metric in Tab. 2. ARNIQA
significantly outperforms all the competing methods. In
particular, the proposed approach achieves the largest im-
provements compared to the baselines when training on
a dataset comprising few distortion types (e.g. CSIQ) and
testing on one with a large variety of different degradations
(e.g. TID2013). We hypothesize that the reason behind this
outcome is that our method makes the encoder model the re-
gions of the distortion manifold that correspond to distinct
types of degradations in a consistent way. In other words,
the mapping from the distortion manifold to the quality
scores is consistent across different types of degradation.
Therefore, a regressor trained by mapping only some spe-
cific regions of the manifold – i.e. considering only a few
different distortions – to quality scores behaves well even
when used on unseen degradation types. We will study this
phenomenon more thoroughly in future work.

To evaluate the robustness of the model, we conduct the
group maximum differentiation (gMAD) competition [18]
between ARNIQA and Re-IQA on the Waterloo Explo-
ration Database [17], a dataset with synthetically degraded
images without MOS annotations. We fix one model to act
as the defender and we group its quality predictions into
several levels. Then, the other model functions as the at-
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Figure 4. gMAD competition results between ARNIQA and Re-
IQA [26]. (a) and (b): Fixed ARNIQA at a low- and high-quality
level, respectively. (c) and (d): Fixed Re-IQA at a low- and high-
quality level, respectively.

tacker by identifying the image pairs within each level that
differ the most in terms of quality. Therefore, for a model
to be robust, the selected image pairs should exhibit similar
quality when functioning as the defender and show a no-
ticeable quality difference when acting as the attacker. We
show the results in Fig. 4. When we fix ARNIQA (Figs. 4a
and 4b), Re-IQA is unable to identify image pairs show-
ing an obvious quality difference. On the contrary, when
ARNIQA acts as the attacker (Figs. 4c and 4d), it manages
to spot the failures of Re-IQA by finding image pairs that
clearly have significantly different quality. Thus, the pro-
posed approach proves to be more robust than Re-IQA.

4.5. Ablation Studies

Image Degradation Model We conduct ablation stud-
ies on our image degradation model: 1) RealESRGAN: we
replicate the degradation model of RealESRGAN [33]; 2)
w/o gaussian: we sample the intensity level of each degra-
dation with a uniform distribution instead of a Gaussian
one; 3) Ndist=1 and 4) Ndist=7: we reduce and increase
the maximum number of distorsions Ndist, respectively.

The upper part of Tab. 3 shows the results for the SRCC
metric. We observe that the RealESRGAN degradation
model obtains poor performance on all the datasets. Ex-
pectedly, considering only 4 distortion groups and applying
them always in the same order limits the variety of degrada-
tion patterns the model is exposed to during training, ham-
pering the learning process. We notice that sampling the
levels of intensity of the degradations with a uniform distri-
bution degrades the performance compared to using a Gaus-
sian one. This is because it leads to more coarse modeling
of the regions of the manifold corresponding to degrada-
tions more likely to be related to those found in real-world
scenarios. Finally, the variants of the degradation model
with Ndist = 1 and Ndist = 7 generate images that respec-

Method LIVE CSIQ TID2013 KADID Average

RealESRGAN 0.926 0.896 0.616 0.727 0.791
w/o gaussian 0.965 0.953 0.866 0.920 0.926
Ndist=1 0.966 0.957 0.857 0.916 0.924
Ndist=7 0.970 0.957 0.868 0.902 0.924

same image 0.940 0.863 0.721 0.775 0.825
w/o HN 0.966 0.960 0.851 0.908 0.921

ARNIQA 0.966 0.962 0.880 0.908 0.929

Table 3. Ablation studies results for the SRCC metric. Best scores
are highlighted in bold.

tively contain no combined degradation patterns and too
strong distortions, thus hampering the training process.
Training Strategy We perform ablation studies on our
training strategy: 1) same image: we extract the crops from
the same image, instead of from two different ones; 2) w/o
HN: we do not employ our strategy to obtain hard negative
examples and, for a fair comparison, we double the batch
size to have the same number of negative examples.

We report the results for the SRCC metric in the lower
section of Tab. 3. We observe that extracting two crops
from the same degraded image leads to poor performance.
Even if it proved to be a viable technique to achieve state-
of-the-art results in NR-IQA, it requires more convoluted
approaches compared to ours, such as considering multiple
loss terms [44] or two different encoders [26]. Furthermore,
we notice that our strategy to guarantee the presence of hard
negatives in every batch improves the results compared to
using the same number of randomly sampled negative ex-
amples, as expected for contrastive learning [11, 25].

5. Conclusion
In this work, we present a self-supervised approach,

named ARNIQA, to learn the image distortion manifold for
NR-IQA. First, we introduce an image degradation model
that randomly assembles ordered sequences of distortions,
with about 100 times more possible compositions than com-
peting methods. Second, we propose a training strategy that
maximizes the similarity between the embeddings of crops
belonging to distinct images degraded equally, regardless
of their content. This way, we model the distortion man-
ifold so that a simple linear regressor can effectively map
image representations to quality scores. The experiments
show that ARNIQA achieves state-of-the-art performance
on datasets with both synthetic and authentic distortions.
Also, our method exhibits enhanced generalization capabil-
ities, data efficiency, and robustness compared to the base-
lines. In future work, we will study how our learned distor-
tion manifold can be used for blind image restoration.
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