Unsupervised Co-generation of Foreground-Background Segmentation from Text-to-Image Synthesis

Yeruru Asrar Ahmed and Anurag Mittal
Department of Computer Science and Engineering, Indian Institute of Technology Madras
{asrar, amittal}@cse.iitm.ac.in

Abstract

Text-to-Image (T2I) synthesis is a challenging task requiring modelling both textual and image domains and their relationship. The substantial improvement in image quality achieved by recent works has paved the way for numerous applications such as language-aided image editing, computer-aided design, text-based image retrieval, and training data augmentation. In this work, we ask a simple question: Along with realistic images, can we obtain any useful by-product (e.g., foreground / background or multi-class segmentation masks, detection labels) in an unsupervised way that will also benefit other computer vision tasks and applications?

In an attempt to answer this question, we explore generating realistic images and their corresponding foreground / background segmentation masks from the given text. To achieve this, we experiment the concept of co-segmentation along with GAN. Specifically, a novel GAN architecture called Co-Segmentation Inspired GAN (COS-GAN) is proposed that generates two or more images simultaneously from different noise vectors and utilises a spatial co-attention mechanism between the image features to produce realistic segmentation masks for each of the generated images. The advantages of such an architecture are two-fold: 1) The generated segmentation masks can be used to focus on foreground and background exclusively to improve the quality of generated images, and 2) the segmentation masks can be used as a training target for other tasks, such as object localisation and segmentation. Extensive experiments conducted on CUB, Oxford-102, and COCO datasets show that COS-GAN is able to improve visual quality and generate reliable foreground / background masks for the generated images.

1. Introduction

The computer vision community has recently garnered extreme interest in the text-to-image (T2I) [16, 19, 21, 26, 53, 62, 80] synthesis task because of its wide range of applications such as language-aided image editing, computer-aided design, and text-based image retrieval. Further, T2I models can be used to produce numerous novel images (to be able to train machine learning models). In general, T2I task requires generative models to understand complex intra-modal and inter-modality relationships between both text and image domains to produce meaningful and realistic images.

T2I approaches typically utilise conditional GANs [43, 45, 48] by taking noise and sentences as conditional inputs to generate images. Earlier approaches [13, 56, 57] have successfully generated low-resolution images on single-class datasets [47, 78]. Generating high-resolution images is made possible by multi-stage GAN architectures [88] that generate images at different resolutions, with a high-resolution stage generator conditioned on images generated from low-resolution stage. Recent attempts have used various improved techniques such as intermediate discriminators [90], visually-aligned textual features [82, 91], multi-
stage refinement with local attention [8, 32, 35, 36, 40, 84], layer-wise fusion of text features [37, 71, 86, 89], codebook based visual discrete representations [16, 17, 54, 75] and denoising diffusion models [15, 58] to improve quality of image generation.

The current trend of approaches solely focuses on improving the quality of the generated images. In this paper, we take a step back and ask a simple question: Along with realistic images, can we obtain any useful by-product (e.g., foreground / background or detection labels) in an unsupervised way that will also benefit other computer vision tasks? To answer this question, we explore a new direction in the T2I synthesis to generate images along with their foreground-background segmentation masks in an unsupervised way.

Foreground-Background (FG-BG) segmentation is a special case of segmentation where each image pixel is classified as foreground or background. Unsupervised approaches to generate images and their corresponding FG-BG masks rely on training Generative Adversarial Networks (GANs) in a layered approach [1, 4, 5, 42, 66, 83]. This involves using multiple generators to produce foreground and background separately and then predicting the mask from the foreground. This predicted mask is then used to combine both the foreground and background to create final FG-BG mask output. Further, many approaches also utilise the underlying class distinction in the dataset to generate images and corresponding masks. We propose using a GAN to generate images and their corresponding FG-BG masks from the text as a novel approach. These masks and images can be used to train other vision applications.

