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Abstract

Text-to-Image (T21) synthesis is a challenging task re-
quiring modelling both textual and image domains and their
relationship. The substantial improvement in image qual-
ity achieved by recent works has paved the way for nu-
merous applications such as language-aided image edit-
ing, computer-aided design, text-based image retrieval, and
training data augmentation. In this work, we ask a simple
question: Along with realistic images, can we obtain any
useful by-product (e.g., foreground / background or multi-
class segmentation masks, detection labels) in an unsuper-
vised way that will also benefit other computer vision tasks
and applications?.

In an attempt to answer this question, we explore gener-
ating realistic images and their corresponding foreground
/ background segmentation masks from the given text. To
achieve this, we experiment the concept of co-segmentation
along with GAN. Specifically, a novel GAN architecture
called Co-Segmentation Inspired GAN (COS-GAN) is pro-
posed that generates two or more images simultaneously
from different noise vectors and utilises a spatial co-
attention mechanism between the image features to produce
realistic segmentation masks for each of the generated im-
ages. The advantages of such an architecture are two-fold:
1) The generated segmentation masks can be used to focus
on foreground and background exclusively to improve the
quality of generated images, and 2) the segmentation masks
can be used as a training target for other tasks, such as ob-
Ject localisation and segmentation. Extensive experiments
conducted on CUB, Oxford-102, and COCO datasets show
that COS-GAN is able to improve visual quality and gener-
ate reliable foreground / background masks for the gener-
ated images.

1. Introduction

The computer vision community has recently garnered
extreme interest in the text-to-image (T2I) [16, 19,21, 26,
, 02, 80] synthesis task because of its wide range of ap-
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Figure 1. Examples of images and unsupervised segmentation
masks generated by our method (COS-GAN) on CUB (left),
Oxford-102 (middle), and COCO (right) datasets.

plications such as language-aided image editing, computer-
aided design, and text-based image retrieval. Further, T2I
models can be used to produce numerous novel images
(to be able to train machine learning models). In general,
T2I task requires generative models to understand complex
intra-modal and inter-modality relationships between both
text and image domains to produce meaningful and realistic
images.

T2I approaches typically utilise conditional GANs [43,

,48] by taking noise and sentences as conditional inputs
to generate images. Earlier approaches [13, 56, 57] have
successfully generated low-resolution images on single-
class datasets [47, 78]. Generating high-resolution images
is made possible by multi-stage GAN architectures [88]
that generate images at different resolutions, with a high-
resolution stage generator conditioned on images generated
from low-resolution stage. Recent attempts have used var-
ious improved techniques such as intermediate discrimina-
tors [90], visually-aligned textual features [82, 91], multi-
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stage refinement with local attention [8, 32, 35, 36, 40, 84],
layer-wise fusion of text features [37,71, 86, 89], codebook
based visual discrete representations [16, 17,54,75] and de-
noising diffusion models [15, 58] to improve quality of im-
age generation.

The current trend of approaches solely focuses on im-
proving the quality of the generated images. In this paper,
we take a step back and ask a simple question: Along with
realistic images, can we obtain any useful by-product (e.g.,
foreground / background or detection labels) in an unsu-
pervised way that will also benefit other computer vision
tasks? To answer this question, we explore a new direc-
tion in the T2I synthesis to generate images along with their
foreground-background segmentation masks in an unsuper-
vised way.

Foreground-Background (FG-BG) segmentation is a
special case of segmentation where each image pixel is
classified as foreground or background. Unsupervised ap-
proaches to generate images and their corresponding FG-
BG masks rely on training Generative Adversarial Net-
works (GANS) in a layered approach [ 1,4,5,42,66,83]. This
involves using multiple generators to produce foreground
and background separately and then predicting the mask
from the foreground. This predicted mask is then used to
combine both the foreground and background to create fi-
nal FG-BG mask output. Further, many approaches also
utilise the underlying class distinction in the dataset to gen-
erate images and corresponding masks. We propose using
a GAN to generate images and their corresponding FG-BG
masks from the text as a novel approach. These masks and
images can be used to train other vision applications.

