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Abstract

Scene flow estimation is a crucial component in the de-
velopment of autonomous driving and 3D robotics, provid-
ing valuable information for environment perception and
navigation. Despite the advantages of learning-based scene
flow estimation techniques, their domain specificity and
limited generalizability across varied scenarios pose chal-
lenges. In contrast, non-learning optimization-based meth-
ods, incorporating robust priors or regularization, offer
competitive scene flow estimation performance, require no
training, and show extensive applicability across datasets,
but suffer from lengthy inference times.

In this paper, we present OptFlow, a fast optimization-
based scene flow estimation method. Without relying on
learning or any labeled datasets, OptFlow achieves state-
of-the-art performance for scene flow estimation on pop-
ular autonomous driving benchmarks. It integrates a lo-
cal correlation weight matrix for correspondence match-
ing, an adaptive correspondence threshold limit for nearest-
neighbor search, and graph prior rigidity constraints, re-
sulting in expedited convergence and improved point cor-
respondence identification. Moreover, we demonstrate how
integrating a point cloud registration function within our
objective function bolsters accuracy and differentiates be-
tween static and dynamic points without relying on exter-
nal odometry data. Consequently, OptFlow outperforms the
baseline graph-prior method by approximately 20% and the
Neural Scene Flow Prior method by 5%-7% in accuracy,
all while offering the fastest inference time among all non-
learning scene flow estimation methods.

1. Introduction
Estimating 3D motion fields from dynamic scenes is a

fundamental problem in computer vision with wide-ranging
applications, from autonomous driving to scene parsing and
object tracking. Scene flow estimation plays a vital role in
many of these applications, enabling machines to perceive
and navigate through their environments. For example, in
autonomous driving, scene flow estimation helps vehicles

Figure 1. Graph depicting flow accuracy Acc5 vs. inference
time in seconds with 2048 and 8192 points used. OptFlow is the
fastest algorithm while achieving state-of-the-art results among all
the non-learning-based methods. The experiments were run on an
NVIDIA Tesla T4 GPU.

understand the 3D structure and motion of the surround-
ing environment, which is essential for making safe and in-
formed decisions. Similarly, in robotics, scene flow estima-
tion assists robots in navigating through complex environ-
ments by providing a 3D understanding of the scene.

Traditionally, state-of-the-art methods for scene flow es-
timation have relied heavily on image-based training meth-
ods using semantic depth. However, in recent years, inter-
est in using lidar-based methods has grown. Learning-based
methods [19, 30] pioneered this area, but these methods re-
quire large annotated datasets for training, which can be dif-
ficult and expensive to obtain in real-life scenarios. Even
though many driving datasets [4, 5, 10] are available, ob-
taining annotations for ground truth flow vectors can be a
challenge.

This challenge has led to the development of large syn-
thetic datasets, such as FlyingThings3D [20], which have
emerged as an alternative means of training or pre-training
models. However, a significant domain gap often exists
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between synthetic and real-world datasets. This gap has
given rise to self-supervised scene flow estimation mod-
els [21, 31], which reduce the domain gap by training the
models on non-annotated datasets. However, these models
often suffer from slow convergence and require a consider-
able amount of training time.

Optimization-based methods for scene flow estima-
tion [17,22] optimize flow for each point cloud pair without
using training data. However, their high accuracy is often
accompanied by long processing times, which limits their
practicality in some applications.

To address this issue, we present OptFlow, a fast non-
learning optimization-based method. We introduce novel
concepts such as the local correlation weight matrix, in-
tegrated ego-motion compensation, and adaptive max cor-
respondence threshold limit, which significantly improves
the convergence speed of our optimization method. Our
method improves accuracy on real-world autonomous driv-
ing benchmark datasets by at least 20% over the baseline
method [22] and is competitive with the current state-of-
the-art methods.

Our work makes the following contributions:

1. Point correspondence matching by incorporating a lo-
cal correlation weight matrix for the target point cloud
in the objective function. This helps with better align-
ing associated points and producing more accurate re-
sults.

2. An adaptive maximum correspondence threshold,
which reduces noisy correspondences and further im-
proves the quality of the estimates.

3. An intrinsic point cloud matching transformation func-
tion based on ICP. This improves our flow estimates,
increases the convergence speed, and helps distinguish
static points from dynamic points.