We hypothesise that generating multiple images for the same text and performing a notion of co-segmentation between those images will provide with a foreground mask, specific to the common object present in the images as defined by text. To validate this hypothesis, inspired by deep co-segmentation related approaches [9, 34, 68, 69, 74], we propose a novel architecture named "Co-Segmentation Inspired GAN" (COS-GAN) for generating images and segmentation masks from the given text. COS-GAN generates image and FG-BG masks as an intermediate output (refer Figure 1) in a completely unsupervised way on text-image datasets. Specifically, we propose a GAN model that generates two image features for the same text but is conditioned with different noise vectors. Then, we perform a spatial co-attention between these image features to promote the notion of co-segmentation. Further, co-attention logits are used to predict a 2-class segmentation mask (foreground (FG)-background (BG)) to signify FG / BG regions in the images. Further, these masks are used to enhance FG / BG regions exclusively. We conduct comprehensive experiments on CUB [78], Oxford-102 [47], and COCO [38] datasets to validate the performance of COS-GAN in terms of quality of the generated image and segmentation masks.

We summarise contribution of our paper as follows:

- We formulate a novel framework to generate images and extract segmentation masks for the generated images conditioned on the text.
- We propose a Spatial Co-attention Mask (SCM) predictor to extract segmentation masks for the generated images and novel spatial conditioning blocks that use segmentation masks from SCM predictor to improve quality of the images generated.
- We formulate generating two image features and extracting segmentation masks. Using Co-Attention Mechanism produces higher quality segmentation mask and improves image generation quality.

2. Related Work

In this section, we discuss briefly some of the relevant works in the literature relating to this paper.

2.1. Text-to-Image Synthesis

For the past few years, Generative Adversarial Networks (GANs) [20] approaches have been used for generating images. With larger GAN models [6, 27], and with regularisation methods [2, 7, 22, 44], GAN approaches can generate images on large datasets like ImageNet [14]. Conditional GANs [43, 45, 48] with sentence conditioning can generate images at low resolutions [13, 56, 57]. StackGAN [88] generates images at intermediate resolutions using a stage-wise approach and uses them as conditioning in high-resolution generators. HDGAN [90] trains a single generator and multiple discriminators for each resolution to provide intermediate signals to the generator. AttnGAN [82] has introduced cross-domain attention for local refinement using image aligned text embeddings. DM-GAN [91] uses memory refinement-based attention to capture text-image interactions. MirrorGAN [51] has proposed generating captions from discriminator to boost text vs. image semantic consistency. SD-GAN [84] applies contrastive loss between two generated images for two different captions of the same image to capture better text-image relations. ControlGAN [32] has introduced a fine-grained discriminator to improve discriminator’s capability to understand complex relations between text and image. CPGAN [36] extracts salient features of the image for each word to provide image representation to the generator along with the word. XMC-GAN [86] increases mutual information between image and text using inter-modality and intra-modality contrastive losses between images and text. DF-GAN [71] has introduced a single generator to generate images with affine conditioning of text with Matching-Aware zero-centered Gradient Penalty (MA-GP) to improve text-image alignment. SSA-GAN [37] uses semantic masks to improve spatial condi-
tioning of the images. These generated semantic maps can also be used as FG-BG masks.

With the introduction of Neural Discrete representation [75], images are represented as low-level tokens of the visual codebook [17]. Images are treated as a sequence of tokens; and to generate images, models have to generate the sequence in an autoregressive approach using transformer [76]. Images represented as low-level tokens allow models to scale up to large models to generate images at high-resolutions [16, 54]. The current focus of such models is to learn compact visual codebook to reduce the number of autoregressive predictions at the time of inference [31] and further boost image quality generations by capturing multiple representations [19, 55, 81].

Another approach for generating images from text is Denoising Diffusion Probabilistic Models (DDPM) [67]. DDPM generates images by reversing the forward markovian chain by removing noise at each step which allows to generate images at high-resolutions [15, 25, 46]. Guided diffusion using language models [52] allows models to capture non-natural interaction between text and images [53, 62]. Diffusion models with visual codebooks are also used to generate images at low-resolutions [18, 21]. The incorporation of self-attentions [76] and dynamic convolutions [12] in the recently proposed scaling up of GANs [26, 64] enables faster generation of images, while maintaining comparable quality of the Diffusion approach. Moreover, GANs offer enhanced control over the process of image generation.