We hypothesise that generating multiple images for the
same text and performing a notion of co-segmentation be-
tween those images will provide with a foreground mask,
specific to the common object present in the images as de-
fined by text. To validate this hypothesis, inspired by deep
co-segmentation related approaches [9, 34, 68, 69, 74], we
propose a novel architecture named “Co-Segmentation In-
spired GAN” (COS-GAN) for generating images and seg-
mentation masks from the given text. COS-GAN generates
image and FG-BG masks as an intermediate output (refer
Figure 1) in a completely unsupervised way on text-image
datasets. Specifically, we propose a GAN model that gen-
erates two image features for the same text but is condi-
tioned with different noise vectors. Then, we perform a
spatial co-attention between these image features to pro-
mote the notion of co-segmentation. Further, co-attention
logits are used to predict a 2-class segmentation mask (fore-
ground (FG)-background (BG)) to signify FG / BG regions
in the images. Further, these masks are used to enhance FG
/ BG regions exclusively. We conduct comprehensive ex-
periments on CUB [78], Oxford-102 [47], and COCO [38]
datasets to validate the performance of COS-GAN in terms

of quality of the generated image and segmentation masks.
We summarise contribution of our paper as follows:

* We formulate a novel framework to generate images
and extract segmentation masks for the generated im-
ages conditioned on the text.

* We propose a Spatial Co-attention Mask (SCM) pre-
dictor to extract segmentation masks for the generated
images and novel spatial conditioning blocks that use
segmentation masks from SCM predictor to improve
quality of the images generated.

* We formulate generating two image features and ex-
tracting segmentation masks. Using Co-Attention
Mechanism produces higher quality segmentation
mask and improves image generation quality.

2. Related Work

In this section, we discuss briefly some of the relevant
works in the literature relating to this paper.

2.1. Text-to-Image Synthesis

For the past few years, Generative Adversarial Networks
(GANSs) [20] approaches have been used for generating im-
ages. With larger GAN models [6, 27], and with regulari-
sation methods [2,7,22,44], GAN approaches can generate
images on large datasets like ImageNet [14]. Conditional
GANSs [43,45,48] with sentence conditioning can generate
images at low resolutions [13,56,57]. StackGAN [88] gen-
erates images at intermediate resolutions using a stage-wise
approach and uses them as conditioning in high-resolution
generators. HDGAN [90] trains a single generator and mul-
tiple discriminators for each resolution to provide interme-
diate signals to the generator. AttnGAN [82] has intro-
duced cross-domain attention for local refinement using im-
age aligned text embeddings. DM-GAN [91] uses mem-
ory refinement-based attention to capture text-image inter-
actions. MirrorGAN [51] has proposed generating captions
from discriminator to boost text vs. image semantic consis-
tency. SD-GAN [84] applies contrastive loss between two
generated images for two different captions of the same im-
age to capture better text-image relations. ControlGAN [32]
has introduced a fine-grained discriminator to improve dis-
criminator’s capability to understand complex relations be-
tween text and image. CPGAN [36] extracts salient features
of the image for each word to provide image representa-
tion to the generator along with the word. XMC-GAN [86]
increases mutual information between image and text us-
ing inter-modality and intra-modality contrastive losses be-
tween images and text. DF-GAN [71] has introduced a
single generator to generate images with affine condition-
ing of text with Matching-Aware zero-centered Gradient
Penalty (MA-GP) to improve text-image alignment. SSA-
GAN [37] uses semantic masks to improve spatial condi-
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tioning of the images. These generated semantic maps can
also be used as FG-BG masks.

With the introduction of Neural Discrete representation
[75], images are represented as low-level tokens of the vi-
sual codebook [17]. Images are treated as a sequence of
tokens; and to generate images, models have to generate the
sequence in an autoregressive approach using transformer
[76]. Images represented as low-level tokens allow mod-
els to scale up to large models to generate images at high-
resolutions [16, 54]. The current focus of such models is
to learn compact visual codebook to reduce the number of
autoregressive predictions at the time of inference [3 1] and
further boost image quality generations by capturing multi-
ple representations [19,55,81].