2. Related Work
Non-learning-based methods A method revolving
around the analysis of a sequence of stereo images [27]
first pioneered the field of scene flow estimation. They first
calculated the 2D optical flow between each pair of stereo
images, which gives the motion of pixels in the image
plane. They then used the epipolar geometry between the
stereo pairs to back-project the 2D optical flow to the 3D
scene flow. Another non-learning-based iterative method
is the Non-rigid Iterative Closest Point (NICP) work by
Amberg et al. [1]. The goal of this method was to register
the point cloud representation of the scene to the current
frame. However, this method was sensitive to initialization
and not suitable for large-scale differences between the
template and the scanned mesh.

Supervised learning-based methods The most prevalent
algorithms in learning-based approaches for scene flow es-
timation involve training a flow regressor model, typically
a neural network, to compute flow vectors between point
clouds in the ambient 3D space [18, 19, 24, 25, 28–30]. The
introduction of deep learning architectures for point cloud
processing, such as PointNet [24] and its hierarchical exten-
sion PointNet++ [25] by Qi et al., has inspired numerous
works on scene flow estimation. Learning based state-of-
the-art models have proposed innovative network architec-
tures that build on these foundational models to estimate
scene flow directly from point clouds, such as FlowNet3D
[19].

FlowNet3D [19] employed PointNet++ for feature en-
coding of points and introduced a flow embedding layer that
learned to aggregate geometric similarities and spatial rela-
tions of points for motion estimation. Wang et al. [30] sub-
sequently enhanced FlowNet3D by incorporating geometric
constraints in the form of point-to-plane distance and angu-
lar alignment, resulting in FlowNet3D++. Numerous mod-
els have since emerged, focusing on improving point cloud
feature extraction and adding a flow refinement module on
top of it.

One such model is FESTA [29], which introduced spatial
and temporal features through an attention mechanism that
effectively captures the temporal relationships between con-
secutive point clouds and the spatial relationships. BiPoint-
FlowNet [7], another notable model, leverages both for-
ward and backward correspondence information in a bidi-
rectional approach to better handle occlusions and out-of-
view regions. The FLOT3D [23] method introduced a novel
frustum-based optimization method for scene flow estima-
tion, leveraging learned optimization techniques and ap-
plying a series of transformations in a coarse-to-fine man-
ner. Lastly, FH-Net [8] presents a fast hierarchical net-
work that addresses the computational challenges associ-
ated with dense 3D scene flow estimation, utilizing a hier-
archical structure and lightweight building blocks to exploit
both local and global features.

Self-supervised learning-based methods Recent re-
search has seen a surge of interest in self-supervised learn-
ing as a potential solution for enhancing scene flow esti-
mation from point cloud data [3, 13, 14, 16, 21, 26, 31] and
monocular images [6,11,32]. PointPwcNet [31] introduced
the concept of cycle consistency loss, which in turn inspired
Mittal et al. [21] to apply a similar approach for point cloud
correspondence identification. They innovatively merged
cycle consistency loss with nearest neighbor loss to tackle
the challenge of scene flow estimation. PointPwcNet [31]
made use of the Chamfer Distance [9], smoothness con-
straints, and Laplacian regularization to train scene flow in
a self-supervised way. SLIM [3] solved scene flow esti-
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Figure 2. Visualization of predicted flows on the KITTI Dataset. Left: The color-coded map illustrates a comparison between ground
truth flow vectors and our predicted flow values. Top Right: The point cloud PT−1 is depicted in red, point cloud PT in green, and the
translated point cloud (PT−1+F ) in blue. Note the proximity of the blue points to the ground truth green points, indicating high prediction
accuracy. Bottom Right: The visualization of predicted flow lines is presented.

mation while simultaneously classifying motion segmenta-
tion. Flowstep3d [12], on the other hand, employed a soft
point matching module to calculate pairwise matches be-
tween points in the source and target point clouds. Based
on this, we introduced a local correlation weight matrix in
our algorithm to improve soft correspondences within our
objective function. These strategies have demonstrated con-
siderable promise in augmenting scene flow estimation and
can be customized to various datasets while preserving gen-
eralizability. Nevertheless, self-supervised learning-based
methods still demand considerable training data to reach
satisfactory learning outcomes, and the associated training
cost can often be exorbitantly high.