In this space of Text-to-Image generation models, all the approaches focus on improving the quality of the generated images and further boost text-image compatibility. With abundant availability of text-image pairs, in our proposed work, we generate text-conditioned segmentation masks for generated image features and further use the masks to improve quality of the images generated.

2.2. Foreground-Background Mask Generations

Various GAN-based models have been utilised for generation of FG-BG masks. Typically, these models adopt a layered training approach, where the generator is trained to produce foreground and background components separately. Subsequently, these components are combined using a mask predicted from the foreground. Although several approaches employing Information Maximisation [3, 42, 65, 85] have been proposed for FG-BG mask extraction, the quality of generated maps is generally inferior compared to that of the methods utilising GAN-based approaches.

FineGAN [66] is one such model that generates the background, foreground, and mask in a hierarchical tree-type neural network architecture with bounding boxes as inputs. OneGAN [4] uses a complete unsupervised training approach to generate FG-BG masks, with reconstruction losses applied between pose, style, and shape vectors that are predicted from both the generator and discriminator in a layered approach. Labels4Free [1] employs a pre-trained StyleGAN model for generating masks using a layered approach. Melas-Kyriazi et al. [42] use the latent spaces of pre-trained large-scale GAN models to generate masks. Yang et al. [83] generate FG-BG segmentation mask using layered GANs and alternate training of GAN and segmentation networks for the generated mask.

Several GAN-based models can generate segmentation masks with human intervention [33] or off-the-shelf mask prediction techniques [73] for pre-trained large-scale image synthesis networks [6, 28]. In the case of DDPM-based models [46, 67], pre-trained mask-generated networks [23] are employed to predict the mask for the features extracted from the trained DDPM models [58]. Some T2I (Text-to-Image) models can generate semantic maps. For instance, TReCS [29] employs text and mouse localisation to generate both images and their corresponding segmentation maps. Another T2I model, SSA-GAN [37], utilises a segmentation approach to generate semantic maps alongside pictures based on a given text. In contrast to current methods, our proposed approach introduces a novel GAN-based model that leverages Co-Segmentation to extract foreground-background masks conditioned on text. This approach distinguishes itself from layered GAN approaches, relying on additional interventions such as pre-trained models or human input and using segmentation approaches like CBAM [79] to predict segmentation maps.

3. Methodology

Our goal is to generate realistic images along with their foreground-background masks from the given text. To achieve this, we propose a simple architecture involving co-segmentation [9, 34] between two image features simultaneously generated from the same text (with different noise vectors). Specifically, we propose a novel framework called "Co-Segmentation Inspired GAN (COS-GAN)" that accepts text T as input and encodes it into a sentence vector S. This sentence vector S is instantiated into two sentence vectors s1, s2 using conditional augmentation [88] and, further, augmented with two different noise vectors to yield two conditioning vectors v1, v2. These vectors are transformed into low-resolution spatial maps and then passed through multiple stages where every stage consists of a Spatial Co-attention Mask (SCM) predictor followed by upsample convolutions to finally output generated images. SCM predictor employs co-attention between two image features over whole spatial dimension to induce a notion of co-segmentation and capture global information for prediction of foreground-background (FG-BG) segmentation mask for each image. Further, predicting FG-BG masks on image attended feature maps results in superior quality masks over maps predicted simply on image features. Apart from the
advantage of being a useful by-product, the prediction of FG-BG mask allows the model to individually act on foreground and background to enhance image quality. The network is trained using a combination of simple adversarial loss and text-image alignment loss. In the following sections, Sec. 3.1 explains the architecture of the generator (G) and Sec. 3.2 introduces the discriminator (D).