Another approach for generating images from text is
Denoising Diffusion Probabilistic Models (DDPM) [67].
DDPM generates images by reversing the forward marko-
vian chain by removing noise at each step which allows to
generate images at high-resolutions [15,25,46]. Guided dif-
fusion using language models [52] allows models to capture
non-natural interaction between text and images [53, 62].
Diffusion models with visual codebooks are also used to
generate images at low-resolutions [18,21]. The incorpora-
tion of self-attentions [76] and dynamic convolutions [12] in
the recently proposed scaling up of GANs [26, 64] enables
faster generation of images, while maintaining comparable
quality of the Diffusion approach. Moreover, GANs offer
enhanced control over the process of image generation.

In this space of Text-to-Image generation models, all the
approaches focus on improving the quality of the generated
images and further boost text-image compatibility. With
abundant availability of text-image pairs, in our proposed
work, we generate text-conditioned segmentation masks for
generated image features and further use the masks to im-
prove quality of the images generated.

2.2. Foreground-Background Mask Generations

Various GAN-based models have been utilised for gen-
eration of FG-BG masks. Typically, these models adopt a
layered training approach, where the generator is trained
to produce foreground and background components sep-
arately. Subsequently, these components are combined
using a mask predicted from the foreground. Although
several approaches employing Information Maximisation
[3, 42,65, 85] have been proposed for FG-BG mask ex-
traction, the quality of generated maps is generally inferior
compared to that of the methods utilising GAN-based ap-
proaches.

FineGAN [66] is one such model that generates the
background, foreground, and mask in a hierarchical tree-
type neural network architecture with bounding boxes as
inputs. OneGAN [4] uses a complete unsupervised train-
ing approach to generate FG-BG masks, with reconstruc-

tion losses applied between pose, style, and shape vectors
that are predicted from both the generator and discrimi-
nator in a layered approach. Labels4Free [1] employs a
pre-trained StyleGAN model for generating masks using a
layered approach. Melas-Kyriazi et al. [42] use the latent
spaces of pre-trained large-scale GAN models to generate
masks. Yang et al. [83] generate FG-BG segmentation mask
using layered GANs and alternate training of GAN and seg-
mentation networks for the generated mask.

Several GAN-based models can generate segmentation
masks with human intervention [33] or off-the-shelf mask
prediction techniques [73] for pre-trained large-scale im-
age synthesis networks [6,28]. In the case of DDPM-based
models [46, 67], pre-trained mask-generated networks [23]
are employed to predict the mask for the features extracted
from the trained DDPM models [58]. Some T2I (Text-
to-Image) models can generate semantic maps. For in-
stance, TReCS [29] employs text and mouse localisation
to generate both images and their corresponding segmenta-
tion maps. Another T2I model, SSA-GAN [37], utilises a
segmentation approach to generate semantic maps along-
side pictures based on a given text. In contrast to cur-
rent methods, our proposed approach introduces a novel
GAN-based model that leverages Co-Segmentation to ex-
tract foreground-background masks conditioned on text.
This approach distinguishes itself from layered GAN ap-
proaches, relying on additional interventions such as pre-
trained models or human input and using segmentation ap-
proaches like CBAM [79] to predict segmentation maps.

3. Methodology

Our goal is to generate realistic images along with their
foreground-background masks from the given text. To
achieve this, we propose a simple architecture involving co-
segmentation [9, 34] between two image features simulta-
neously generated from the same text (with different noise
vectors). Specifically, we propose a novel framework called
”Co-Segmentation Inspired GAN (COS-GAN)” that accepts
text 7" as input and encodes it into a sentence vector S.
This sentence vector S is instantiated into two sentence vec-
tors s1,ss using conditional augmentation [88] and, fur-
ther, augmented with two different noise vectors to yield
two conditioning vectors vi,vs. These vectors are trans-
formed into low-resolution spatial maps and then passed
through multiple stages where every stage consists of a Spa-
tial Co-attention Mask (SCM) predictor followed by upsam-
ple convolutions to finally output generated images. SCM
predictor employs co-attention between two image features
over whole spatial dimension to indice a notion of co-
segmentation and capture global information for prediction
of foreground-background (FG-BG) segmentation mask for
each image. Further, predicting FG-BG masks on image at-
tended feature maps results in superior quality masks over
maps predicted simply on image features. Apart from the
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Figure 2. Overall architecture of COS-GAN generator 3.1. Given the caption text, the model creates two “conditioning” vectors by
appending the text feature with two different noise vectors. Further, from these conditioning vectors, two different images are generated
through multiple stages of upsampling convolutions and Spatial Co-attention Mask (SCM) predictors.