Optimization based methods Optimization-based meth-
ods present a distinct class of non-learning-based ap-
proaches for estimating scene flow. Uniquely, these meth-
ods circumvent the need for model training, opting instead
for complete runtime flow optimization. Such an approach
was notably employed by authors in [22], where they en-
coded the prior of the flow to be as rigid as possible by min-
imizing the graph laplacian defined over the source points.
A subsequent work by Argo AI [17] replaced the explicit
graph with a neural prior using a coordinate-based MLP,
thereby implicitly regularizing the optimized flow field. Re-
cently, the scene flow estimation method, SCOOP [13], was
introduced, which innovatively combines pre-training on a
subset of data to learn soft correspondences and secure ini-

tial flows, followed by optimization-based flow refinement
steps. This hybrid approach has allowed SCOOP to deliver
competitive results, using considerably less training data.

3. Method
Problem definition: Given two sets of 3D point clouds,

Pt−1 ∈ Rn1×3 and Pt ∈ Rn2×3, representing a dynamic
scene at two different times t − 1 and t, respectively, the
task is to compute the 3D motion vector for each point in
Pt−1.

Since the number of points in each set may be different
and there may not be a one-to-one correspondence between
points, we model the motion of each point in Pt−1 using
a flow vector f in R3, and the collection of these points is
called a flow field F ∈ Rn1×3.

In our approach, we predict flow fi for each point pi in
Pt−1 such that the total distance between 2 sets of point
clouds is minimum. Thus, we want to find an optimal set of
flow vectors such that:

F ∗ = argmin
F

∑
pi∈Pt−1

dist(pi + fi, Pt), (1)

where dist is the function which computes distance be-
tween pi + fi and its corresponding nearest point in Pt.

3.1. Integrated Ego-motion Compensation

In real-world scenarios, LiDAR data is often captured
from a moving vehicle, making ego-motion capture criti-
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Figure 3. Visualization of predicted flows on the nuScenes and Argoverse datasets. Left: A color-coded map illustrates a comparison
between the ground truth flow vectors and our predicted flow values. Top Right: The point cloud PT−1 is depicted in red, point cloud PT

in green, and the transformed point cloud PT−1 + F in blue. Bottom Right: The visualization of predicted flow lines is presented. The
nuScenes example is particularly intricate, as the ego-vehicle is positioned at a turn, resulting in angled flows. Additionally, the color-coded
map illustrates the variance in flow values associated with each point.

cal for localization and motion estimation. Moreover, with
the majority of points in autonomous driving datasets being
static, the incorporation of ego-motion can simplify scene
flow estimation by aligning the input point cloud pairs and
focusing on dynamic objects. Though standard datasets
such as Argoverse [5] and nuScenes [4] provide ego-motion
information, this data hasn’t been tapped in previous scene
flow estimation research. Furthermore, errors can occur
due to the absence or inaccuracy of ego-motion sensor data
in certain scenarios. To diminish dependence on exter-
nal odometry data, we integrate an Iterative Closest Point
(ICP) [2] based transformation function, denoted as T, into
our optimization process, enabling its estimation alongside
flow vector estimation. At each step, we transform the cur-
rent point cloud into the next coordinate frame, minimising
the distance between corresponding static points.

The updated objective function is defined as:

F ∗ = argmin
F,T

∑
pi∈Pt−1

dist(Tpi + fi, Pt). (2)

In addition to point cloud flow F , we also estimate the
transformation T from the frame of point cloud 1 to the
frame of point cloud 2. This is to delineate the transforma-
tion of static parts of the scene due to vehicle motion from
the flow of dynamic objects and their associated points. In
section 5.4, we demonstrate the effectiveness of this trans-
formation in enhancing accuracy.

3.2. Local Correlation Weight Matrix

To establish the flow field, F , between two point clouds,
it is essential to find correspondences between points in
the source and target point clouds. Previous methods, such

as [21, 22], use the 1 nearest neighbor approach to find cor-
respondences, which can lead to sub-optimal solutions due
to initial inaccuracies.