3.1. Generator Architecture

Generator G aims to generate two images simultaneously from the same text by ensuring that the images possess enough variations. Adopting co-segmentation concept between image features results in segmenting the predominant common object in those images. To achieve this, G accepts the given text T as input and passes it through a pre-trained text encoder [82] to yield sentence vector S and word vectors W. Then, to generate two different images for the same caption, two conditioning vectors are prepared as follows: First, S is instantiated into two sentence vectors s_1, s_2 using conditioning augmentation [88]. By essentially sampling from a conditional distribution $\mathcal{N}(\mu(s), \Sigma(s))$, the conditioning augmentation process enables the generator to introduce stochastic nature and variability into the generation process. Further, s_1, s_2 are appended with two different noise vectors z_1, z_2 produced from Standard Gaussian Distribution $\mathcal{N}(0, 1)$ and word features W to result in two conditioning vectors v_1, v_2.

As shown in Figure 2, the conditioning vectors v_1, v_2 are added with positional encoding [76] and passed through a set of self-attention layers [76] to capture long-range dependencies for improving the global structure of the generated images and capture complex interactions between the sentence, noise and word features. In self-attention layers, we follow PixelShuffle [30] style of reshaping method to increase the number of tokens, i.e., reshaping $(l, d \times r) \rightarrow (l \times r, d)$, where l is the number of tokens, d is the channel dimension, and r is the factor for increasing the number of tokens. Each of these shuffles is followed by a linear layer to increase the channel dimension. Finally, after self-attention layers, we end up with two features of size $256 \times d$.

We reshape the self-attended features to $d \times 16 \times 16$ and get initial low-resolution spatial feature maps. These low-resolution feature maps are passed through a series of upsampling blocks to result in the high-resolution image of dimension 256×256. Here, each upsampling block consists of a Spatial Co-attention Mask (SCM - Sec. 3.1.1) predictor followed by a Spatial conditioning block (Sec. 3.1.2) and upsampling convolutions. SCM predictor employs a co-attention mechanism between its input feature maps to calculate a correlation matrix and predict an FG-BG segmentation mask for each of the input feature. Further, this FG-BG mask is used in the Spatial conditioning block to modulate FG and BG regions of the generated image. To improve our model’s stochastic ability, we add noise to each layer similar to StyleGAN [28, 49]. To reduce overall computations, we use shared weights for generating multiple images and use only one generated image for predicting values for generator losses. Adversarial loss \mathcal{L}_{Adv}^G for the generator is:

$$\mathcal{L}_{Adv}^G = \mathbb{E}_{z \sim p(z)} [-D(\hat{x})]$$

(1)

Here \hat{x} is the generated (I_{fake}) image. To generate images reflecting the captions, generator is also trained to minimise sentence contrastive loss \mathcal{L}_{sent}^G between the global image features \hat{f}_g for generated images predicted by discrimi-
nator and sentence features \((S)\) as follows:

\[
\mathcal{L}_{\text{sent}}^G \left(\hat{f}_g, S \right) = - \log \frac{\exp \left(\text{Sim} \left(\hat{f}_g, S \right) \right)}{\sum_{n=1}^{N} \exp \left(\text{Sim} \left(\hat{f}_g, S_n \right) \right)}
\]

(2)

\[
\text{Sim} \left(\hat{f}_g, S \right) = \cos \left(\hat{f}_g, S \right) / \tau
\]

(3)

We use cosine similarity \(\cos(u, v) = u^T v / \|u\| \|v\|\), between features to calculate similarity scores \(\text{Sim}(\cdot, \cdot)\) for sentence embeddings \(S\) and global visual features \(\hat{f}_g, \hat{f}_p\) are global and patch features extracted from discriminators for the generated image. The patch features \(\hat{f}_p\) for generated images extracted must be aligned with the words \(W\) in the corresponding sentence. We use previous strategies to learn connections between these words and regions in the image \([82, 86]\), the cosine similarity is computed between all the image regions and words in the sentence and compute the attention values \(\alpha_{i,j}\) for word features \(w_i\) in the sentence and patch features as \(\hat{f}_p\), as:

\[
\alpha_{i,j} = \frac{\exp \left(\rho_1 \text{Sim} \left(w_i, \hat{f}_p \right) \right)}{\sum_{k=1}^{R} \exp \left(\rho_1 \text{Sim} \left(w_i, \hat{f}_p \right) \right)}
\]