advantage of being a useful by-product, the prediction of
FG-BG mask allows the model to individually act on fore-
ground and background to enhance image quality. The net-
work is trained using a combination of simple adversarial
loss and text-image alignment loss. In the following sec-
tions, Sec. 3.1 explains the architecture of the generator (G)
and Sec. 3.2 introduces the discriminator (D).

3.1. Generator Architecture

Generator G aims to generate two images simultane-
ously from the same text by ensuring that the images pos-
sess enough variations. Adopting co-segmentation concept
between image features results in segmenting the predom-
inant common object in those images. To achieve this, G
accepts the given text 7' as input and passes it through a
pre-trained text encoder [82] to yield sentence vector S and
word vectors W. Then, to generate two different images for
the same caption, two conditioning vectors are prepared as
follows: First, S is instantiated into two sentence vectors
S1, s2 using conditioning augmentation [88]. By essentially
sampling from a conditional distribution N (i (s) , 3 (s)),
the conditioning augmentation process enables the gener-
ator to introduce stochastic nature and variability into the
generation process. Further, s1, so are appended with two
different noise vectors z1, zo produced from Standard Gaus-
sian Distribution N'(0, 1) and word features W to result in
two conditioning vectors v, vs.

As shown in Figure 2, the conditioning vectors vy, vo are
added with positional encoding [76] and passed through a
set of self-attention layers [76] to capture long-range depen-
dencies for improving the global structure of the generated
images and capture complex interactions between the sen-

tence, noise and word features. In self-attention layers, we
follow PixelShuffle [30] style of reshaping method to in-
crease the number of tokens, ie., reshaping (I,d x r) —
(I x r,d), where [ is the number of tokens, d is the channel
dimension, and r is the factor for increasing the number of
tokens. Each of these shuffles is followed by a linear layer to
increase the channel dimension. Finally, after self-attention
layers, we end up with two features of size 256 x d.

We reshape the self-attended features to d x 16 x 16
and get initial low-resolution spatial feature maps. These
low-resolution feature maps are passed through a series of
upsampling blocks to result in the high-resolution image of
dimension 256 x 256. Here, each upsampling block consists
of a Spatial Co-attention Mask (SCM - Sec. 3.1.1) predictor
followed by a Spatial conditioning block (Sec. 3.1.2) and
upsampling convolutions. SCM predictor employs a co-
attention mechanism between its input feature maps to cal-
culate a correlation matrix and predict an FG-BG segmenta-
tion mask for each of the input feature. Further, this FG-BG
mask is used in the Spatial conditioning block to modulate
FG and BG regions of the generated image. To improve our
model’s stochastic ability, we add noise to each layer simi-
lar to StyleGAN [28,49]. To reduce overall computations,
we use shared weights for generating multiple images and
use only one generated image for predicting values for gen-
erator losses. Adversarial loss £, for the generator is:

LG4y = Einpe[-D(2)] (1)

Here # is the generated (I7,1.) image. To generate im-
ages reflecting the captions, generator is also trained to min-
imise sentence contrastive loss £, between the global im-

age features fg for generated images predicted by discrimi-
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nator and sentence features (S) as follows:

exp (Sim (fgi,Si))
25:1 exp (Sim (fgi,S’n))
2
Sim(fg,S) = cos (fg,S) /T 3)

Lo (fgmsi) = —log

We use cosine similarity cos(u,v) = u’v/||ul|||v|, be-
tween features to calculate similarity scores Sim(.,.) for
sentence embeddings S and global visual features fg. fg,
fp are global and patch features extracted from discrimi-
nators for the generated image. The patch features fp for
generated images extracted must be aligned with the words
W in the corresponding sentence. We use previous strate-
gies to learn connections between these words and regions
in the image [82, 86], the cosine similarity is computed be-
tween all the image regions and words in the sentence and
compute the attention values o ; for word features w; in

the sentence and patch features as f;,, as:
exp (p1 Sim (wiv o ) )