Building on the global correlation unit in FlowStep3D
[12], which employs cosine similarity to find soft corre-
lations between features, we introduce a local correlation
weight matrix. For each point, pi, in the source point cloud,
Pt−1, transformed as (Tpi+fi), we identify the klocal near-
est points in the target point cloud, Pt. We then compute a
similarity score, simij , based on the exponential of the neg-
ative squared distance, dij , between point pairs:

simij = e−d2
ij . (3)

The correlation weight, Mij , representing the confidence
in the similarity between the source and target points, is cal-
culated using simij :

Mij = exp

(
simij − 1

ϵ

)
. (4)

Using these weights, we compute a weighted average of
the target points qj ∈ Pt to determine the optimal corre-
spondence, qavgi

, for each source point, pi:

qavgi
=

∑klocal

j=1 Mi,jqj∑klocal

j=1 Mi,j

. (5)

This leads to a new objective function:

Efit =

n1∑
i=1

||Tpi + fi − qavgi
||22. (6)

We use our objective function in a bidirectional manner
to both sets of point clouds, to effectively align it with the
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Method Supervision Learning Based #points EPE ↓ %5 ↑ %10 ↑ Out.↓

Just Go With The Flow (JGF) [21] Full + Self + Self True 2048 0.105 46.5 79.4 -
Self Point-Flow (SPF) [15] Self + Self True 2048 0.089 41.7 75.0 -
RigidFlow [16] Self True 2048 0.117 38.8 69.7 -
SCOOP [13] Self Partial 2048 0.052 80.6 92.9 19.7
Neural Prior [17] Self False 2048 0.052 84.8 94.3 16.4
OptFlow (Ours) Self False 2048 0.049 88.25 95.1 18.2

Graph Prior [22] Self False Full Pointcloud 0.082 84.0 88.5 -
Neural Prior [17] Self False Full Pointcloud 0.034 92.3 96.4 12.0
SCOOP+ [13] Self Partial Full Pointcloud 0.039 93.6 96.5 15.2
OptFlow (Ours) Self False Full Pointcloud 0.028 96.1 97.8 13.2

Table 1. Quantitative comparison on 2048 points and full pointcloud on KITTI Dataset with 35m range set on the point cloud.
Comparison with prior work as reported in the [13]. Here EPE denotes the end-point error, %5 denotes strict accuracy,%10 denotes
relaxed accuracy and Out. denotes the percentage of points that are outliers (i.e.EPE ≥0.3m)

principles of Chamfer Distance [9], ensuring a more sym-
metrical and comprehensive evaluation of correspondences.

Note: ϵ and Klocal are hyperparameters. While ϵ is
fixed at 0.03, Klocal depends on the density of the dataset,
with larger values for sparse datasets and smaller values for
dense datasets.

3.3. Adaptive Distance Threshold

While constructing the local correlation weight matrix
by finding the K nearest neighbors, it is critical to elim-
inate outliers that could adversely affect point correspon-
dences. Although some studies employ a fixed distance
limit of 2.0m, we introduce an adaptive distance threshold
that evolves during optimization.

This adaptive threshold, dthresh, decreases at regular
intervals of n steps, with the rationale that the flow vec-
tors’ accuracy improves with each iteration, necessitating
a more restrictive threshold for better matching precision.
The threshold is halved at each interval until it reaches a
lower limit of 0.2m. Correlations between points exceed-
ing this distance threshold are assigned a weight of zero in
the weight matrix M , ensuring that only those within the
threshold contribute to the final flow field.

In the current implementation, the interval is empirically
set to 100 steps, which means that the threshold is halved
after every 100 iterations.

3.4. Rigidity Constraint

Inspired by [22] and building upon the principles pre-
sented in it, we add a rigidity constraint in our optimiza-
tion objective to maintain geometric coherence in the source
point cloud. Specifically, we enforce local rigidity among
points in close proximity within a subgraph of Krigid

points, mimicking the characteristics of rigid body motion.
Our rigidity constraint is enforced by minimizing the dif-

ference between the flows of each pair of points within the

subgraph. The formulation leverages the graph laplacian,
which implicitly captures the topological structure of the
point cloud, to regularize the scene flow. Mathematically,
the rigidity function Erigid is expressed as:

Erigid(fi) =
∑
i,j∈S

W ij
rigid ∥fi − fj∥22 , (7)

where S is the set of edges of a subgraph G containing
Krigid points in the source point cloud PT−1, and W ij

rigid is
a weight defined similar to simij :

W ij
rigid = e−d2

ij , (8)

where dij is the distance between points pi and pj in sub-
graph G. The weight W ij

rigid assigns higher importance to
pairs of points that are closer, promoting rigidity within the
local region.

Note: We use Krigid = 50, as proposed in [22].