(4)

Here \(R (= 256)\) is the total number of regions in the patch. \(c_l = \sum_{j=1}^{R} \hat{f}_p \alpha_{i,j}\) is the aligned visual region feature for the \(i^{th}\) word in the sentence. The score \(\text{S}_{\text{word}}\) function between all the regions in the patch feature \(\hat{f}_p\) and all words \(W\) can be defined as:

\[
\text{S}_{\text{word}} \left(\hat{f}_p, W \right) = \log \left(\sum_{l=1}^{T} \exp \left(\rho_2 \text{Sim} \left(w_l, c_l \right) \right) \right)^{\frac{1}{T}}
\]

(5)

Here \(T\) is the number of words in the sentence. \(\rho_1\) and \(\rho_2\) are hyper-parameters; we set it to the same values as in AttnGAN \([82]\). Word Contrastive loss \(\mathcal{L}_{\text{word}}^G\) for generator is as follows:

\[
\mathcal{L}_{\text{word}}^G \left(\hat{f}_p, W \right) = - \log \frac{\exp \left(\text{S}_{\text{word}} \left(\hat{f}_p, W_i \right) \right)}{\sum_{n=1}^{N} \exp \left(\text{S}_{\text{word}} \left(\hat{f}_p, W_n \right) \right)}
\]

(6)

We employ conditioning augmentation \([88]\) to generate multiple conditioning vectors for the same sentence in the generator; we apply the regularisation term for conditioning augmentation (\(\mathcal{L}_{C_A}\)) on sentence feature vector(s) as:

\[
\mathcal{L}_{C_A} = D_{KL} \left(\mathcal{N} \left(\mu \left(s \right), \Sigma \left(s \right) \right) \| \mathcal{N} \left(0, I \right) \right)
\]

(7)

Here \(\mu(s)\) and \(\Sigma(s)\) are mean and diagonal covariance matrices that are computed as functions of the sentence feature vectors. We use KL Divergence between the Standard Gaussian and the conditional Gaussian Distribution for regularisation. \(\lambda_1, \lambda_2\) and \(\lambda_3\) are hyper-parameters. The complete loss for the generator is defined as follows:

\[
\mathcal{L}_{G} = \mathcal{L}_{\text{Adv}}^G + \lambda_1 \mathcal{L}_{C_A} + \lambda_2 \mathcal{L}_{\text{sent}}^G + \lambda_3 \mathcal{L}_{\text{word}}^G
\]

(8)

3.1.1 Spatial Co-attention Mask Predictor

The prediction of intermediate masks \([79]\) within generative models \([1, 4, 37, 66, 83]\) typically relies on a single convolutional layer. However, this approach heavily depends on the local receptive field in image features for mask prediction, limiting its utilisation of global information within the image. To overcome this limitation, our proposed approach introduces generation of two images and implements spatial co-attention between their respective image features. This strategy aims to facilitate co-segmentation, enabling us to predict masks on image-attended feature maps that primarily highlight the common object present in both the images. We effectively integrate global information from both images by leveraging attention across all spatial locations between the images.

In the SCM block as shown in Figure 3, we combine an image feature with its reference feature across all spatial locations. This forms a correlation matrix that captures global information. Afterward, we process this matrix through a convolution block, which includes a convolutional layer followed by Conditional Batch Normalization \([11]\) and a LeakyReLU activation \([41]\), followed by a linear layer with a Sigmoid activation to predict an FG-BG mask. When dealing with larger spatial resolutions \((\geq 64)\), co-attention across all spatial locations can result in significant memory usage. To address this concern, we employ a linear layer with a LinFormer \([77]\) approach (using \(K = 128\)) to achieve co-attention. We refer to this modified version of SCM as the Linear-SCM (L-SCM) predictor.