E}ngl exp (plSim (w,-, fpk>>

Here R (= 256) is the total number of regions in the

Qi j =

“4)

patch. ¢; = Zf:i fpj «; ;, is the aligned visual region fea-
ture for the " word in the sentence. The score Syorq func-
tion between all the regions in the patch feature fp and all
words W can be defined as:

T P2

Sword (fp, W) = log (Z exp (p2Sim(wy, Cl))) 5)
1=1

Here T is the number of words in the sentence. p; and

p2 are hyper parameters; we set it to the same values as in

AttnGAN [82]. Word Contrastive loss £, for generator

is as follows: ( ( A ))
~ exp Swm“d fpi P Wz
Egord <fp1 , WZ) o log EnN:]_ exp (Swo’r'd (fpl 5 Wn))
(6)

We employ conditioning augmentation [88] to generate
multiple conditioning vectors for the same sentence in the
generator; we apply the regularisation term for conditioning
augmentation (L 4) on sentence feature vector(s) as:

Loa=Dgr (N (n(s),2(s)) IN(0, 1)) (D)

Here p(s) and X(s) are mean and diagonal covariance
matrices that are computed as functions of the sentence fea-
ture vectors. We use KL Divergence between the Standard
Gaussian and the conditional Gaussian Distribution for reg-
ularisation. A1, A2 and A3 are hyper-parameters. The com-
plete loss for the generator is defined as follows:

»CG = ’Cﬁdu + )\1£CA + )\Q‘CsGent + )‘3‘Cvaord @®)
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Figure 3. (a) Bidirectional feature sharing for generating atten-
tion maps, (b) Spatial Co-attention Mask to predict segmentation
masks, given image and reference features, and (c) Linear-SCM to
reduce computations for co-attention when the spatial size > 32
(K is set to 128).

3.1.1 Spatial Co-attention Mask Predictor

The prediction of intermediate masks [79] within generative
models [1,4, 37,66, 83] typically relies on a single convo-
lutional layer. However, this approach heavily depends on
the local receptive field in image features for mask predic-
tion, limiting its utilisation of global information within the
image. To overcome this limitation, our proposed approach
introduces generation of two images and implements spatial
co-attention between their respective image features. This
strategy aims to facilitate co-segmentation, enabling us to
predict masks on image-attended feature maps that primar-
ily highlight the common object present in both the images.
We effectively integrate global information from both im-
ages by leveraging attention across all spatial locations be-
tween the images.

In the SCM block as shown in Figure 3, we combine an
image feature with its reference feature across all spatial lo-
cations. This forms a correlation matrix that captures global
information. Afterward, we process this matrix through
a convolution block, which includes a convolutional layer
followed by Conditional Batch Normalization [! 1] and a
LeakyReLU activation [4 1], followed by a linear layer with
a Sigmoid activation to predict an FG-BG mask. When
dealing with larger spatial resolutions (> 64), co-attention
across all spatial locations can result in significant memory
usage. To address this concern, we employ a linear layer
with a LinFormer [77] approach (using K = 128) to achieve
co-attention. We refer to this modified version of SCM as
the Linear-SCM (L-SCM) predictor.

3.1.2 Spatial Conditioning Block

In contemporary methods, predicted intermediate masks
primarily enhance underlying tasks by regulating the im-
pact of image features [37, 79]. However, these masks of-
ten focus only on the foreground or the object of interest,
limiting their scope in generative models. This limitation
stems from the importance of both foreground and back-
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ground in generating high-quality images. In contrast, our
approach utilises predicted masks for foreground and back-
ground, leading to enhanced performance in T2I tasks and
better mask generation. Supplementary material provides
additional evidence to support and validate this assertion.
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Figure 4. We use segmentation masks from SCM predictor in
the Spatial Conditioning Block. We use sentence vector for fore-
ground and noise vector for background conditioning.