Combining all the proposed methods above, our final
objective function becomes:

Eobj = Efit + αrigidErigid (9)

=

n1∑
i=1

||Tpi + fi − qavg||22 + αrigid

∑
i,j∈S

W ij
rigid ∥fi − fj∥22

(10)

where n1 represents all points in point cloud Pt−1 and
αrigid is the weight of the rigidity loss.

4. Experiments
In this section, we evaluate OptFlow’s performance on

synthetic and real-life autonomous driving datasets and
compare it with recent state-of-the-art methods for scene
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FlyingThings3D [20]
#Test: 2,000

KITTI Scene Flow [10]
#Test: 50

Argoverse Scene Flow [5]
#Test: 212

nuScenes Scene Flow [4]
#Test: 310

EPE
(m)

%5 ↑
(%)

%10 ↑
(%)

θϵ ↓
(rad)

EPE
(m)

%5 ↑
(%)

%10 ↑
(%)

θϵ ↓
(rad)

EPE
(m)

%5 ↑
(%)

%10 ↑
(%)

θϵ ↓
(rad)

EPE
(m)

%5 ↑
(%)

%10 ↑
(%)

θϵ ↓
(rad)

FlowNet3D [19] 0.134 22.64 54.17 0.305 0.199 10.44 38.89 0.386 0.455 1.34 6.12 0.736 0.505 2.12 10.81 0.620
PointPWC-Net [31] 0.121 29.09 61.70 0.229 0.142 29.91 59.83 0.239 0.405 8.25 25.47 0.674 0.442 7.64 22.32 0.497
JGF [21] — 0.218 10.17 34.38 0.254 0.542 8.80 20.28 0.715 0.625 6.09 0.139 0.432

PointPWC-Net [31] — 0.177 13.29 42.15 0.272 0.409 9.79 29.31 0.643 0.431 6.87 22.42 0.406
Non-rigid ICP [1] 0.339 14.05 35.68 0.480 0.338 22.06 43.03 0.460 0.461 4.27 13.90 0.741 0.402 6.99 21.01 0.492
Graph Prior [22] 0.259 16.30 41.60 0.369 0.093 64.76 82.13 0.137 0.257 25.26 47.50 0.467 0.288 20.19 43.59 0.337
NSFP [17] 0.234 19.16 46.74 0.341 0.050 81.68 93.19 0.133 0.159 38.43 63.08 0.374 0.175 35.18 63.45 0.279
OptFlow (ours) 0.224 31.73 57.1 0.340 0.052 84.3 93.2 0.130 0.20 43.85 65.5 0.39 0.216 40.85 65.97 0.271

Table 2. Results on 2048 points with no point cloud range limit set. Comparison with prior work as reported in the NSFP [17]. Top
section between shows off-the-shelf supervised learning methods; the middle section shows self-supervised learning methods; and the
bottom section shows non-learning-based methods. Here EPE denotes the end-point error, %5 denotes strict accuracy,%10 denotes
relaxed accuracy and θϵ denotes angle error.

flow estimation. Additionally, we compare their generaliz-
ability, speed of execution, and model complexity. Our less
complex method achieves competitive performance without
any annotations and training data available.

Datasets: These are the four major datasets that we eval-
uated our models on:

1. FlyingThings3D: FlyingThings3D is a large-scale
synthetic dataset of random objects from the ShapeNet
collection. Similar to [17, 22], we use a pre-processed
dataset released by [19]. The dataset is evaluated on
2000 test samples.

2. KITTI Scene Flow: KITTI was designed to evaluate
scene flow methods on real-world self-driving scenar-
ios. In our experiments, we use a pre-processed dataset
that was released by [22]. The dataset is split into 100
train and 50 test sample sets, with ground points fil-
tered out.

3. nuScenes: nuScenes dataset is a large-scale au-
tonomous driving dataset in urban environments. It is
challenging due to the presence of a lot of dynamic ob-
jects in the scene and also because of the presence of
occlusions in the LiDAR point clouds. As there are no
official scene flow annotations, we use the ego-vehicle
poses and 3D object tracks to create pseudo-labels as
done in [17, 22]. The ground points below a certain
threshold are also filtered out. The results are evalu-
ated on 310 test samples from 150 test scenes, same
as [17, 22].