3.1.2 Spatial Conditioning Block

In contemporary methods, predicted intermediate masks primarily enhance underlying tasks by regulating the impact of image features \([37, 79]\). However, these masks often focus only on the foreground or the object of interest, limiting their scope in generative models. This limitation stems from the importance of both foreground and back-
ground in generating high-quality images. In contrast, our approach utilises predicted masks for foreground and background, leading to enhanced performance in T2I tasks and better mask generation. Supplementary material provides additional evidence to support and validate this assertion.

We propose applying spatial conditioning to features using the FG-BG segmentation mask from the SCM predictor. In Figure 4, we utilise Conditional Batch Normalization [11] with modulation parameters (γ_c and β_c) for spatial conditioning on input features. For foreground conditioning related to text concepts, we use text features to estimate γ_{fg} and β_{fg}. As for the background, we use a noise vector z ($z \sim N(0, 1)$) to estimate γ_{bg} and β_{bg}. The modulation parameters of Conditional Batch Normalization are derived from the mask (M) in the following manner:

$$BN(x \mid s, z) = (\gamma_c) \cdot \frac{x - \mu(x)}{\sigma(x)} + (\beta_c) \tag{9}$$

$$\gamma_{fg} = FC \cdot \gamma_{fg}(s) \tag{10}$$

$$\beta_{fg} = FC \cdot \beta_{fg}(s) \tag{11}$$

$$\gamma_{bg} = FC \cdot \gamma_{bg}(z) \tag{12}$$

$$\beta_{bg} = FC \cdot \beta_{bg}(z) \tag{13}$$

$$\gamma_c = M \cdot \gamma_{fg} + (1 - M) \cdot \gamma_{bg} \tag{14}$$

$$\beta_c = M \cdot \beta_{fg} + (1 - M) \cdot \beta_{bg} \tag{15}$$

FC is a fully connected layer + Leaky ReLU here, and for the foreground, we use the mask and (1 − mask) for the background. Using segmentation masks from the SCM predictor for spatial conditioning prompts the SCM predictor to generate better segmentation masks for using suitable conditioning for the foreground, and the background, as the network is trained to enhance the quality of the generated image and be consistent with the text. The SCM predictor’s ability to produce meaningful and high-quality segmentation masks, which are then used for dedicated modulations in the spatial conditioning block, contributes to enhancing image quality in the generated outputs.

3.2. Discriminator

The Discriminator D is used for two purposes: (1) to predict whether the image is real or fake, and (2) to be a feature encoder for extracting features of the image for multi-modal contrastive loss. The image is passed through a series of residual downsampling blocks to extract three features, as shown in Figure 5. Logit values and global sentence feature are extracted from the final fully connected layer. Patch features for word contrastive loss are extracted when the feature size is 16×16. The logit values are used for Adversarial Hinge loss [44]. Adversarial loss L_{Adv}^D for discriminator is as follows:

$$L_{Adv}^D = E_{x \sim P_d} \left[\max(0, 1 - D(x)) \right] + E_{\hat{x} \sim P_f} \left[\max(0, 1 + D(\hat{x})) \right] \tag{16}$$

Here, x and \hat{x} are real I_{real} and fake I_{fake} images. Global feature extracted from the final layer with linear projections is also used for sentence contrastive loss. Sentence Contrastive loss L_{sent}^D and Word Contrastive loss L_{word}^D for discriminator are as follows:

$$L_{sent}^D (f_p, S_i) = - \log \frac{\exp (Sim (f_p, S_i))}{\sum_{n=1}^{N} \exp (Sim (f_p, S_n))} \tag{17}$$

$$L_{word}^D (f_p, W_i) = - \log \frac{\exp (Sim (f_p, W_i))}{\sum_{n=1}^{N} \exp (Sim (f_p, W_n))} \tag{18}$$

f_p and f_g are global and patch features extracted from Discriminator for real images. For training of L_{sent}^D and L_{word}^D, we use only real image pairs and not the generated image pairs as the images generated in early stages are not recognisable [86]. λ_4 and λ_5 are hyper-parameters. The final objective function for the Discriminator is defined as:

$$L_D = L_{GAN}^D + \lambda_4 L_{sent}^D + \lambda_5 L_{word}^D \tag{19}$$

4. Experiments

In this section, we introduce datasets and evaluation metrics used in our experiments. We then evaluate the proposed model on the datasets and compare qualitatively and quantitatively with the current approaches in the literature. The supplementary material further explains the specific details of the network, its training specifications, hyperparameters, and additional studies.
Datasets: We evaluate our model on three datasets, namely, 1) Caltech-UCSD birds (CUB) [78], 2) Oxford-102 flowers [47], and 3) MS COCO [39] datasets. The CUB and Oxford-102 datasets have single-class with ten captions provided for each image. For CUB and Oxford-102 datasets, we adopt a training and validation partition similar to StackGAN [88]. The MS-COCO dataset is a multi-class dataset with around 80k training and 40k validation images; and for every image, five captions are provided in the dataset.

Evaluation metrics: We use mainly three metrics to measure quality of the images generated: 1) Inception Score (IS) [63], 2) Fréchet Inception Distance (FID) [24], and 3) R-precision (R%) [82]. FID and IS are used to measure quality of the generated images. R% is used for measuring text-to-image consistency. FID calculates the Fréchet distance between two multivariate Gaussians fitted over the global features extracted from the Inception-v3 [70] on real and synthetic images. Lower FID means generated images are closer to real images. IS calculates the Kullback-Leibler (KL) divergence between a conditional distribution and marginal distribution for class probabilities from Inception-v3 [70] model. The higher IS suggests high-quality images with more diverse classes. R-precision measures whether generated images can be used to retrieve the text (to determine the text-to-image alignment).

We also employ three other metrics to evaluate the quality of the generated FG-BG semantic maps: Mean Intersection over Union (mIoU), Intersection over Union (IoU), and pixel classification accuracy. The mIoU calculates the average intersection over union for both foreground and background. The IoU metric determines the intersection over union value for foreground alone. Lastly, the accuracy metric measures the percentage of correctly classified pixels.

4.1. Qualitative Visualisation

In Figure 6, we compare our results visually for images generated on CUB and COCO datasets with DF-GAN [71]. We also show the extracted segmentation masks from the last level SCM predictor (Linear-SCM) for the generated images. We observe that the images generated by our COS-GAN model reflect the text better than those of DF-GAN due to dedicated spatial conditioning for foreground and background.
In this paper, we have proposed a novel GAN framework (COS-GAN) for text-to-image synthesis, which generates two images simultaneously and extracts their FG-BG segmentation masks using Co-attention mechanism. The presented method has illustrated that predicting segmentation maps on image attended features produces high-quality segmentation masks and improves the quality of images generated. We also propose a novel Spatial Conditioning Block that focuses on dedicated conditioning to the foreground and background, further boosting the model’s performance and prompting the network to generate meaningful segmentation masks. We comprehensively have studied our model on CUB, Oxford-102, and COCO datasets and compared it with other state-of-the-art approaches.

4.2. Quantitative evaluation

In Table 1, we compare the proposed COS-GAN with current GAN-based state-of-the-art models for text-to-image synthesis on CUB [78] and COCO [38] datasets. Our model improves the FID from 14.81 to 12.42 and IS from 5.17 ± .08 to 5.24 ± .06 on CUB dataset. Our model does not use any extra network to improve Text-Image alignment but only uses the discriminator to capture this alignment; so we notice a small drop in R-Precision values. On COCO dataset, in Table 1, we achieve similar performance as that of SSA-GAN method [37]. COS-GAN’s ability to extract meaningful segmentation masks for the generated images can be seen as an added advantage over other models. For the COCO dataset, we report only FID and R-precision as IS scores do not reflect the quality of the generated images for larger datasets [37, 71, 89]. Compared to other approaches for T2I, our COS-GAN utilises significantly less Number of Parameters (NoP) and still achieves competitive performance with extraction of FG-BG semantic maps representation for every image. In Table 2, we compare results for Oxford-102 dataset. We only show quantitative results for IS and FID scores for evaluation, as R-precision scores are not available in the literature. We improve IS score from 4.06 to 4.28 and remarkably decrease FID from 40.31 to 28.63 along with high-quality segmentation masks.