We propose applying spatial conditioning to features us-
ing the FG-BG segmentation mask from the SCM predic-
tor. In Figure 4, we utilise Conditional Batch Normaliza-
tion [ 1 1] with modulation parameters (. and (.. for spatial
conditioning on input features. For foreground condition-
ing related to text concepts, we use text features to estimate
vrg and By4. As for the background, we use a noise vector
z (z ~ N(0,1)) to estimate yp5 and (5,. The modulation
parameters of Conditional Batch Normalization are derived
from the mask (M) in the following manner:

BN(z | 5,2) = (70) - =8 | (5,) ©)
o()

g :FCWQ(S) (10)

1 = FCsp (9 (i

Yog = FC,,(2) (12)

Brg = FCp,,(2) 13)

Ye=M X y5g + (1 = M) X ypgq (14)
ﬂc:Mxﬂfg+(1*M)X5bg (15)
FC is a fully connected layer + Leaky ReLLU here, and
for the foreground, we use the mask and (1 — mask) for
the background. Using segmentation masks from the SCM
predictor for spatial conditioning prompts the SCM predic-
tor to generate better segmentation masks for using suitable
conditioning for the foreground, and the background, as the
network is trained to enhance the quality of the generated
image and be consistent with the text. The SCM predictor’s
ability to produce meaningful and high-quality segmenta-
tion masks, which are then used for dedicated modulations
in the spatial conditioning block, contributes to enhancing
image quality in the generated outputs.

3.2. Discriminator
The Discriminator D is used for two purposes: (1) to pre-
dict whether the image is real or fake, and (2) to be a feature

Discriminator (D) Word Multi-Modal

Contrastive Loss

Sentence Multi-
Modal Contrastive
Loss

Adversarial Loss

Residual . Fully Connected
Down Block Layer

Figure 5. Overview of COS-GAN discriminator architecture. Dis-
criminator consists of three outputs: i) Logits for adversarial loss,
ii) Global image features for sentence contrastive loss, and iii)
Patch features for word contrastive loss.

encoder for extracting features of the image for multi-modal
contrastive loss. The image is passed through a series of
residual downsampling blocks to extract three features, as
shown in Figure 5. Logit values and global sentence feature
are extracted from the final fully connected layer. Patch fea-
tures for word contrastive loss are extracted when the fea-
ture size is 16 x 16. The logit values are used for Adversarial
Hinge loss [44]. Adversarial loss £, for discriminator is
as follows:

L34y = Eanpy, [max(0,1 — D(2))]

R (16)
+E;p [max(0,1 + D(2))]

Here, x and & are real I,., and fake Iy,i. images.
Global feature extracted from the final layer with linear pro-
jections is also used for sentence contrastive loss. Sentence
Contrastive loss £, and Word Contrastive loss L2, for
discriminator are as follows:

I exp (Sim (fy,,Si))
sem (fgﬂ ) 08 25:1 exp (Slm (fgz ) Sn))

X S’wor (f Xl Wz))
wor f;lh -1 =P ( 42
. W)= los Zfzle exp (Sword (fpi» Wn))

(18)

A7)

fq and f, are global and patch features extracted from
Discriminator for real images. For training of £Z and
LD . we use only real image pairs and not the generated
image pairs as the images generated in early stages are not
recognisable [86]. A4 and A5 are hyper-parameters. The

final objective function for the Discriminator is defined as:
‘CD - ‘CGAN + )‘4£sent + >‘5£w0rd (19)

4. Experiments

In this section, we introduce datasets and evaluation met-
rics used in our experiments. We then evaluate the proposed
model on the datasets and compare qualitatively and quan-
titatively with the current approaches in the literature. The
supplementary material further explains the specific details
of the network, its training specifications, hyperparameters,
and additional studies.
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COS-GAN