4. Argoverse: Argoverse is another large-scale challeng-
ing autonomous driving dataset released by Argo AI.
Similar to nuScenes, scene flow annotation are not pro-
vided for Argoverse and the same process has been
followed to derive the pseudo labels. The results are
evaluated on 212 test samples, same as [17, 22].

Metrics: To assess the effectiveness of our method, we
utilized commonly used metrics (such as those in previous
works [17, 19, 21, 22, 31]) which include: EPE ε (end-point
error), which measures the mean absolute distance between
two point clouds; Acc5 (Accuracy Strict), which calculates
the percentage of estimated flows where the EPE is less than
0.05m or the relative error E0 is less than 5%; Acc10 (Ac-
curacy Relax), which measures the percentage of estimated
flows where the EPE is less than 0.1m or the relative error
E0 is less than 10%; and θ, the mean angle error between
the estimated and ground-truth scene flows.

Implementation Details: Our implementation leverages
PyTorch, utilizing its automatic differentiation library to op-
timize our objective function with the AdamW optimizer.
We initialize our flow parameters, F ∈ Rn1×3, as empty
tensors. Additionally, we initialize a rotation vector, r ∈
R1×3, and a translation vector, t ∈ R1×3—components of
the transformation matrix T ∈ SE(3) defined in (6)—using
values derived from ICP registration. The learning rate is
set at 4e-3, and the optimization process is run for 600 iter-
ations, incorporating early stopping based on loss value. To
compare with leading architectures, we sample our dataset
using 2048 points, 8192 points, and the full point cloud. All
experiments are executed on an NVIDIA T4 GPU.

5. Results
5.1. Comparison with different methods

As demonstrated in Table 1, we assess our method us-
ing both 2048 points and the entire point cloud limited to a
depth of 35m, aligning our evaluation with parameters typi-
cally reported in the current literature. The results depicted
in Table 1 are either obtained from the recently published
study [13] or independently reproduced by our team.

In Table 2, our experimental setup follows the method-
ologies adopted by [17,22]. Here, we consider the full point
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Figure 4. Performance of OptFlow algorithm on KITTI with
different iterations and time taken for them. The red arrow
shows the most optimal performance.

cloud without imposing the range constraints applied in the
previous evaluation. These evaluation metrics are sourced
from [17].

A thorough examination of both tables reveals that
our method consistently outperforms alternative techniques
across all primary datasets. Specifically focusing on non-
learning-based approaches, OptFlow surpasses the perfor-
mance of all comparable methods across every dataset,
while also delivering the fastest inference time, as demon-
strated in Figure 1.

Figures 2 and 3 provide qualitative results of our al-
gorithm applied to the KITTI, Argoverse, and nuScenes
datasets.

5.2. Inference Time analysis and tradeoff

Figure 4 presents a detailed analysis of our OptFlow
model’s performance over a range of timesteps on the
KITTI dataset. Optimum performance is observed at the
600th iteration, with inference times of approximately 2.3
seconds for 2048 points and 3.1 seconds for 8192 points.

5.3. Evaluation on high-density point clouds

As depicted in Tables 1 and 2, we predominantly evalu-
ated our model’s performance using 2048 points. Nonethe-
less, it’s important to note that real-world LiDAR sensor
data often contain tens of thousands of points, necessitat-
ing the testing of scene flow methods on such high-density
point clouds.

Our model’s performance on high-density point clouds
is evaluated in Figure 5, which illustrates the trade-off be-
tween accuracy and inference time as we scale the number
of points within the KITTI Scene Flow dataset. For bench-
marking, we’ve compared our method with Neural Scene
Flow Prior (NSFP) [17], presently the best-performing al-
gorithm for non-learning-based approaches.

The results clearly demonstrate that our method substan-
tially outperforms Neural Scene Flow Prior [17] in terms of
accuracy, even while operating at a faster inference speed
and utilizing fewer points.

Figure 5. Performance(Acc5) comparison of our algorithm and
NSFP on the KITTI dataset for varying point cloud densities.
This shows we get around 7x speedup over NSFP [17] as the
point cloud density increases. The point clouds are processed
parallelly after 8k points as discussed in sec. 1 of supplementary.

5.4. Ablation Studies

Experiment EPE ↓ %5 ↑

(a) W/O integrated ego-motion transformation 0.081 91.6
(b) W/O adaptive distance threshold
(thresh = 2m) 0.035 91.9
(c) W/O correlation weight matrix 0.029 95.6
Our complete method (a + b + c) 0.028 95.8

Table 3. Ablation experiment with 8192 points evaluated on
KITTIt.