5. Conclusion

In this paper, we have proposed a novel GAN framework (COS-GAN) for text-to-image synthesis, which generates two images simultaneously and extracts their FG-BG segmentation masks using Co-attention mechanism. The presented method has illustrated that predicting segmentation maps on image attended features produces high-quality segmentation masks and improves the quality of images generated. We also propose a novel Spatial Conditioning Block that focuses on dedicated conditioning to the foreground and background, further boosting the model’s performance and prompting the network to generate meaningful segmentation masks. We comprehensively have studied our model on CUB, Oxford-102, and COCO datasets and compared it with other state-of-the-art approaches.

Table 2. Quantitative comparison between COS-GAN and other models on Oxford-102 Dataset [47].

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC</th>
<th>IoU</th>
<th>mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised U-Net</td>
<td>95.2</td>
<td>79.5</td>
<td>86.8</td>
</tr>
<tr>
<td>GrabCut [60]</td>
<td>82.0</td>
<td>69.2</td>
<td>-</td>
</tr>
<tr>
<td>Chen et al. [10]</td>
<td>87.9</td>
<td>76.4</td>
<td>-</td>
</tr>
<tr>
<td>IEM [65]</td>
<td>88.3</td>
<td>76.8</td>
<td>79.1</td>
</tr>
<tr>
<td>IEM + SegNet [65]</td>
<td>89.6</td>
<td>78.9</td>
<td>80.8</td>
</tr>
<tr>
<td>COS-GAN</td>
<td>90.9</td>
<td>77.2</td>
<td>81.7</td>
</tr>
</tbody>
</table>

Table 3. Quantitative comparison of FG-BG semantic maps between our approach and that of other models on CUB dataset [78].

<table>
<thead>
<tr>
<th>Method</th>
<th>IS</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>StackGAN [88]</td>
<td>3.20 ± .01</td>
<td>51.89</td>
</tr>
<tr>
<td>StackGAN++ [87]</td>
<td>3.26 ± .01</td>
<td>48.68</td>
</tr>
<tr>
<td>HDGAN [90]</td>
<td>3.45 ± .07</td>
<td>43.17</td>
</tr>
<tr>
<td>LeicaGAN [50]</td>
<td>3.92 ± .02</td>
<td>-</td>
</tr>
<tr>
<td>DualAttn-GAN [8]</td>
<td>4.06 ± .05</td>
<td>40.31</td>
</tr>
<tr>
<td>COS-GAN</td>
<td>4.28 ± .09</td>
<td>28.63</td>
</tr>
</tbody>
</table>

Table 4. Quantitative comparison of FG-BG semantic maps between our approach and other models on Oxford-102 dataset [47].

If the quality of the generated FG-BG images and masks is exceptional, they can serve the purpose of training segmentation networks using weak supervision. To evaluate the efficacy of the generated FG-BG masks, we have trained U-Net [59] in weakly supervised approach using images and masks generated by COS-GAN for predicting segmentation maps for real image. We have evaluated the predicted masks on the standard test splits of the CUB and Oxford-102 datasets. The comparison of other approaches for generating FG-BG masks for CUB dataset is presented in Table 3 and for Oxford-102 dataset in Table 4. The maps produced by COS-GAN exhibit superior quality and represent a viable option for training various models in weakly supervised learning scenarios. Compared to SSA-GAN [37], which employs a segmentation approach for mask prediction and addresses only the foreground, our proposed method surpasses it by generating FG-BG masks of higher quality, as demonstrated in Table 3.
References

[18] Zhengcong Fei, Mingyuan Fan, Junshi Huang, Xiaoming Wei, and Xiaolin Wei. Progressive denoising model for fine-grained text-to-image generation, 2022. 3

[41] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013. 5

[45] Takeru Miyato and Masanori Koyama. cgans with projection discriminator, 2018. 1, 2

[47] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008. 1, 2, 7, 8

[50] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Learn, imagine and create: Text-to-image generation grounded by fine-grained user attention. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 11523–11532, June 2022. 4

[51] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image generation by redescrip-