Method ‘ CUB ‘ COCO
| IS | FID | R% | FID | R% | NoP
StackGAN [88] | 3.70 £ .04 - - - - -
AttnGAN [82] 4.36 £.02 | 23.98 | 67.82 | 35.49 | 83.82 | 230M
MirrorGAN [51] | 4.56 £+ .06 | 18.34 - 34.71 | 84.71 -
DM-GAN [91] 4.75£.07 | 16.09 | 72.32 | 32.64 | 88.56 | 46M
CP-GAN [306] - - - 35.41 - 318M
XMC-GAN [86] - - - 9.30 - 166M
DAE-GAN [61] | 442+ .04 | 15.19 | 85.45 | 26.72 | 92.61 | 98M
TIME [40] 4.86+.04 | 14.81 | 71.57 | 31.14 - 120M
DF-GAN [72] 4.86£.04 | 14.81 | 71.57 | 19.32 - 19M
SSA-GAN [37] 5.17+£.08 | 15.61 | 8.4 | 19.37 | 90.6 | 26M
COS-GAN | 5.244.06 | 12.42 | 86.53 | 19.54 | 91.42 | 9M
Table 1. Quantitative comparison between COS-GAN and other models on CUB [78] and COCO [3§8] datasets. - indicates values are
unreported.
Datasets: We evaluate our model on three datasets, tion and marginal distribution for class probabilities from

namely, 1) Caltech-UCSD birds (CUB) [78], 2) Oxford-102
flowers [47], and 3) MS COCO [39] datasets. The CUB
and Oxford-102 datasets have single-class with ten cap-
tions provided for each image. For CUB and Oxford-102
datasets, we adopt a training and validation partition simi-
lar to StackGAN [88]. The MS-COCO dataset is a multi-
class dataset with around 80k training and 40k validation
images; and for every image, five captions are provided in
the dataset.

Evaluation metrics: We use mainly three metrics to
measure quality of the images generated: 1) Inception Score
(1S) [63], 2) Fréchet Inception Distance (FID) [24], and 3)
R-precision (R%) [82]. FID and IS are used to measure
quality of the generated images. R% is used for measur-
ing text-to-image consistency. FID calculates the Fréchet
distance between two multivariate Gaussians fitted over the
global features extracted from the Inception-v3 [70] on real
and synthetic images. Lower FID means generated im-
ages are closer to real images. IS calculates the Kullback-
Leibler (KL) divergence between a conditional distribu-

Inception-v3 [70] model. The higher IS suggests high qual-
ity images with more diverse classes. R-precision measures
whether generated images can be used to retrieve the text
(to determine the text-to-image alignment).

We also employ three other metrics to evaluate the qual-
ity of the generated FG-BG semantic maps: Mean Intersec-
tion over Union (mIoU), Intersection over Union (IoU), and
pixel classification accuracy. The mloU calculates the aver-
age intersection over union for both foreground and back-
ground. The IoU metric determines the intersection over
union value for foreground alone. Lastly, the accuracy met-
ric measures the percentage of correctly classified pixels.

4.1. Qualitative Visualisation

In Figure 6, we compare our results visually for images
generated on CUB and COCO datasets with DF-GAN [71].
We also show the extracted segmentation masks from the
last level SCM predictor (Linear-SCM) for the generated
images. We observe that the images generated by our COS-
GAN model reflect the text better than those of DF-GAN
due to dedicated spatial conditioning for foreground and
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Method | IS | FID
StackGAN [58] 320+.01 | 51.89
StackGAN++ [87] | 3.26+.01 | 48.68
HDGAN [90] 3.45+ .07 | 43.17
LeicaGAN [50] 3.92+ .02 -

DualAttn-GAN [8] | 4.06 .05 | 40.31
COS-GAN | 4.28 +.09 | 28.63

Table 2. Quantitative comparison between COS-GAN and other
models on Oxford-102 Dataset [47].

background. In Figure 7, images for the Oxford-102 dataset
are generated and compared with those of HD-GAN [90].
Our generated images capture better semantics and appear
more realistic. Images generated by our model are plausible
and aligned with the text. As shown in Figures 6 and 7, gen-
erating two images and applying a co-attention mechanism
allow us to generate high-quality segmentation masks. For
visualisation of segmentation masks, we set a threshold of
0.5 and consider the values above 0.5 as foreground.