Tables 3 and 4 demonstrate the influence of each com-
ponent presented in our paper. Table 3 quantifies the per-
centage change each element induces in the complete algo-
rithm. For evaluation, we used a certain setup: consider-
ing our full method as a baseline and illustrating the im-
pact of each constituent on the EPE and Acc5 metrics.
We carried out experiments which entailed a) the omission
of integrated ego-motion transformation, thus forgoing the
transformation matrix and assuming the identity matrix for
T in equation 6; b) keeping a fixed distance threshold of
2m, with no adaptive adjustments; c) disregarding the cor-
relation weight matrix, hence only the nearest neighbor in
the target point-cloud was contemplated as a corresponding
point for each source point; d) implementing our compre-
hensive algorithm with all components included.

Table 3 highlights the fact that every component makes a
significant contribution, though the correlation weight ma-
trix has a minor variance from the full method. In contrast,
Table 4 shows that when we decrease the number of points,
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Experiment EPE ↓ %5 ↑

(a) W/O integrated ego-motion transformation 0.095 84.12
(b) W/O adaptive distance threshold
(thresh = 2m) 0.063 79.56
(c) W/O correlation weight matrix 0.050 84.90
Our complete method (a + b + c) 0.049 88.25

Table 4. Ablation experiment with 2048 points evaluated on
KITTIt.

Figure 6. Point Cloud Densification: One example from
nuScenes depicting the application of point cloud densification.
Our method was able to densify a pedestrian in a sparse point
cloud.

the impact of each component amplifies considerably, espe-
cially the correlation weight matrix, which increases Acc5
by a significant 4%.

6. Applications

Densification: Our scene-flow estimation methods
demonstrate such precision that they can be employed to
densify successive point-cloud frames. By computing pair-
wise scene-flow estimates, we can project the current point-
clouds - augmented with estimated flows - onto the succeed-
ing point-cloud, and perpetuate this densification process
through ‘n’ frames. As illustrated in Figure 6, we apply our
method on the nuScenes dataset to successfully densify a
pedestrian situated within an extremely sparse point cloud.

Object Annotation/Motion Segmentation: The incor-
poration of ego-motion compensation into our objective
function facilitates accurate alignment between two input
pairs of point clouds, assisting in closely aligning static
objects. This alignment process diminishes the flow val-
ues of static objects, thus simplifying the differentiation be-
tween dynamic and static objects. As shown in Figure 7,
motion segmentation is achieved after the ego-motion com-
pensation transformation is applied to an input pair of point
clouds. Furthermore, our algorithm lends itself to the an-
notation of dynamic objects in new datasets, extending its
utility beyond scene flow estimation.

Figure 7. Motion Segmentation(BeV): On the left, a pair of
sparse point clouds is shown in red and blue, after applying ego-
motion compensation. On the right, motion is segmented out and
dynamic objects are color-coded, just from the scene flow result.
Points exceeding a set threshold are then marked as dynamic.

7. Limitations

As reflected in Table 1 and Figure 1, our method achieves
state-of-the-art results with better inference speed amongst
all non-learning-based techniques. However, the execution
time may not suffice for real-time applications, such as for
use in autonomous vehicles.

Another challenge lies in the need for precision in hyper-
parameter settings for each specific dataset. When handling
a new dataset, our method requires a hyperparameter tun-
ing algorithm to obtain peak performance. Hyperparame-
ters, such as αrigidity in the final objective function (9) and
Klocal in the local correlation weight matrix, are pivotal in
influencing the performance across each dataset.

8. Conclusion

To conclude, our research introduces an innovative and
efficient non-learning scene flow estimation method. Our
method incorporates a local correlation weight matrix and
an adaptive distance threshold, both instrumental in acceler-
ating flow field convergence and enhancing correspondence
accuracy.

Additionally, we proposed an intrinsic ego-motion com-
pensation function that bolsters precision and curbs com-
putational complexity by reducing flow value computations
for static points and primarily concentrating on dynamic
points. This approach culminates in state-of-the-art results
in the Accuracy Strict (Acc5) metric for all key autonomous
driving datasets, and the fastest inference time among all
non-learning methods.

Finally, we demonstrate the versatility of our algorithm
with its applications in dynamic/static object annotation and
point cloud densification.
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