Method | ACC | IoU | mloU
Supervised U-Net | 98.0 | 88.8 | 93.2
GrabCUT [60] 72.6 | 36.0 52.3
FineGAN [66] - 44.5 -
OneGAN [4] - 55.5 -
PerturbGAN [5] - - 38.0
DRC [85] - 56.4 -
Chen et al. [10] 84.5 42.6 -
IEM + SegNet [65] 89.3 | b5.1 71.4
Melas-Kyriazi et al. [42] 92.1 66.1 -
Yang et al. [83] 94.3 69.7 81.7
SSA-GAN [37] 61.6 | 20.4 39.4
COS-GAN 946 | 73.2 | 83.3

Table 3. Quantitative comparison of FG-BG semantic maps be-
tween our approach and that of other models on CUB dataset [78].

4.2. Quantitative evaluation

In Table 1, we compare the proposed COS-GAN with
current GAN-based state-of-the-art models for text-to-
image synthesis on CUB [78] and COCO [3§&] datasets. Our
model improves the FID from 14.81 to 12.42 and IS from
5.17 £ .08 to 5.24 4 .06 on CUB dataset. Our model does
not use any extra network to improve Text-Image alignment
but only uses the discriminator to capture this alignment; so
we notice a small drop in R-Precision values. On COCO
dataset, in Table 1, we achieve similar performance as that
of SSA-GAN method [37]. COS-GAN’s ability to extract
meaningful segmentation masks for the generated images
can be seen as an added advantage over other models. For
the COCO dataset, we report only FID and R-precision as
IS scores do not reflect the quality of the generated im-
ages for larger datasets [37,71,89]. Compared to other ap-

proaches for T2I, our COS-GAN utilises significantly less
Number of Parameters (NoP) and still achieves competitive
performance with extraction of FG-BG semantic maps rep-
resentation for every image. In Table 2, we compare results
for Oxford-102 dataset. We only show quantitative results
for IS and FID scores for evaluation, as R-precision scores
are not available in the literature. We improve IS score from
4.06 to 4.28 and remarkably decrease FID from 40.31 to
28.63 along with high-quality segmentation masks.

Method | ACC | IoU | mloU
Supervised U-Net | 95.2 | 79.5 | 86.8
GrabCUT [60] 82.0 |69.2 |-
Chen et al. [10] 87.9 76.4 | -
IEM [65] 88.3 | 76.8 | 79.1

IEM + SegNet [65] | 89.6 | 78.9 | 80.8
COS-GAN | 90.9 | 772 | 81.7

Table 4. Quantitative comparison of FG-BG semantic maps be-
tween our approach and other models on Oxford-102 dataset [47]

If the quality of the generated FG-BG images and masks
is exceptional, they can serve the purpose of training seg-
mentation networks using weak supervision. To evaluate
the efficacy of the generated FG-BG masks, we have trained
UNet [59] in weakly supervised approach using images and
masks generated by COS-GAN for predicting segmenta-
tion maps for real image. We have evaluated the predicted
masks on the standard test splits of the CUB and Oxford-
102 datasets. The comparison of other approaches for gen-
erating FG-BG masks for CUB dataset is presented in Ta-
ble 3 and for Oxford-102 dataset in Table 4. The maps
produced by COS-GAN exhibit superior quality and rep-
resent a viable option for training various models in weakly
supervised learning scenarios. Compared to SSA-GAN
[37], which employs a segmentation approach for mask pre-
diction and addresses only the foreground, our proposed
method surpasses it by generating FG-BG masks of higher
quality, as demonstrated in Table 3.

5. Conclusion

In this paper, we have proposed a novel GAN framework
(COS-GAN) for text-to-image synthesis, which generates
two images simultaneously and extracts their FG-BG seg-
mentation masks using Co-attention mechanism. The pre-
sented method has illustrated that predicting segmentation
maps on image attended features produces high-quality seg-
mentation masks and improves the quality of images gener-
ated. We also propose a novel Spatial Conditioning Block
that focuses on dedicated conditioning to the foreground
and background, further boosting the model’s performance
and prompting the network to generate meaningful segmen-
tation masks. We comprehensively have studied our model
on CUB, Oxford-102, and COCO datasets and compared it
with other state-of-the-art approaches.
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